Binding C+4 code to Python using Pybind11

Simone Balducci

Simone Balducci

Alma Mater Studiorum — Universita di Bologna

21 October 2024

21 October 2024

Content of this lecture

What are Python/C++ bindings and why we care

The pybind11 library

How to define, compile and use a basic binding

How to bind functions and classes

How to use STL containers in the binding

How to handle inheritance and polymorphism

How to handle the interface between the two languages
How to use Python code inside C++

Simone Balducci 21 October 2024 2/51

Before starting

@ To be able to compile and run the codes, you need:

= gcc 4.8+
= cmake 3.15+
= python 3.7+

@ You can load them from the list of compilers

module load compilers/gcc-12.3_s17
module load compilers/python-3.10.5

module load compilers/cmake-3.27.7

@ You can automize this by adding the commands to your .bashrc

o get pybindll with
git clone https://github.com/pybind/pybindll.git

Simone Balducci 21 October 2024 3/51

Why Python bindings?

@ Why do we care about binding C4++ and Python together?

Simone Balducci 21 October 2024 4/51

Why Python bindings?

@ Why do we care about binding C4++ and Python together?
@ They both have strengths and weaknesses

Simone Balducci 21 October 2024 4/51

Why Python bindings?

@ Why do we care about binding C4++ and Python together?
@ They both have strengths and weaknesses

—> C++ is very fast. It's also very verbose and considered difficult to use
= Python is slow, but also very easy to pick-up and use

Simone Balducci 21 October 2024 4/51

Why Python bindings?

@ Why do we care about binding C4++ and Python together?
@ They both have strengths and weaknesses

—> C++ is very fast. It's also very verbose and considered difficult to use
= Python is slow, but also very easy to pick-up and use

@ It's clear how a combination of these two languages could be very
useful for a wide variety of applications

Simone Balducci 21 October 2024 4/51

What's the end goal?

o We want to generate a Python module
@ This module will contain code written in C4++

@ When we call a function from Python the C++ code will be called
@ We can also do the opposite
= use Python code inside C++

Simone Balducci 21 October 2024 5/51

A basic example

@ The binding is defined inside the PYBIND11_MODULE macro
@ Let's try to write a simple C++ function and bind it
o We start by writing the function:

1 int add(int a, int b) {
2 return a + b;

3 }

@ Now we can bind it

Simone Balducci 21 October 2024 6/51

A basic example (con

1 #include <pybindll/pybindll.h>

3 int add(int a, int b);

5 PYBIND11_MODULE (module_name, handler) {
6 handler.def("add", &add, "Function that adds two ints");

Simone Balducci 21 October 2024

7/51

Compiling the module

@ Now we compile the module

@ We generate a shared library, so we must compile with -shared and
-fPIC

$ g++ -03 -shared -fPIC $(python3 -m pybindll --includes)

main.cpp -o module_name$(python3-config --extension-suffix)

NOTE: the name of the module in the executable must be identical to the
one used inside PYBIND11_MODULE

Simone Balducci 21 October 2024 8/51

Compiling the module and importing it in Python

@ Now we compile the module

@ We generate a shared library, so we must compile with -shared and
-fPIC

$ gt++ -03 -shared -fPIC $(python3 -m pybindll --includes)

main.cpp -o module_name$(python3-config --extension-suffix)

@ An now we can import it in Python like any library

1 import module_name as m

2
3 print(m.add(2, 3))

Simone Balducci 21 October 2024 9/51

Compiling the module using CMake

@ Compiling manually is very inconvenient, even using a Makefile
@ Most large C++ projects use CMake anyway

@ We can compile the binding using CMake (which also makes it more
portable)

Simone Balducci 21 October 2024

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways

Simone Balducci 21 October 2024 11/51

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways
= install globally and use find_package (pybind11 REQUIRED)

Simone Balducci 21 October 2024 11/51

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways

= install globally and use find_package (pybind11 REQUIRED)
= add it as a submodule and use add_subdirectory(pybind11)

Simone Balducci 21 October 2024 11/51

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways

= install globally and use find_package (pybind11 REQUIRED)
= add it as a submodule and use add_subdirectory(pybind11)

@ Use find_package to fetch the interpreter and development
components of Python

Simone Balducci 21 October 2024 11/51

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways

= install globally and use find_package (pybind11 REQUIRED)
= add it as a submodule and use add_subdirectory(pybind11)

@ Use find_package to fetch the interpreter and development
components of Python

@ To compile modules, use the pybind11_add_module function

Simone Balducci 21 October 2024 11/51

Compiling the module using CMake (cont.)

