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Parallel Programming … 
Programming across nodes*

Tim Mattson
Human Learning Group**

tgmattso@gmail.com
tim@timmattson.com

**a made-up company. Sometime I’m required to name an institution I belong to. I like “human learning” not “machine learning”

*Node: Large scale HPC systems are made from networked computers.  A computer at a location on the network is called a node.

mailto:tgmattso@gmail.com
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Disclaimer
• The views expressed in this talk are those of the speaker.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault
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Hardware is diverse … and its only getting worse!!!

CPU

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Write 
code with 
TBB or  

OpenMP

Work with the 
compiler to 

vectorize code
Use a portable 
API but if you 

must, use CUDA.  
It’s all the same 

model

OpenMP lets you “do it all”.  
Or combine CUDA and 

OpenMP (or TBB).

Parallelism over disjoint address-spaces …. MPI
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A “Hands-on” Introduction to MPI

Tim Mattson surfing at La Push Washington.    The Beach Boys were right … Catch a wave and you’re sitting on top of the world.  

Tim Mattson          Human Learning Group.     tgmattso@gmail.com * The name “MPI” is the property of the 
MPI forum (http://www.mpi-forum.org).

mailto:tgmattso@gmail.com
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Outline
• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments



Programming Model for distributed memory systems
• Programs execute as a collection of processes.

– Number of processes usually fixed at program startup time
– Local address space per node -- NO physically shared memory.
– Logically shared data is partitioned over local processes.

• Processes communicate by messages … explicit send/receive pairs
– Synchronization is implicit by communication events.
– MPI (Message Passing Interface) is the most commonly used API

Pn-1P1P0

buff

i: 2

A collection of n 
MPI processes 

(P0 to Pn-1) 
running on n 

nodes

buff

i: 3

buff

i: 1

send P1

Network

receive Pn-1
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MPI,  the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack 

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled 

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan

MPI_Group_size

MPI_Errhandler_create

MPI:  An API for Writing Applications 
for Distributed Memory Systems

–A library of routines to coordinate the execution 
of multiple processes. 
–Provides point to point and collective 

communication  in Fortran, C and C++ 
–Unifies last decades of  cluster computing and 

MPP* practice

*MPP: Massively Parallel Processing.   Clusters use “off the shelf” components.   MPP systems include custom system integration. 



8

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add “glue” code

Break up the data

A sequential 
program (blue) 

working on a data 
set (orange)

• A  replicated single program working on a 
decomposed data set.

• Use Node ID (rank) and number of nodes to 
split up work between processes  

•  Coordinate processes  by passing messages.

Glue code is what I call the code to initialize/finalize MPI and establish the communication context, rank, and process count.



Running MPI programs

• MPI implementations need a way to start “P processes” on the system.

• We do this with the mpirun command:

> mpirun –n P ./a.out Run the program locally on P processes

9

MPI uses mpirun or mpiexec (or both) to 
launch programs on a cluster.  They are largely 
equivalent. Just figure out which one is preferred 
on the system you are using. 



Exercise: Hello world part 1
•Goal

– To confirm that you can run a program on our cluster.
• Program

– Write a program that prints “hello world” to the screen.
– Execute across the nodes of our cluster using mpirun

• For our MPI work, we will use the following nodes: hpc-200-06-06, 
hpc-200-06-17, and hpc-200-06-18.  Log into one of those nodes.

• MPI and the right gcc are present by default.  If not, see ESC24 school-environment 
instructions for the modules you need to load.

• Then write your program (hello.c) and do the following:

$ gcc hello.c
$ mpirun –n 2 ./a.out

Once into the system, we drop the cr.cnaf.infn.it from the host name so we would reference 
node hpc-200-06-06.cr.cnaf.infn.it as hpc-200-06-06

module load compilers/openmpi-4-1-5_gcc12.3
module load compilers/gcc-12.3_sl7



Running MPI programs

• MPI implementations need a way to start “P processes” on the system.

• We do this with the mpirun command:

> mpirun –n P ./a.out

• To run on different nodes, use a hostfile.  

> mpirun –hostfile hostfile –n P ./a.out

Run the program locally on P processes

11

MPI uses mpirun or mpiexec (or both) to 
launch programs on a cluster.  They are largely 
equivalent. Just figure out which one is preferred 
on the system you are using. 

Run the program as P processes on the nodes 
from hostfile.  The hostfile has a node (a 
host) on each line followed by how many 

processes (slots) to allocated to each node.  
Here is an example for our cluster:

hpc-200-06-06 slots=2
hpc-200-06-17 slots=2
hpc-200-06-18 slots=2
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

The collection of processes involved in a computation is called “a process group”
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

You can dynamically split a process group into multiple subgroups 
to manage how processes are mapped onto different tasks
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MPI Hello World Program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }
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MPI Hello World Program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any other MPI 

functions.
§ agrc and argv are the command line args passed from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close 

every MPI program with a call to MPI_Finalize
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MPI Hello World Program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Comm_size (MPI_Comm comm, int* size)
§ MPI_Comm, an opaque data type called a communicator.  

