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nen Role of the user support

ChAF 1 Introduction

Tier-1 guarantees support for experiments/users through the dedicated User Support (US)
unit which:

e helps users to use computing resources in an efficient way;

e collaborate with different experiments to define a computing model in line with the
Tier-1 standards;

e develop tools to simplify the use of resources

e mantain and keep updated the official documentation for the users at Tier-1, the
User Guide (UG)
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INEN Some data

oHAF 1 Introduction
CNAF user-support Period: 06/2017 - 05/2023
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@ User Support Mission

1 Introduction

e High number of users + development/adoption of new technologies —crucial role of
the US department

e Users from different scientific communities — different computing needs for
experiments

e Tier support — 1st level (User Support), 2nd level (specialized department), 3rd level
(software developement)
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H ?
INEFN Why using Al
CHAF 1 Introduction

With the increasing number of communities the US team

Aspect

Without Al Assistant

With Al Assistant

Handling Increased Queries

Cannot handle growing volume

Al scales with query volume,
handling a large portion

Focus on Complex Issues

need attention

Response Times T as team LasAl
P becomes overwhelmed assists with load
User Satisfaction + due to delayed T due. . .
responses to efficient handling
Limited as all queries Human can

focus on complex issues
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NEn Problem core Workflow

ONAF 1 Introduction
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NEn Problem core Workflow

ChAF 1 Introduction

Hello, How can | use Jupyter Notebook?
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@ Historical Overview of Language Models

2 Al concepts
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INFN ELIZA
" ONAF 2 Al concepts

Pattern recognition to simulate conversation

Welcome to
EEEEEE LL IIII L27777 AAAMAA
LL II 27 AA AA
LL II 77 AAAAAAA
LL II 7 AA AA
EEEEEE LLLLLL IIII 777777 AR AA

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ?

YOU: Men are all alike.

ELIZA: What is the connection, do you suppose 7

YOu: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?

YOU: Well, my boyfriend made me come here.

ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.

ELIZA: I am sorry to hear that you are depressed.

YOU: It's true. I am unhappy.

ELIZA: Can you explain what made you unhappy ?

You:




INEN Statistical Models + Neural Networks

ONAF 2 Al concepts

After many years of research...

Probabilistic models
Statistical language models

Neural Networks
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@ Historical Overview of Language Models

2 Al concepts
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INEN Word2vec

ONAF 2 Al concepts

e Able to capture multiple different degrees of similarity between words
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NN Attention mechanism

ChAF 2 Al concepts

e Focuses on relevant parts of the input sequence
e Improves performance by weighting important information

For example, to continue the sentence
The cat is jumping from the...

the attention mechanism will put attention to the words

The [l is - from the...

and the Seq2seq model will generate

The cat is jumping from the -
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@ Historical Overview of Language Models

2 Al concepts
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INEN Transformers

CNAF 2 Al concepts

e Encoder-Decoder architecture
e Uses self-attention mechanisms to process all input tokens in parallel

e Captures long-range dependencies efficiently

Input words Input Embeddings Self-Attention Layer

/Output Embeddings/
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Historical Overview of Language Models

2 Al concepts
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inen BERT and GPT

ChAF 2 Al concepts

BERT:

e Bi-directional Encoder Representations from Transformers

e Processes input tokens in parallel, capturing context from both directions
GPT:

e Consists of multiple transformer decoder-only layers

e Pre-trained on a large corpus and fine-tuned for specific tasks.
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@ Historical Overview of Language Models

2 Al concepts
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NEN  Large Language Models

ouAF 2 Al concepts

e Massive Pre-training: Trained on vast datasets, capturing diverse language patterns.
e Scale: Billions to trillions of parameters.
o Versatility: Perform multiple tasks with minimal fine-tuning.
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iNen  Downsides of LLMs

ChAF 2 Al concepts

¢ Hallucinations
— Generation of incorrect or nonsensical information
e Lack of Up-to-Date Information

— Trained on data up to a certain cutoff
— Cannot provide real-time information

e Inaccuracy

— Errors in understanding context
— Potential spreading misinformation
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NN FOr example
~ OMAF 2 Al concepts

o How the famous statistician Alberto Trashaj discovered that the variance is always
positive definite?