@ To include pybindll there are two ways
= install globally and use find_package (pybind11 REQUIRED)
= add it as a submodule and use add_subdirectory(pybind11)
@ Use find_package to fetch the interpreter and development
components of Python

@ To compile modules, use the pybind11_add_module function

set (CMAKE_CXX_STANDARD 20)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set (CMAKE_CXX_EXTENSIONS OFF)

[

»

w

5 find_package(Python 3.10 COMPONENTS Interpreter Development REQUIRED)
6 add_subdirectory (pybind11)

8 pybind11l_add_module (module_name main.cpp)

Simone Balducci 21 October 2024 11/51

Binding a class

@ We can bind a class using pybind11::class_

1 #include <pybindll/pybindll.h>
3 namespace py = pybindlil;
5 class MyClass;

7 PYBIND11_MODULE(Module, handler) {
8 py: :class_<MyClass>(handler, "MyClass")

Simone Balducci 21 October 2024 12 /51

Binding a class

@ We can bind a class using pybind11::class_

@ we then bind the class methods using the def function

1 #include <pybindll/pybindll.h>
3 namespace py = pybindill;

5 class MyClass;

6

7 PYBIND11_MODULE(Module, handler) {

8 py: :class_<MyClass>(handler, "MyClass")
9 .def (py: :init<>())

10

Simone Balducci 21 October 2024 12 /51

Binding a class

@ We can bind a class using pybind11::class_
@ we then bind the class methods using the def function

o for the constructor(s) we use the pybind11::init function
1 #include <pybindll/pybindll.h>
3 namespace py = pybindill;
5 class MyClass;

6
7 PYBIND11_MODULE(Module, handler) {

8 py: :class_<MyClass>(handler, "MyClass")
9 .def (py: :init<>())

10 .def ("methodl", &MyClass: :methodl)

11 .def ("method2", &MyClass::method2) ;
12 }

Simone Balducci 21 October 2024 12 /51

Binding a class: multiple constructors

o If the class has multiple constructors, just repeat the declaration

1 class MyClass {

2 public:

3 MyClass();

4 MyClass(int, int);

5 MyClass(std: :vector<int>);
6 F;

Simone Balducci 21 October 2024 13 /51

Binding a class: multiple constructors

o If the class has multiple constructors, just repeat the declaration

@ Put the parameters inside the angle brackets

1 class MyClass {

2 public:

3 MyClass();

4 MyClass(int, int);

5 MyClass(std: :vector<int>);
6 F;

8 PYBIND11_MODULE(Module, handler) {

9 py::class_<MyClass>(handler, "MyClass")
10 .def (py: :init<>())

11 .def (py: :init<int, int>())

12 .def (py: :init<std: :vector<int>>())

13 }

Simone Balducci 21 October 2024 13 /51

Binding a class: overloaded methods (cont.)

Example:

1 int add(int i, int j);
2 float add(float i, float j);

Simone Balducci 21 October 2024 13 /51

Binding a class: overloaded methods (cont.)

Example:

1 int add(int i, int j);
2 float add(float i, float j);

Binding overloads with manual casting

1 PYBIND11_MODULE(Add, m) {

2 m.def ("add", (int (*)(int, int)) &add);
3 m.def ("add", (float (*)(float, float)) &add);
4}

Simone Balducci 21 October 2024 13 /51

Binding a class: overloaded methods (cont.)

Example:

1 int add(int i, int j);
2 float add(float i, float j);

Binding overloads with manual casting

1 PYBIND11_MODULE(Add, m) {

2 m.def ("add", (int (*)(int, int)) &add);
3 m.def ("add", (float (*)(float, float)) &add);
4}

Binding overloads with overload cast

1 PYBIND11_MODULE(Add, m) {

2 m.def ("add", py::overload_cast<int, int>(&add));
3 m.def ("add", py::overload_cast<float, float>(&add));
4}

Simone Balducci 21 October 2024 13 /51

Return value policies

There are several ways for Python to treat the return values of bound
functions:

return_value_policy:
return_value_policy:
return_value_policy:
return_value_policy:
return_value_policy:
return_value_policy:

return_value_policy:

Simone Balducci

:take_ownership — default for pointers
:copy — default for lvalue references
:move — default for rvalue references
:reference

:reference_internal

:automatic

rautomatic_reference

21 October 2024 14 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments

Simone Balducci 21 October 2024 15 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments
@ Use the py: :arg function for this

Simone Balducci 21 October 2024 15 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments
@ Use the py: :arg function for this
— Allows keyworded arguments from Python

Simone Balducci 21 October 2024 15 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments
@ Use the py: :arg function for this

— Allows keyworded arguments from Python
= Provides better function signature in Docstring

Simone Balducci 21 October 2024 15 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments
@ Use the py: :arg function for this

— Allows keyworded arguments from Python
= Provides better function signature in Docstring
= Can specify the default value of the argument

Simone Balducci 21 October 2024 15 /51

Keyworded arguments

@ When we bind a function we can also specify the names of the
arguments
@ Use the py: :arg function for this

— Allows keyworded arguments from Python
= Provides better function signature in Docstring
= Can specify the default value of the argument

1 // Binding module

2 m.def ("add", py::overload_cast<int, int>(&add),

3 py::arg("x"), py::arg("y"));

4 m.def("add", py::overload_cast<float, float>(&add),
5 py::arg("x")=0.f, py::arg("y")=0.£);

Simone Balducci 21 October 2024 15 /51

Binding inheriting classes

o If | have one class inheriting from another, | can specify this relation
when declaring the class

Simone Balducci 21 October 2024 16 /51

Binding inheriting classes

o If | have one class inheriting from another, | can specify this relation
when declaring the class

@ We can either pass it as a template parameter to py: :class_ or pass
it as a parameter to the object

-

PYBIND11_MODULE(Module, m) {

2 py::class_<Base>(m, "Base")

3 .def(...);

4 py::class_<Derived, Base>(m, "Derived")
5 .def(...);

6}

Simone Balducci 21 October 2024 16 /51

Binding inheriting classes (co

1 struct Base {

2 void foo() {

3 std::cout << "Method from the Base class\n";
4 }

5}

7 struct Derived : public Base {

8 void bar() {

9 std::cout << "Method from the Derived class\n";
10 }

11 };

Simone Balducci 21 October 2024 17 /51

Binding inheriting classes (cont.)