Default context: MPI_COMM_WORLD (all processes) 
§ MPI_Comm_size returns the number of processes in the 

process group associated with the communicator

Communicators consist of two 
parts, a context and a process 
group.  

The communicator lets one control 
how groups of messages interact.

Communicators support modular 
SW … i.e. I can give a library 
module its own communicator and 
know that it’s messages can’t 
collide with messages originating 
from outside the module
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MPI Hello World Program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n",
                                rank, size );
    MPI_Finalize();
    return 0;
 }

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm, an opaque data type, a communicator.  Default context: 

MPI_COMM_WORLD (all processes) 
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init() and 
finalize(), every MPI function has 
a communicator.

This makes sense .. You need a 
context and group of processes 
that the MPI functions impact … 
and those come from the 
communicator.
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Compiling a program

• MPI provides a wrapper around the local compiler to create MPI programs.

• It is called mpicc or mpic++ or mpicxx …

• The wrapper provides the libraries and anything else required to support MPI 
compilation and linking.  Additional arguments are passed directly to the compiler.

• It is important that the compiler on the local system matches the one used by 
mpicc/mpic++/mpicxx

> mpicc –o complexProg –O3 –fopenmp comp.c  mathyStuff.c  andMore.c
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Exercise: Hello world part 2
• Goal

– To confirm that you can run an MPI  program on our cluster

• Program
– Write a program that prints “hello world” to the screen.
– Modify it to run as an MPI program … with each printing “hello 

world” and its rank

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();
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Running the program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size);
    printf( "Hello from process %d of %d\n", rank, size );
    MPI_Finalize();
    return 0;
 }

§ On a 4 node cluster, I’d run this 
program (hello) as:
> mpirun –n 4 hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

Without a hostfile, the processes launched by mpirun usually 
execute on the single node from which the command was issued.

To run on multiple nodes you need the host file
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Running the program

#include <stdio.h>
 #include <mpi.h>
 int main (int argc, char **argv){
    int rank, size;
  char name[MPI_MAX_PROCESSOR_NAME];
  int namLen;

    MPI_Init (&argc, &argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Comm_size (MPI_COMM_WORLD, &size); 
   MPI_Get_processor_name(name,&namLen);
    printf(" hello from %s process %d of nprocs = %d\n",name,ID, Nprocs);  
    MPI_Finalize();
    return 0;
 }

§ On our 3 node cluster, I’d run this program (hello) as:
> mpirun –n 3 –hostfile hosts hello
hello from hpc-200-06-06.cr.cnaf.infn.it rank=0 of nprocs = 3
hello from hpc-200-06-18.cr.cnaf.infn.it rank=2 of nprocs = 3
hello from hpc-200-06-17.cr.cnaf.infn.it rank=1 of nprocs = 3

§ The following is the hostfile used above
> Cat hosts

     hpc-200-06-06 slots=1
     hpc-200-06-17 slots=1
     hpc-200-06-18 slots=2
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Exercise: Hello world part 3
• Goal

– To explore how the hostfile interacts with the nodes we 
are using for MPI exercises.  

• Program
– Write a program that prints “hello world” to the screen.
– Modify it to run as an MPI program … with each node 

printing “hello world”, its rank, and the name of the 
node.

– Experiment with hostfile changing the order of nodes in 
the file and the number of slots per node.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Get_processor_name(name,&namLen);
MPI_Finalize();

The number of slots is the number of processes to create 
on a node.  You can run multiple processes on a CPU … 
it actually makes sense to do so sometimes … up to the 
number of cores on the system.

For ESC24, our cluster nodes have two 8 core CPUs with hyperthreading enabled (hence the OS things there are 16 cores)
Use the Linux command lscpu to learn about the CPUs on a node 

> cat hosts
     hpc-200-06-06 slots=1
     hpc-200-06-17 slots=1
     hpc-200-06-18 slots=2
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Outline
• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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A typical pattern with MPI Programs

• Many MPI applications directly call few (if any) message passing 
routines. They use the following very common pattern:

§ Use the Single Program Multiple Data pattern
§ Each process maintains a local view of the 

global data
§ A problem broken down into phases each of 

which is composed of two subphases:
• Compute on local view of data
• Communicate to update global view on all 

processes (collective communication).
§ Continue phases until complete

Collective comm.

Collective comm.

P0 P3P2P1

Processes

Time

This is a subset or the SPMD pattern sometimes 
referred to as the Bulk Synchronous pattern.
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Collective Communication: Reduction
int MPI_Reduce (void* sendbuf,

  void* recvbuf, int count,
  MPI_Datatype datatype, MPI_Op op,
  int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation (op) on the count values in sendbuf from 
all processes in communicator. Places result in recvbuf on the process with rank root only.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new 

reduction operations

Returns 
MPI_SUCCESS 
if there were no 

errors

MPI Data Type* C Data Type

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_SHORT short

*This is a subset of available MPI types
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MPI_Reduce() Example

#include <mpi.h>

int main(int argc, char* argv[]) {
  int buf, sum, nprocs, myrank;

  MPI_Init(&argc,&argv);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

  sum = 0;
  buf = myrank;

  MPI_Reduce(&buf, &sum, 1, MPI_INT, 
          MPI_SUM, 0, MPI_COMM_WORLD);

  MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2
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MPI_Reduce() Example

#include <mpi.h>

int main(int argc, char* argv[]) {
  int buf, sum, nprocs, myrank;

  MPI_Init(&argc,&argv);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

  sum = 0;
  msg = myrank;

  MPI_Reduce(&buf, &sum, 1, MPI_INT, 
          MPI_SUM, 0, MPI_COMM_WORLD);

  MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2

C language comments:   
• char* is a pointer to a collection of characters (a string).
• char* argv[ ] is the same as char **argv.  They point to a 

collection of strings
• If you have a variable and you want its address, use the & character.  

