
1

https://agenda.infn.it/event/40488

Preventing and curing software defects

F. Giacomini

INFN-CNAF

ESC24 — Bertinoro, 15–24 October 2024

https://agenda.infn.it/event/40488


2

<<

The aim should be to shift left the discovery of defects



2

<<

The aim should be to shift left the discovery of defects



3

During design and development

• Get familiar with the C++ Core Guidelines
• Design a class around its class invariant

◦ A class invariant is a relation among the data members of a
class that defines the valid values for the objects of that class

• Design a function around a contract
◦ A contract is given by pre-conditions (constraints on the

function arguments) and post-conditions (guarantees about
the results)

• Waiting for proper support for contracts by the language, be
generous with asserts

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://wg21.link/P2900


4

The compiler is your friend

• Enable as many warnings as reasonable and keep your
compilation warning-free. For gcc, for example:
-Wall -Wextra -Wshadow -Wimplicit-fallthrough
-Wextra-semi -Wold-style-cast
But there are many many others

• Enable the assertions in the C++ standard library, to
terminate the program in case of logical bugs. For gcc,
compile with -D_GLIBCXX_ASSERTIONS. Keep these
assertions also in production builds (see -fhardened)

• Profit from the sanitizers (address, undefined, thread, . . . )
e.g. -fsanitize=address,undefined
-D_GLIBCXX_SANITIZE_VECTOR
(not to be enabled for production builds, due to their
overhead)

https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Instrumentation-Options.html#index-fhardened


5

Unit testing

• Basic unit testing comes pretty easily with libraries like
doctest, Catch, gtest, . . .

TEST_CASE("Testing the factorial function"){
CHECK(factorial(5) == 120);
CHECK(factorial(0) == 1);
CHECK(factorial(1) == 1);
· · ·

}

• Be aware that testing can reveal the presence of bugs, not
prove their absence

• Remember to enable the sanitizers
• You can even (ab)use static_asserts and run your tests

directly at compile time

https://github.com/doctest/doctest
https://github.com/catchorg/Catch2
https://github.com/google/googletest


6

Before talking about debugging...

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as pos-
sible, you are, by definition, not smart enough to debug it.

– Brian Kernighan



7

Using a debugger

• A debugger allows to execute a program step by step, printing
variables, setting breakpoints and watchpoints, examining
memory (incuding core dumps after a crash)

• Many exist. Let’s consider gdb
• On the ESC machine it is available in the Developer Toolset 9
• To enable it

$ scl enable devtoolset-9 bash
$ module unload compilers/gcc-12.3_sl7
$ module load compilers/gcc-12.3_sl7
$ gdb –version
GNU gdb (GDB) Red Hat Enterprise Linux 8.3-3.el7
· · ·
$ gcc –version
gcc (GCC) 12.3.0
· · ·

• When debugging, compile with -g -O0
• For the basic commands see https://cht.sh/gdb

https://cht.sh/gdb