1 from Module import Derived
2

3 d = Derived()

4 d.foo()

5 d.bar()

$ python3 inheritance.py
Method from the Base class

Method from the Derived class

Simone Balducci 21 October 2024 18 /51

Binding polymorphic types

@ In C++, classes like the ones just defined are not polymorphic
= they don't provide any virtual methods

Simone Balducci 21 October 2024 19 /51

Binding polymorphic types

@ In C++, classes like the ones just defined are not polymorphic
= they don't provide any virtual methods

@ This can be seen also from Python

1 PYBIND11_MODULE (Module, m) {

2 m.def ("make_derived", [1(O){

3 return std::unique_ptr<Base>(new Derived());
4 B

5}

Simone Balducci 21 October 2024 19 /51

Binding polymorphic types

@ In C++, classes like the ones just defined are not polymorphic
= they don't provide any virtual methods

@ This can be seen also from Python

1 PYBIND11_MODULE (Module, m) {

2 m.def ("make_derived", [1(O){

3 return std::unique_ptr<Base>(new Derived());
4 B

5}

@ If we call the function above from Python we see:

1 p = make_derived()
2 print(type(p)) # Output: <class 'Module.Base'>

Simone Balducci 21 October 2024 19 /51

Binding polymorphic types (cont.)

Let’s re-define the Base and Derived classes in a polymorphic way

Simone Balducci 21 October 2024

Binding polymorphic types (cont.)

Let’s re-define the Base and Derived classes in a polymorphic way

struct Base {
virtual “Base() = default;
virtual void foo() = 0;

g

1
2
3
4
5
6 struct Derived : public Base {
7 Derived() = default;

8 void foo() override {

9

std::cout << "Implemented foo\n";
10}
11 };

Simone Balducci 21 October 2024 20/51

Binding polymorphic types (cont.)

Let’s re-define the Base and Derived classes in a polymorphic way

struct Base {
virtual “Base() = default;
virtual void foo() = 0;

g

1
2
3
4
5
6 struct Derived : public Base {
7 Derived() = default;

8 void foo() override {

9

std::cout << "Implemented foo\n";
10 X
11 };
If we call the make_derived function from Python like before:
1 p = make_derived()

2 print(type(p)) # Output: <class 'Module.Derived'>

Simone Balducci 21 October 2024 20/51

Overriding from Python

@ In some cases it might be useful to override a class virtual method
from Python

Simone Balducci 21 October 2024 21/51

Overriding from Pyth

@ In some cases it might be useful to override a class virtual method
from Python
@ Doing so requires to call the Parent class constructor

1 from Module import AbstractBase
2

3 def PyDerived(AbstractBase):

4 def __init__(self):

5 AbstractBase.__init__()

Simone Balducci 21 October 2024 21/51

Overriding from Pyth

@ In some cases it might be useful to override a class virtual method
from Python
@ Doing so requires to call the Parent class constructor

1 from Module import AbstractBase
2

3 def PyDerived(AbstractBase):

4 def __init__(self):

5 AbstractBase.__init__()

@ If the Parent is an abstract class, this is a problem
= No constructor to be called

Simone Balducci 21 October 2024 21/51

Trampoline classes

@ We can solve this using trampoline classes

Simone Balducci 21 October 2024 22 /51

Trampoline classes

@ We can solve this using trampoline classes

@ Take an abstract class with a virtual method

1 class AbstractBase {

2 public:

3 virtual “AbstractBase = default;
4 virtual void method(int) = 0;

5 };

Simone Balducci 21 October 2024 22 /51

Trampoline classes (cont.)

@ Define a class inheriting from the abstract base

1 struct TrampolineAbstract : public AbstractBase {

2

Simone Balducci 21 October 2024 23 /51

Trampoline classes (co

@ Define a class inheriting from the abstract base
@ Inherit the constructor

1 struct TrampolineAbstract : public AbstractBase {
2 using AbstractBase::AbstractBase;
3

4

Simone Balducci 21 October 2024 23 /51

Trampoline classes (cont.)

