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AMS experiment

The Alpha Magnetic Spectrometer is a particles
detector operating on the International Space Station
used to study the composition of Cosmic Rays.

Search for Anti-Helium

Development of a Machine Learning algorithm
for the identification of possible Anti-Helium

events in the Cosmic Rays.

Dataset:
* Signal: Monte Carlo simulations of the Helium.
Helium differs from Anti-Helium only for

the charge.

* Background: Monte Carlo simulations of events

easily misinterpreted as Anti-Helium.

Algorithm:
* BDT: Boost Decision Tree trained to distinguish
between signal and background.

* AEC: Auto-Encoder trained to reconstruct the
signal. The error in the reconstruction is
used as selector.

HEPD

The High-Energy Particle Detector is a scientific
instrument designed to measure changes in the flow of

high-energy particles.

Classification of Protons vs Electrons

Development of a Machine Learning algorithm
for the classification of Protons and Electrons

crossing the detector.

Dataset:

The dataset is composed of Monte Carlo simulations of
events of high energy Protons and Electrons. Each event is
characterized by the thirty-two numbers of the Scintillator
Counters and by the nine numbers of the Lyso Cristals.

Algorithm:
* BDT: trained to distinguish between Protons and
Electrons.

* FCNN: Fully Connected Neural Network whose output
is the probability taht each event belongs to one

of the two classes.

HERD Calorimeter

HERD is a high-energy cosmic-ray detector based on a
deep three-dimensional electromagnetic calorimeter,
proposed to be installed on the Chinese Space Station.
The main scientific objectives of HERD include detecting
dark matter particles, studying cosmic ray composition,
and observing high energy gamma rays.

Classification of Protons vs Electrons

The study is focused on the classification task of
simulated electrons and protons detected by the HERD
Detector done with Machine Learning algorithm.

Dataset:

Our classification task is based on data from Monte
Carlo simulations of proton and electron particle
showers in the HERD electromagnetic calorimeter, with
energies ranging from 100 GeV to 20 TeV. We have two
datasets, one composed of three-dimensional images,
and the other from their two-dimensional projections.

Algorithm:

Our approach is inspired by the Inception neural
network, a very deep convolutional neural network that
achieved state-of-the-art performance in the ImageNet
Large Scale Visual Recognition Challenge 2015 when
combined with residual connections.
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Boost Decision Tree

In our case, we implemented an algorithm with:

*  One-hundred trees

* Stopping conditions:

e 4 leaves

* No depth conditions

* No purity conditions

* Gradient Boosting

* Learning rate of 0.25

NTofCluster <7.500
100.00% of data

fGet_PartialRigidity_Rigidity MaxDiffInvR <0.249
66.63% of data

no

T

fGet_Tof NClusters Sum_OnTime <2.500 yes
33.37% of data

leaf 0: 0.707
52.90% of data

leaf 2: 0.065
13.74% of data

leaf 1: 0.173
5.62% of data

leaf 3: -0.237
27.74% of data
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Auto-Encoder General Introduction

Image compression

Image reduction to a lower
dimension object: Code space

Image reconstruction from the
Code space back to the
original dimension

Convolutional layers
Max-Pooling layers
Up-Sampling layers

Input

Encoder

Output

Decoder




Auto-Encoder Trainin
8 * We submit to the AEC a training set of images taken from

the original signal dataset

* The AEC will perform its training confronting the output
images with the input ones

* The AEC goalis to reach the maximal accordance between
the input and the output

Original Signal Training Set

Reconstructed Signal Training Set




Auto-En r Validation
uto code * We submit to the AEC a validation set of images taken

from the original background dataset

* The AEC has never seen this set of images

* The AEC is expected to perform poorly on the background
validation set since it has been trained on the signal

Original Background Validation Set
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Auto-Encoder Error in Reconstruction

* We can evaluate the difference between
an original and a reconstructed image,

pixel by pixel:
B, = U O
36
(Rss — Os6)?
Eap =
36 36

* The total error will be the AEC selector
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Auto-Encoder AEC Error vs BDT Response

The signal is characterised by a
lower AEC error and a higher BDT
response

The background is characterised
by a lower BDT response but no
actual range for the AEC error

The two selectors, the BDT
response and the AEC error, are
not tightly correlated

AEC error

0.00030

0.00025 A

0.00020 A

0.00015 A

0.00010 +

0.00005 A

0.00000 T T T T
-10.0 =75 -5.0 -25 0.0 2.5

BDT response

5.0 7.5 10.0

10!

Background rejection

BDT ROC

1.000

0.998 A

0.996 -

0.994

0.992

0.990

Light GBM without AEC

—— Light GBM with AEC

0.75

0.80

0.85 0.90
Signal efficiency

0.95

1.00




HEPD
Electrons/Protons
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l VETO Scint Counters

\;_;

159329 Protons
61243 Electrons

S—

31 numbers from the Scintillator counter
9 from the Lyso



BDT parameters

* No maximum depth

* Number of leaves: 30

* Learning rate: 0.05

29 <34.584
20624.500 gain

/S~

11 <637.

501 26 <366.241
1982.400 gain

31 <12.144
3167.600 gain




HEPD

Machine learning algorithm for Protons vs Electrons classification.

BDT trained on two different datasets of different size.
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Fully Connected Neural Network
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Deep fully connected neural network

One-dimensional output, used for classification
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Systematic Study

We are looking for the best
Neural Network:

* Complex enough to classify
the data

 Simply enough to avoid
“overfitting”’

0.075 A

0.070 -

Loss Value

0.065 -

0.060 -

50000 100000 150000 200000
Number of parameters

— validation loss
—— training loss
® only dense
B dense with maxpooling



HERD
Electrons/Protons

- ~7500 LYSO cubes

- 3x3x3 cm each

- spherical shape to accept events from
any direction




DATASET

Proton and electron particle showers in
the HERD electromagnetic calorimeter,

with energies ranging from 100 GeV to
20 TeV.

e Electron events: 284515
* Proton events: 160171
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Current developments

ResNet Inception
X
28 X 28 X 64
weight layer
.F X l relu Pevious
( ) X Activation 28 x28x128
weight layer . . X 28 x
g y 'dentlty 2828192 28 X 28 X 32 2028256
MAXPOOL /
3x3,s=1
.F(X) + x Xsanfe CONV 28 X 28 x 32
28 X 28 X 192
32 filters,1 x 1 X 192
Improve the training efficiency maintaining Improve the classification power
the correlation between the gradients by capturing the correlation of different regions

at each step of the image



ResNet models
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Why ResNet?

The Shattered Gradients Problem: If resnets are the answer, then what is the question? Balduzzi et al. 1702.08591v2

The Shattered Gradients Problem

Gradients
Noise

Covariance matrices

(a) 1-layer feedforward. (b) 24-layer feedforward.  (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Keeping the gradients correlated as the depth of the network increases is crucial for
efficient training and improving the classification power of complex models.



Inception models

The use of 1x1 convolutions reduces the number of parameters and computational operations, allowing for

deeper and more complex networks without an exponential increase in computational costs.

* |Inception modules can capture features at different scales by combining filters of various sizes. This allows
the network to be more flexible and powerful in capturing relevant information from images.

* Astheinput proceeds through the network, the result of the convolutions loses the local correlations.

Therefore, the ratio between large and small kernels should increase with depth.
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