专改道研究听

Tsung-Dao Lee Institute

上海交通大學

Shanghai Jiao Tong University

Electronics design of the Muon Entrance Trigger

- Tianqi Hu
- muEDM Collaboration Meeting April 2024
 - 2024.4.5

Outline

- Review \bullet
- **Updated work on the Gate detector**
 - The ability to discriminate the beam electron, muon, and pion
 - Kicker-activated time influence, the fast electronics requirements
 - The electronics prototype and its performance
 - Dynamic ranges for the electronics output
- Next plan for the aperture and coincidence logic

Review

- We are developing an entrance detector
 - To store the muons in a stable orbit, a pulsed magnetic field needs to be triggered.
 - Match the phase space between the beamline and 0 solenoid
- Requirements
 - To be fully efficient while keeping at the minimum the multiple scattering of the detected muon
 - Short propagation delay 0
 - Discriminate the secondary particles in the beamline 0
- EJ-200 (OR GNKD) Scintillator + SiPM

Gate: light yield and Energy deposition

Muon Energy Deposition

for these particles is different

The expected dynamics range for the outputs of SiPM

Particles	Average Energy deposition(MeV)	Photons per SiPM GNKD	Photons per SiPM EJ200
Positron	0.017	<3	< 7
Muon	0.190	5~9	9~20
Pion	0.307	8~12	15~26

Note:

- the GNKD scintillator results were confirmed in both the simulation and experiment,
- the EJ-200 scintillator, results were obtained by the scale with the photon yield

Kicker pulse time scan

- With G4bl, the muon storage efficiency varied with the kicker time
- For maximum storage efficiency
- The time fluctuation in the kicker-activated time should be limited to ± 5 ns.

Muon storage efficienct affected by Kicker (V1 Pars)

Parameter Settings

Ver.	1.0	2.0
injR, mm	45.561	47.087
mZ, mm	-443.836	-454.609
Theta, deg	-45.022	-42.317
Phi, deg	9.244	10.581
PFfilename	PulseCoilB_simPuls_107_35.txt	SplitCoilArray_largeVolumeGrid.txt
WeakCurr, Amps/mm	1.5	1.5
InputDistFile	InputDistAfterCollimator_R75mm.txt	Inputdist_3M.txt
SplitPair, Amps/mm	2.5	1.6

Edit

Muon storage efficienct affected by Kicker (V2 Pars)

Fast electronics design of gate

The propagation delay of ~ 100ns between the gate and HV switch to maximize the storage efficiency

DC-DC Step-Up Converter

Up-Convert

- DC-DC Step-Up Converter: Output is about 35V
 - With a resolution of Bias Voltage < 4 mV, $\Delta\sigma$ < 0.010 % 0
 - The output voltage fluctuation is 18 mV,
 - ° SiPM Gain is $\sim 3.5 \times 10^5$, and the corresponding fluctuation in the SiPM gain is evaluated $\sim 0.26\%$, and also $\sim 0.26\%$ fluctuation in P.E. count

Convert Stability (Board 2)

PreAmp+Splitter component

Split

$$V_{OUT1} = V_{OUT2} = \frac{1}{3} V_{IN} \approx 0.33 V_{IN}$$

Frequency response

- Pre-amp: • 1GHz bandwidth
 - Amplifier amplification is adjusted to 50x
- Splitter:
 - Three resistors used
 - The output from the splitter is about 10x the input SiPM signal, after impedance matching

Discriminator component

- The discriminator module outputs LVTTL to the

Electronics Board Prototype

A switch of power supply, for selecting the up/bottom SiPMs work

• The electronics board prototype

- Design two methods for the reference voltage in the discriminator
- Outputs the coincidence logic of the gate SiPMs to the Aperture.
- The expected dynamic ranges for the electronics are shown

Particles	Average Energy deposition(MeV)	Photons per SiPM GNKD	Pre-amp(mV) (20dB)	Split Out (mV)
Positron	0.017	<3	<12	<4
Muon	0.190	5~9	20~36	7~12
Pion	0.307	8~12	32~48	11~16

Expected dynamics range for the electronics

Electronics Design Concept for Aperture

Storage phase space beam spot on AA A_{5} A_1 devZY [mm] ≻ Entries 10884 '99z -328.5 Mean 3 -0.00715059.49 Std Dev 32.70 Std Dev y 20 35y * 99z -20 -60 -250 Z [mm] ,50 -...0 -300 A_6 A_4 A_2

• For aperture

 $A_1 \sim A_6$

• The electronics used are the same as those of the gate detector • The following coincidence logic, we plan to use AND and NOR

Coincidence Logic Plan

However: if we set 5V for NC Chip, 6.9 ns PD totally

Summary

Gate detector:

- The ability of the gate to identify particles is evaluated
- The influence of the different activated times for kicker on the muon storage efficiency is evaluated
- The electronics prototype of the gate detector was produced, and the propagation delay was evaluated to 4ns within the gate detector
- The Expected dynamic ranges for the particles are evaluated

To-do:

- Aperture electronics and detector design and produce
- Optimize the electronics layout for the entrance detector 0
- The stability of the fast electronics within the magnet field environment 0
- Entrance Prototype test with radioactive sources 0

专政道研究听 Tsung-Dao Lee Institute

Shanghai Jiao Tong University