" Actually, there seems to be a misconception here. Alberto Trashajis not a
recognized name in the field of statistics, and variance itself is not always positive
definite.

Here's a breakdown:
» Variance: Variance is a statistical measure that describes how spread out a set of

data is from its mean. It can be positive, zero, or negative depending on the data.
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INEN

23/53

Hallucination

ChAF 2 Al concepts

o Which monitoring service is used at CNAF Tier-1?

<>

Mostra bozze v

While | cannot disclose specific details about CNAF Tier-1's internal systems,
research papers and publications can offer clues about the monitoring service they

might be using.
Here's what | found:

* Research Papers: According to a research paper titled "Evolution of monitoring,
accounting and alerting services at INFN-CNAF Tier-1"
(https:/www.nebi.nlm.nih.gov/pme/articles/PMC8840211/), CNAF Tier-1 historically

used a combination of tools:

o LEMON (developed at CERN)
= Nagios (for alerting purposes)
o Graphite database with custom web pages

Shift Towards Open-Source Tools: The paper also mentions a shift towards a
common monitoring infrastructure based on open-source tools around 2015. This

new infrastructure reportedly consisted of:

o Sensu (for monitoring and event handling)

L))



NEn The Paper cited
ChAF 2 Al concepts

ELLNOM

oIy

Sensors (Basel). 2022 Feb; 22(3): 1010 PMCID: PMC8840211
Published online 2022 Jan 28. doi: 10.3390/s22031010 PMID: 35161756

Efficient Spatiotemporal Attention Network for Remote Heart Rate Variability
Analysis

Hailan Kuang, Fanbing_Lv, Xiaolin Ma,” and Xinhua Liu

Sheryl Berlin Brahnam, Academic Editor

= Author information » Article notes = Copyright and License information  PMC Disclaimer

Abstract Goto: »

Studies have shown that ordinary color cameras can detect the subtle color changes of the skin
caused by the heartbeat cycle. Therefore, cameras can be used to remotely monitor the pulse in a
non-contact manner. The technology for non-contact physiological measurement in this way is
called remote photoplethysmography (rPPG). Heart rate variability (HRV) analysis, as a very
important physiological feature, requires us to be able to accurately recover the peak time locations
of the rPPG signal. This paper proposes an efficient spatiotemporal attention network (ESA-

+PPNat) tn racaver hich-aiiality »PPC cional for haart rata variahilitvy analveie Firer 2N danthawwrica



INEN The RAG Model

CHAF 2 Al concepts

Retrieval Augmented Generation [12] is an Al framework that combines the strengths of
retrieval-based and generative models. It's main components can be summarize in those
three section:
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three section:

1

A pre-trained retriever
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@ Why RAG models?

2 Al concepts

1. Highly customizable
2. Implement updated information
3. Used for QA tasks
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INFN Research Questions

3 Methodology

1. Can Artificial Intelligence-based technologies efficiently support INFN-Tier1 users?

2. Is it possible to overcome the limitations of Large Language Models?
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@ The complete pipeline

3 Methodology

Embedding

—>

Similarity Search

/Document Chunks /L>

Embedding

|

i

Splitting

{ User Guide /
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/ Input/Output /

Retrievial

/ Generated Answer /
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nen  Data Workflow

CNAF 4 RAG workflow - Input

The RAG model developed has two input components coming from two different sources:
User Query (UQ) and the User Guide (UG)
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ONAF 4 RAG workflow - Input

The RAG model developed has two input components coming from two different sources:
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Pages / Tiert - D on B @ M Anaiyics
PaceETREE INFN-CNAF Tier-
 INFN-CNAF Tier1 User Guide 2023 - v16)

©1-onaE

Hello,

How can I use Jupyter
Notebook at CNAF?
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User Support

of Tier-1

Thank you,

[NAME]
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@ Embedding the User Guide

5 RAG worklfow - Embedding

/ Page-content /

Documents format /

Metadata

o ADSEURERE is a piece of text and associated metadata.