@ Define a class inheriting from the abstract base

@ Inherit the constructor

@ Override the method with
PYBINDl1_DVERRIDE/PYBIND11_OVERRIDE_PURE

1 struct TrampolineAbstract : public AbstractBase {

2 using AbstractBase::AbstractBase;
3

4 void method() override {

5 PYBIND11_OVERRIDE_PURE (
6 void,

7 AbstractBase,

8 method,

9 int

10)8

11 }

12 };

Simone Balducci 21 October 2024 23 /51

Using the trampoline class

@ Only need to change two lines in the binding

1 PYBIND11_MODULE (Module, m) {

2 py::class_<AbstractBase, TrampolineAbstract>(m, "AbstractBase")
3 .def (py: :init<>(Q))

4

5}

Simone Balducci 21 October 2024 24 /51

Using the trampoline class

@ Only need to change two lines in the binding

1 PYBIND11_MODULE(Module, m) {

2 py::class_<AbstractBase, TrampolineAbstract>(m, "AbstractBase")
3 .def (py: :init<>(Q))

4

5}

@ Then we can derive the class from Python

1 class PyDerived(AbstractBase):

2 def __init__(self):
3 AbstractBase.__init__()
4 def method(self, int):

Simone Balducci 21 October 2024 24 /51

Example: Vector3 class

1 struct Vector3 {

2

3

4

float x, y, z;

Vector3() : x{0.}, y{0.}, z{0.} {}
Vector3(float x, float y, float z) : x{x}, y{y}, z{z} {3

Vector3 operator+(const Vector3D &other) const;

Vector3& operator+=(const Vector3D &other);

Vector3 operator*(float scalar) const;

friend Vector3 operator*(float scalar, const Vector3& vector);
Vector3& operator*=(float scalar);

Vector3 operator/(float scalar) const;

Vector3& operator/=(float scalar);

Simone Balducci 21 October 2024 25 /51

How to bind operators

Operators can be bound in two ways:

Simone Balducci 21 October 2024 26 /51

How to bind operators

Operators can be bound in two ways:
@ Manually by binding the method and specifying the Python operator
= marking the method with the py::is_operator flag

1 .def("__add__", [](const Object& self, const Object& other){

2 return self + other;

3 }, py::is_operator())

Simone Balducci 21 October 2024 26 /51

How to bind operators

Operators can be bound in two ways:
@ Manually by binding the method and specifying the Python operator
= marking the method with the py::is_operator flag

1 .def("__add__", [](const Object& self, const Object& other){

— — 9

2 return self + other;

3 }, py::is_operator())
@ Using the py: :self notation
= included in the operators.h header

1 .def(py::self + py::self)

Simone Balducci 21 October 2024 26 /51

Binding the operators of Vect

The binding of the operators using the py: : self notation looks like this

1 PYBIND11_MODULE(Vector, m) {
py: :class_<Vector3>(m, "Vector3")

2

3

4

.def (py:
.def (py:
.def (py:
.def (py:

:init<int, int, int>())
:self + py::self)

:self += py::self)
:self * float())

.def (float() * py::self)

.def (py::
.def (py::
.def (py::

Simone Balducci

self *= float())
self / float())
self /= float())

21 October 2024 27 /51

Binding the operators of Vector3 (cont.)

The manual binding is still very useful because it allows us to bind
operators not defined in the C++ class

Simone Balducci 21 October 2024 28 /51

Binding the operators of Vector3 (cont.)

The manual binding is still very useful because it allows us to bind
operators not defined in the C++ class

1 .def("__len__", [J(const Vector3D<int>& v) { return 3; })
2

Simone Balducci 21 October 2024 28 /51

Binding the operators of Vector3 (cont.)

The manual binding is still very useful because it allows us to bind
operators not defined in the C++ class

1 .def("__len__", [J(const Vector3D<int>& v) { return 3; })

2 .def("__str__", [J(const Vector3D<int>& v) -> std::string {
3 return "[" + std::to_string(v.x) + ", "

4 + std::to_string(v.y) + ", "

5 + std::to_string(v.z) + "]";

6 1))

7

Simone Balducci 21 October 2024 28 /51

A B R

© w0 N O

Binding the operators of Vector3 (cont.)

The manual binding is still very useful because it allows us to bind
operators not defined in the C++ class

.def("__len__", [](const Vector3D<int>& v) { return 3; })
.def ("__str__", []l(const Vector3D<int>& v) -> std::string {
return "[" + std::to_string(v.x) + ", "
+ std::to_string(v.y) + ", "
+ std::to_string(v.z) + "]";
1))
def("__mul__",

[](const Vector3D<int>& v, const Vector3D<int>% w) -> int {
return v.x * W.X + V.y ¥ W.y + V.Z ¥ W.Z;

1,
py: :is_operator())

Simone Balducci 21 October 2024

28 /51

Binding the operators of Vector3 (cont.)

The manual binding is still very useful because it allows us to bind
operators not defined in the C++ class

1 .def("__len__", [J(const Vector3D<int>& v) { return 3; })

2 .def("__str__", [J(const Vector3D<int>& v) -> std::string {

3 return "[" + std::to_string(v.x) + ", "

4 + std::to_string(v.y) + ", "

5 + std::to_string(v.z) + "]";

6 1))

7 .def("__mul__",

8 [1(const Vector3D<int>& v, const Vector3D<int>& w) -> int {
9 return v.x * W.X + V.y * W.y + V.Z * W.Z;

10 ¥a

11 py: :is_operator())

12 .def("__getitem__",

13 [1(const Vector3D<int>& v, int i) -> int { return v[il; })
14 .def("__setitem__",

15 [1(Vector3D<int>& v, int i, int val) -> void { v[i] = val; });

Simone Balducci 21 October 2024

Handling code with templates

@ In C++, template parameters have to be specified at compile time

Simone Balducci 21 October 2024 29 /51

Handling code with templates

@ In C++, template parameters have to be specified at compile time

@ This means that when binding template functions or classes, we must
specialize the templates

Simone Balducci 21 October 2024 29 /51

Handling code with templates

@ In C++, template parameters have to be specified at compile time

@ This means that when binding template functions or classes, we must
specialize the templates

1 template <typename T>

2 void foo(T x);

4 PYBIND11_MODULE (Module, m) {
5 m.def ("foo", &foo);

Simone Balducci 21 October 2024 29 /51

Handling code with templates

@ In C++, template parameters have to be specified at compile time

@ This means that when binding template functions or classes, we must
specialize the templates

1 template <typename T>

2 void foo(T x);

3

4 PYBIND11_MODULE(Module, m) {

5 m.def ("foo", &foo); // Error!
6 m.def ("foo", &foo<int>);

Simone Balducci 21 October 2024 29 /51

Handling code with templates

@ In C++, template parameters have to be specified at compile time

@ This means that when binding template functions or classes, we must
specialize the templates

1 template <typename T>

2 void foo(T x);

4 PYBIND11_MODULE(Module, m) {

5 m.def ("foo", &foo); // Error!
6 m.def ("foo", &foo<int>); // Ok
7}

Simone Balducci 21 October 2024 29 /51

C++/Python interface and type conversions

There are three ways to interface C++ and Python data structures

Simone Balducci 21 October 2024 30/51

C++/Python interface and type conversions

There are three ways to interface C++ and Python data structures
@ Use C++ containers in Python

Simone Balducci 21 October 2024 30/51

C++/Python interface and type conversions

There are three ways to interface C++ and Python data structures
@ Use C++ containers in Python
@ Use Python containers in C4++

Simone Balducci 21 October 2024 30/51

C++/Python interface and type conversions

There are three ways to interface C++ and Python data structures
@ Use C++ containers in Python
@ Use Python containers in C4++
© Type conversions between C++ and Python types

Simone Balducci 21 October 2024 30/51

C++/Python interface and type conversions

There are three ways to interface C++ and Python data structures
@ Use C++ containers in Python
@ Use Python containers in C4++
© Type conversions between C++ and Python types

The third one is the simplest, but often not the most efficient

= the data is copied

Simone Balducci 21 October 2024 30/51

Opaque C++ data structures

@ pybindl1 provides type conversion from most STL containers

@ These conversions are used by default at the C++/Python interface

@ We can prevent this by marking a type as opaque, which disables the
conversion

@ Then we have to bind the container as if it was a user-defined class

= we can bind manually or use the py: :bind_vector utility defined in
the stl_bind.h header

Simone Balducci 21 October 2024 31/51

Making vector opaque

void append_42(std::vector<int>&);

PYBIND11_MAKE_OPAQUE(std::vector<int>);

py::class_<std::vector<int>>(m, "VectorInt")
.def (py: :init<>())

1
2
3
4
5 PYBIND11_MODULE(Vector, m) {
6
7
8 .def ("push_back", py::overload_cast<const int&>(&std::vector<int>::push_back))

9 .def("__len__", [J(const std::vector<int>% v) { return v.size(); })
10 .def("__str__", [J(const std::vector<int>% v) -> std::string {

11 std::string res = "[";

12 std::for_each(v.begin(), v.end()-1, [&res](auto x) -> void {
13 res += std::to_string(x) + ", ";

14 b

15 res += std::to_string(v.back()) + "1";

16 return res;

17 b

18 .def ("__iter__", [](std::vector<int>& v) {

19 return py::make_iterator(v.begin(), v.end());

20 }, py::keep_alive<0, 1>())

21 m.def ("append_42", &append_42);

22 }

Simone Balducci 21 October 2024 32

1

2

6

7

8

Making vector opaque (cont.)

If now we try to call the method from Python:

from Vector import VectorInt

from Vector import append_42

v = VectorInt()
v.push_back(1)
print(v)
append_42 (v)
print(v)

Simone Balducci

21 October 2024

33/51

Making vector opaque (cont.)

If now we try to call the method from Python:

1 from Vector import VectorInt

2 from Vector import append_42

4 v = VectorInt()
5 v.push_back(1)
6 print(v)

7 append_42(v)

8 print(v)

$ python3 append.py
[1]

[1, 42]

Simone Balducci 21 October 2024 33/51

Buffer protocols

@ We can expose our bound classes as buffers

Simone Balducci 21 October 2024 34 /51

Buffer protocols

@ We can expose our bound classes as buffers

@ This allows them to be cast into numpy arrays without any copy of
data

Simone Balducci 21 October 2024 34 /51

Buffer protocols

@ We can expose our bound classes as buffers

@ This allows them to be cast into numpy arrays without any copy of
data

@ We can mark a function to accept generic buffers with the
py: :buffer type

Simone Balducci 21 October 2024 34 /51

@ We can expose our bound classes as buffers

@ This allows them to be cast into numpy arrays without any copy of

data

@ We can mark a function to accept generic buffers with the

py: :buffer type

1 struct buffer_info {

2

3

4

void *ptr;

pPy::ssize_t itemsize;

std: :string format;

py::ssize_t ndim;

std: :vector<py::ssize_t> shape;

std::vector<py::ssize_t> strides;