33/53



@ Snapshot of the User Guide in Document format

5 RAG worklfow - Embedding

Link URL Title Content
https://confluence.infn.it/pages/viewpage.acti... INFN-CNAF Tier-1 User Guide (April 2023 - v16) INFN-CNAF Tier-1 user guideSummaryCNAFTier-1Ba...
https://confluence.infn.it/display/TD/Tier1+-+... Tier1 - Documentation The Tier1 guide is available here:INFN-CNAF Ti...
https://confluence.infn.it/display/TD/1+-+CNAF 1- CNAF CNAF[1]is the national center of INFN[2](ltali...
https://confluence.infn.it/display/TD/2+-+Tier-1 2 - Tier-1 Since 2003, CNAF hosts the main INFN computing...
https://confluence.infn.it/pages/viewpage.acti... 3 - Bastion & user interfaces To access via ssh the Tier-1 user interfaces (...
https://confluence.infn.it/display/TD/4+-+Farming 4 - Farming The batch system at Tier-1is HTCondor 9.0.7 (...
https://confluence.infn.it/display/TD/5+-+Storage 5 - Storage Depending on the pledged resources for you exp...
https://confluence.infn.it/display/TD/6+-+The+. 6 - The HPC cluster If your use case has needs related to parallel...
https://confluence.infn.it/display/TD/Account+. Account Request If a user already has an hpc account, it can s...
https://confluence.infn.it/display/TD/SLURM+a SLURM architecture Slurm workload manager relies on the following...
https://confluence.infn.it/display/TD/The+stru. The structure of a basic batch job To work with a batch, the user should build a ...
https://confluence.infn.it/display/TD/Submi Submission examples Below some examples of submit files follow to ...
https://confluence.infn.it/display/TD/Migra Migrating from LSF Down below are listed some frequently used LSF...

https://confluence.infn.it/display/TD/Environm Environment Modules While working on the HPC cluster the user may ...

.infn.it/display/TD/7+-+Clou. 7 - Cloud @ CNAF Cloud resources based on the OpenStack framewo...

sence.infn.it/display/TD/8+-+D 8 - Digital Personal Certificates and Proxies ... Requesting a digital personal certificate (INF...

https://confluence.infn.it/display/TD/9+-+Job+. 9 - Job st ission Job sL ission can be direct using the HTCondo...
https://confluence.infn.it/display/TD/HTCondor... HTCondor jobs HTCondoris a job scheduler. You give HTCondor ...

https://confluence.infn.it/display/TD/Examples Examples All the options and the submit description com...




inEn Text Chunking
onF 5 RAG worklfow - Embedding

Why Chunk?

e Context Window Limit: LLMs have a limited text processing capacity.
How?

e Divide Text: Split the User Guide into smaller chunks.

e Purpose: Ensure each chunk fits within the LLM’s context window.
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Ny Embedding phase
ouAF 5 RAG worklfow - Embedding

Embedding:

e Process: Convert chunks to vectors using a model (e.g., "all-mpnet-base-v2").
Storage:

e Vector Database: Efficiently store embeddings for quick searches.
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INEN Vector database
oHAF 5 RAG worklfow - Embedding

A vector database (VD) is a type of database specifically designed to store and efficiently
manage high-dimensional vectors. A VD organizes and indexes these vectors in a way that
enables:

e fast retrieval,

e search operations based on similarity search (or other criteria);
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@ Efficient Retrieval with Vector Databases

5 RAG worklfow - Embedding

Comparison:

e Document vs. Query: Match embeddings to find relevant info.
Challenges:

e High-dimensional Embeddings: Exact matches are impractical.
Solution:

e Approximate Nearest Neighbor Search: Fast, efficient retrieval.

¢ Trade-off: Balancing speed and precision.
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@ But more specifically...