Simone Balducci

// buffer pointer

// (bytes) size of a scalar
// format descriptor

// number of dimenstions

// shape of the buffer

// strides of the buffer

21 October 2024 34 /51

Exposing class as buffer

o Add the py: :buffer_protocol() tag in the class binding
declaration

1 py::class_<Vector>(m, "Vector", py::buffer_protocol())

2

Simone Balducci 21 October 2024 35/51

Exposing class as buffer

o Add the py: :buffer_protocol() tag in the class binding
declaration

o Call the def_buffer method with a function returning a
py::buffer_info describing an instance of the class

1 py::class_<Vector>(m, "Vector", py::buffer_protocol())

2 .def_buffer([] (Vector& v) -> py::buffer_info {

3 return py::buffer_info(

4 v.data(),

5 sizeof (float),

6 py: :format_descriptor<float>::format(),
7 1,

8 { m.size() },

9 { sizeof (float) }

10);

1 B

Simone Balducci 21 October 2024 35/51

Using numpy arrays in C++

@ pybindl1 provides the array and array_t<T> classes that specialize
the generic buffer to numpy arrays

@ We access the content buffer with the request method

@ The buffer then contains all the information needed to use the array

1 #include <pybindll/numpy.h>

2

3 void foo(py::array_t<float> arr) {

4 auto buf = arr.request();

5 float*x p = static_cast<float*>(buf.ptr);

Simone Balducci 21 October 2024 36 /51

Using numpy arrays in C++

@ pybindl1 provides the array and array_t<T> classes that specialize
the generic buffer to numpy arrays

@ We access the content buffer with the request method

@ The buffer then contains all the information needed to use the array

1 #include <pybindll/numpy.h>
2

3 void foo(py::array_t<float> arr) {

4 auto buf = arr.request();

5 float*x p = static_cast<float*>(buf.ptr);
6

7 std: :span<float> data{p, buf.size};

Simone Balducci 21 October 2024 36 /51

Using numpy arrays in C++

@ pybindl1 provides the array and array_t<T> classes that specialize
the generic buffer to numpy arrays

@ We access the content buffer with the request method

@ The buffer then contains all the information needed to use the array

1 #include <pybindll/numpy.h>
2

3 void foo(py::array_t<float> arr) {

4 auto buf = arr.request();

5 float*x p = static_cast<float*>(buf.ptr);

6

7 std: :span<float> data{p, buf.size};

8 const auto sum = std::ranges::accumulate(data, 0.f);
9 return sum;

10 }

Simone Balducci 21 October 2024 36 /51

Using numpy arrays in C++ (cont.)

@ In order to prevent copies, you must be careful with the data type

Simone Balducci 21 October 2024 37/51

Using numpy arrays in C++ (cont.)

@ In order to prevent copies, you must be careful with the data type

o If the data type between the Python and C++ arrays is not the same,
there is a data conversion

— The data is copied

Simone Balducci 21 October 2024 37/51

Using numpy arrays in C++ (cont.)

@ In order to prevent copies, you must be careful with the data type

o If the data type between the Python and C++ arrays is not the same,
there is a data conversion

— The data is copied

@ For example:

1 from module import foo

2 import numpy as np

4 arr = np.array([1, 2, 3], dtype=np.float64) # [1, 2, 3]
5 append_42(arr) # [1, 2, 3] (still)

Simone Balducci 21 October 2024 37/51

Using numpy arrays in C++ (cont.)

@ In order to prevent copies, you must be careful with the data type

o If the data type between the Python and C++ arrays is not the same,
there is a data conversion

— The data is copied

@ For example:

1 from module import foo

2 import numpy as np
4 arr = np.array([1, 2, 3], dtype=np.float64) # [1, 2, 3]

5 append_42(arr) # [1, 2, 3] (still)

@ The data is copied into a new array, so our changes are not applied to
the original one

Simone Balducci 21 October 2024 37/51

Request, unchecked, mutable unchecked

@ The request method does bound checking on every access to the
array

Simone Balducci 21 October 2024 38/51

Request, unchecked, mutable unchecked

@ The request method does bound checking on every access to the
array

@ If we need to optimize performance and if we can be safe that the
indices don't overflow, we can use the more efficient

=> unchecked<N>
=> mutable_unchecked<N>

Simone Balducci 21 October 2024 38/51

Request, unchecked, mutable unchecked

@ The request method does bound checking on every access to the
array

@ If we need to optimize performance and if we can be safe that the
indices don't overflow, we can use the more efficient

=> unchecked<N>
=> mutable_unchecked<N>

where N represents the dimensionality of the array

Simone Balducci 21 October 2024 38/51

Request, unchecked, mutable unchecked

@ The request method does bound checking on every access to the
array

@ If we need to optimize performance and if we can be safe that the
indices don't overflow, we can use the more efficient

=> unchecked<N>
=> mutable_unchecked<N>

where N represents the dimensionality of the array

@ As the name suggests, they provide unchecked access to the data

Simone Balducci 21 October 2024 38/51

Using Python inside C++ code

@ While we usually want to bind C++ code to Python, the opposite is
also possible

Simone Balducci 21 October 2024 39/51

Using Python inside C++ code

@ While we usually want to bind C++ code to Python, the opposite is
also possible

@ We can embed the Python interpreter inside a C4++ object

Simone Balducci 21 October 2024 39/51

Using Python inside C++ code

@ While we usually want to bind C++ code to Python, the opposite is
also possible

@ We can embed the Python interpreter inside a C4++ object
@ This allows us to:

Simone Balducci 21 October 2024 39/51

Using Python inside C++ code

@ While we usually want to bind C++ code to Python, the opposite is
also possible

@ We can embed the Python interpreter inside a C4++ object
@ This allows us to:
— execute Python code

Simone Balducci 21 October 2024 39/51

Using Python inside C++ code

@ While we usually want to bind C++ code to Python, the opposite is
also possible

@ We can embed the Python interpreter inside a C4++ object

@ This allows us to:

— execute Python code
= import and use Python libraries

Simone Balducci 21 October 2024 39/51

Embedding the Python interpreter

@ The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

Simone Balducci 21 October 2024 40/51

Embedding the Python interpreter

@ The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

@ Included in the embed.h header

Simone Balducci 21 October 2024 40/51

Embedding the Python interpreter

@ The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

@ Included in the embed.h header

@ Python code can be executed with the py: :exec function

Simone Balducci

21 October 2024 40/51

Embedding the Python interpreter

@ The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

@ Included in the embed.h header
@ Python code can be executed with the py: :exec function
@ We can use Python libraries by:

= importing them with py: :module_: :import

Simone Balducci 21 October 2024 40/51

Embedding the Python interpreter

@ The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

@ Included in the embed.h header
@ Python code can be executed with the py: :exec function
@ We can use Python libraries by:

= importing them with py: :module_: :import
= accessing attributes with py: :module_: :attr

Simone Balducci 21 October 2024 40/51

Embedding the Python interpreter

The interpreter’s lifetime is managed by the RAIl object
py::scoped_interpreter

Included in the embed.h header

Python code can be executed with the py: :exec function
We can use Python libraries by:

= importing them with py: :module_: :import

= accessing attributes with py: :module_: :attr

As an example, let's try to plot some functions using matplotlib

Simone Balducci 21 October 2024 40 /51

Example: plotting in C++ with module ::

By importing the library the code looks like this:

1 #include <pybindll/embed.h>
2 #include <pybindll/stl_bind.h>
3

4 int main() {

5 pPy: :scoped_interpreter guard{};

6 py::module_ plt = py::module_: :import("matplotlib.pyplot");
7 std: :vector<double> x(10), y(10);

8 std: :iota(x.begin(), x.end(), 0.);

9 std: :transform(x.begin(), x.begin(), y.begin(), [](double x) {
10 return x * X;

11 s

12 py: :bind_vector<std::vector<double>>(plt, "VectorDouble");
13 plt.attr("plot") (x, y);

14 plt.attr("show") ();

15 }

Simone Balducci 21 October 2024 41/51

Example: plotting in C+4 with py::exec

By executing Python code directly with py: :exec the code looks like this:

1 #include <pybindll/embed.h>
2

3 int main() {

4 py: :scoped_interpreter guard{};

5 py: :exec(R"(

6 import matplotlib.pyplot as plt
7

8 x = range(10)

9 y = [i *x i for i in x]

10 plt.plot(x, y)

11 plt.show()

12)"

13 }

Simone Balducci 21 October 2024 42 /51

Embedding modules

@ We can define embedded modules

= Python modules that can be imported in the same cpp file that defines
it

1 #include <pybindll/embed.h>
2 namespace py = pybindilil;

4 PYBIND11_EMBEDDED_MODULE (Module, m) {
5 m.def ("parallel_add", [](py::array_t<float> arr) { ... });

g int main() {

9 py: :scoped_interpreter guard{};

10 py::module_ m = py::module_: :import("Module") ;
11 /..

12 }

Simone Balducci 21 October 2024 43 /51

Summary

We learned to:

Simone Balducci 21 October 2024 44 /51

We learned to:

@ bind C+4+ classes and functions to Python using pybind11

Simone Balducci 21 October 2024 44 /51

We learned to:
@ bind C+4+ classes and functions to Python using pybind11

@ handle inheritance and override from Python

Simone Balducci 21 October 2024 44 /51

We learned to:
@ bind C+4+ classes and functions to Python using pybind11
@ handle inheritance and override from Python