5 RAG worklfow - Embedding

The common pipeline for a vector database is the following

—— Querying

Indexing ——

~
/ Document Retrieved /

e Indexing: process of organizing and structuring vector data to facilitate efficient
retrieval of similar vectors

e Querying: the vector database compares the indexed query vector to the indexed
vectors in the dataset to find the nearest neighbors
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@ Embedding the query

5 RAG worklfow - Embedding

Once the VD is created, the User Query is embedded with the same function used to
embed the UG, so that the query stands in the same vector space of the VD:

Embedding function
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5 RAG worklfow - Embedding

Once the VD is created, the User Query is embedded with the same function used to
embed the UG, so that the query stands in the same vector space of the VD:

Embedding function ——— [

3 Vector embedded

"all-mpnet-base-v2"
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Nnen @ll-mpnet-base-v2 sentence similarity
oNAF 5 RAG worklfow - Embedding

entence Similarity Examples
Source Sentence
This is a Jupyter Notebook
Sentences to compare to

That is a happy dog
You can use python
Bologna is a beatiful city
Add Sentence

Compute

Computation time on cpu:

That is a happy dog

You can use python

Bologna is a beatiful city

JSON Output

[
0.09476644545793533,
0.32490143179893494,
-0.009274151176214218
]




@,':?\, Similarity search

5 RAG worklfow - Embedding

3D PCA of 100-dimensional vectors

geometry

) . Figure: Cosine similarity
Figure: Vector space representation
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INEN

oHAF 5 RAG worklfow - Embedding

Querying involves:
e Query vector
e Distance Metric
e Vector database

43/53

N

Querying in Vector Databases

Distance metric

Querying

—>/ Document Retrieved /

el
/ Query Vector /
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INFN Prompt creation

6 RAG workflow - Prompt

The vectors retrieved are re-converted into the original documents, and the documents
are included in the prompt of a Large Language model (LLM)
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INFN Prompt creation

6 RAG workflow - Prompt

The vectors retrieved are re-converted into the original documents, and the documents
are included in the prompt of a Large Language model (LLM)

Similarity Search —>/ Documents Retrieved m
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@ Prompt instruction

6 RAG workflow - Prompt

The prompt of the LLM is composed by some human-instruction on how the LLM should
answer to the query and the context retrieved by the retrieval algorithm.
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@ Prompt instruction

6 RAG workflow - Prompt

The prompt of the LLM is composed by some human-instruction on how the LLM should
answer to the query and the context retrieved by the retrieval algorithm.

prompt = Answer the user’s questions based on the below context as you were
answering to an email in a professional style.

<context>
{context}
</context>

<query>

{query?}
</query’
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NN Prompt Injection

oHAF 7 RAG workflow - Generation

The created prompt can then be submitted to a Large Language Model (LLM) which, even
if not an "expert" on a specific topic, is capable of extracting the "interesting" content
from context and reformulating it

- . / Answer generated /
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INFN Answer generated

7 RAG workflow - Generation

Dear User,

To answer your question directly, yes, you
can use Jupyter notebooks through the
JupyterHub service at Tier-1. The service is
reachable wia browser at the following page:
<https://jupyterhub-tl.cr.cnaf.infn.it/>.
Please note that you will need to have an
account and be logged in to access the
notebooks.

If you have any further questions or
concerns, please feel free to ask.

Best regards,

[Your Name ]
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@ The complete pipeline

7 RAG workflow - Generation

Embedding

—

Similarity Search

/ Document Chunks /L>

Embedding

|

i

Splitting

/ User Guide /
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INEN Conclusion

oHAF 8 Conclusion

To summarize:
e GenAl techniques has been explored to help the US handling large volume of queries
e The RAG models has been prototyped to overcome the drawbacks of LLMs
e The LLMs can be empowered by RAG by enriching the knowledge-base with the UG
Future works:
e Explore different LLM in the generation part
e Prompt engineering: few-shot learning, chain-of-thought

e Enrich the knowledge-base with external resources
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NNy How to Reach us

oHAF 8 Conclusion

e albertotrashaj31@gmail.com
e matteo.barbetti@cnaf.infn.it
o elisabetta.ronchieri@cnaf.infn.it
e carmelo.pellegrino@cnaf.infn.it

Thank you!
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