@ overload Python operators

Simone Balducci 21 October 2024 44 /51

We learned to:

bind C4++ classes and functions to Python using pybind11
handle inheritance and override from Python

overload Python operators

define buffer procotols for objects

Simone Balducci 21 October 2024 44 /51

We learned to:

bind C4++ classes and functions to Python using pybind11
handle inheritance and override from Python

overload Python operators

define buffer procotols for objects

use Python types in C++

Simone Balducci 21 October 2024 44 /51

We learned to:

bind C4++ classes and functions to Python using pybind11
handle inheritance and override from Python

overload Python operators

define buffer procotols for objects

use Python types in C++

embed the Python interpreter in a C4++ executable

Simone Balducci 21 October 2024 44 /51

Thanks for the attention

Simone Balducci 21 October 2024 45 /51

Binding protected methods

© We might want to bind methods marked as protected

Simone Balducci 21 October 2024 46 /51

Binding protected ds

© We might want to bind methods marked as protected
@ It can be done with the following pattern:

1 class A {

2 protected:

3 void foo() { std::cout << "I'm a protected method\n";}
4}

5

6 class Publicist : public A {

7 public:

8 using A::foo;

9 };

10

11 PYBIND11_MODULE (Module, m) {

12 py::class_<A>(m, "A")

13 .def ("foo", &Publicist::foo);
14 }

Simone Balducci 21 October 2024 46 /51

Backup

Simone Balducci 21 October 2024 47 /51

Backup: Binding overloaded operators

@ Consider a class representing an object for which arithmetic
operations are defined

Simone Balducci 21 October 2024 48 /51

Backup: Binding overloaded operators

@ Consider a class representing an object for which arithmetic
operations are defined
@ We want to implement the arithmetic operators in Python

=> __add__, sub__, mul__, neg__, ...

Simone Balducci 21 October 2024 48 /51

Backup: Binding overloaded operators

@ Consider a class representing an object for which arithmetic
operations are defined
@ We want to implement the arithmetic operators in Python

- add sub__, mul__, neg__, ...

@ As an example, let's implement a 3D Vector class and bind its
operators

Simone Balducci 21 October 2024 48 /51

Backup: Managing references with smart pointers

@ When we bind a class we can define a special holder type than will
manage the references to the object

Simone Balducci 21 October 2024 49 /51

Backup: Managing references with smart pointers

@ When we bind a class we can define a special holder type than will
manage the references to the object
o By default std: :unique_ptr<...> is used

Simone Balducci 21 October 2024 49 /51

Backup: Managing references with smart pointers

@ When we bind a class we can define a special holder type than will
manage the references to the object

o By default std: :unique_ptr<...> is used

© We can use std::shared_ptr<...>

1 class Agent {

2 private:

3 std::string m_name;

4 Agent(const std::string% name) : m_name(name) {}

5 public:

6 static std::shared_ptr<Agent> create(const std::string& name) {
7 return std::make_shared<Agent>(name) ;

8

¥
9 void say_hello() const {
10 std::cout << "Hello, " << m_name << "!\n";
11 }
12 };
13
14 PYBIND11_MODULE(Shared, m) {
15 py::class_<Agent, std::shared_ptr<Agent>>(m, "Agent")
16 .def_static("create", &ZAgent::create)
17 .def ("say_hello", &Agent::say_hello);
18 }

Simone Balducci 21 October 2024 49 /51

The problem with shared ptr holders

Now consider an example:

1 class Data {};

2

3 class Holder {

4 private:

5 std: :shared_ptr<Data> m_data;

6 public:

7 Holder() : m_data(std::make_shared<Data>()) {}
8 Data* getptr() { return m_data.get(); }

9}

@ Python will see the pointer from getptr and wrap it inside a shared
pointer

@ This will likely cause undefined behaviour

Simone Balducci 21 October 2024

CRTP and std: :enable shared from this

@ The Curiously Recurring Template Pattern is a template pattern
in C++
1 template <typename T>

2 class Base;

3

4 class Derived : Base<Derived>;

21 October 2024

Simone Balducci

CRTP and std: :enable shared from this

@ The Curiously Recurring Template Pattern is a template pattern
in C++
1 template <typename T>

2 class Base;

3

4 class Derived : Base<Derived>;

@ A useful application of this is the std: :enable_shared_from_this
template

21 October 2024

Simone Balducci

CRTP and std: :enable shared from this

@ The Curiously Recurring Template Pattern is a template pattern
in C++

1 template <typename T>
2 class Base;

3

4 class Derived : Base<Derived>;

@ A useful application of this is the std: :enable_shared_from_this

template
@ If a class inherits from it, the shared_from_this method is defined

Simone Balducci 21 October 2024 51/51

CRTP and std: :enable shared from this

@ The Curiously Recurring Template Pattern is a template pattern
in C++

1 template <typename T>
2 class Base;
3

4 class Derived : Base<Derived>;

@ A useful application of this is the std: :enable_shared_from_this
template
o If a class inherits from it, the shared_from_this method is defined

o It allows to create new shared pointers holding a weak reference to
the object

Simone Balducci 21 October 2024 51/51

1
2
3
4

CRTP and std: :enable shared from this

@ The Curiously Recurring Template Pattern is a template pattern
in C++

template <typename T>

class Base;

class Derived : Base<Derived>;

@ A useful application of this is the std: :enable_shared_from_this
template
o If a class inherits from it, the shared_from_this method is defined

o It allows to create new shared pointers holding a weak reference to
the object

= |t's safer than copying the original pointer
= It's more efficient if we need to do a lot of copies

Simone Balducci 21 October 2024 51/51