C is a call-by-value language.   If you want to pass updated values 
through a function argument, you need to pass in the address for that 
argument, for example &myrank



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

Where each rectangle has 
width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.
0

2.
0

1.
0X0.

0
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PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{   int i;   double x, pi, sum = 0.0;

   step = 1.0/(double) num_steps;
             x = 0.5 * step;
   for (i=0;i<= num_steps; i++){
    x+=step;
    sum += 4.0/(1.0+x*x);
   }
   pi = step * sum;
}
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Exercise: Pi Program
• Goal

– To write a simple Bulk Synchronous, SPMD program

• Program
– Start with the provided “pi program” and using an MPI reduction, write a parallel 

version of the program.  

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long

module load compilers/openmpi-4-1-5_gcc12.3
module load compilers/gcc-12.3_sl7
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Pi program in MPI 

#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 
;
}

Sum values in “sum” from 
each process and place it 

in “pi” on process 0 
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Timing MPI programs

• MPI added a function (which OpenMP copied) to time programs.

• MPI_Wtime() returns a double for the time (in seconds) for some arbitrary time 
in the past.

• As with omp_get_wtime(), call before and after a section of code of interest to 
get an elapsed time.
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Exercise: Pi Program with MPI_Wtime()
• Goal

– Time your Bulk Synchronous, SPMD program

• Program
– Start with your parallel “pi program” and use MPI_Wtime() to explore its 

scalability on your system.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
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Pi program in MPI 
#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
          double init_time = MPI_Wtime();
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
          if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 
}



MPI Pi program performance (on my laptop)

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread 
or 

procs

OpenMP 
SPMD 
critical

OpenMP 
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
double init_time = MPI_Wtime();
my_steps = num_steps/numprocs ;  
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 

}



MPI Pi program performance (on my laptop)

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread 
or 

procs

OpenMP 
SPMD 
critical

OpenMP 
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
double init_time = MPI_Wtime();
my_steps = num_steps/numprocs ;  
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 

}

Is this a dependable way to get an elapsed time?

What if instead of a laptop, we are starting processes 
across a large cluster?   Is this time reliable?
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Synchronization in MPI

• Synchronization … establishing ordering constraints among concurrent 
processes so we can establish happens-before relations.

• As we will see later … the semantics of how messages are passed includes 
synchronization properties.

• For a stand-alone synchronization construct, we can use a barrier (all 
processes in the group associated with comm arrive before any proceed):

– int MPI_Barrier(MPI_Comm comm)
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Synchronization in MPI

• Synchronization … establishing ordering constraints among concurrent 
processes so we can establish happens-before relations.

• As we will see later … the semantics of how messages are passed includes 
synchronization properties.

• For a stand-alone synchronization construct, we can use a barrier (all 
processes in the group associated with comm arrive before any proceed):

– int MPI_Barrier(MPI_Comm comm)

What is this int for?   All MPI routines other than the timing routines return 
an int error code.  Equals MPI_SUCCESS when everything is OK, other 
values specific to routines when errors occur.  It’s common to just ignore 
this output (which is bad practice, but ”we all” do it.
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Pi program in MPI 
#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
          MPI_Barrier(MPI_COMM_WORLD);
          if(my_id ==0) double init_time = MPI_Wtime();
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++) {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
          if(my_id == 0) printf(“ runtime = %lf\n”,MPI_Wtime()-init_time); 
} We don’t need a barrier here since collective 

communication implies a barrier

Use a barrier to make sure all 
processes have started-up before 
we start timing the computation
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Timing without a barrier

• Another option … forget the barrier.  Collect times for all processes and report 
min, max and average.    This is easy to do using the operations available for 
use in MPI_Reduce.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

int MPI_Reduce (void* sendbuf,
  void* recvbuf, int count,
  MPI_Datatype datatype, MPI_Op op,
  int root, MPI_Comm comm)

• Plus, knowing min, max and average gives you information about how well balanced the 
load it.  It’s much more informative than a single number with barrier.
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Exercise: Explore timing MPI programs with the Pi program
• Goal

– To work with a number of reduction operators and use results to access load balancing.

• Program
– Use MPI_Wtime(), MPI_Barrier() and other methods explore timing for the pi program.  

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
int MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND
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Programming GPUs with OpenMP

• Get the repository:

– https://github.com/tgmattso/ParProgForPhys.git

• This includes lecture-slides and exercises for my course on GPU programming 
with OpenMP

https://github.com/tgmattso/ParProgForPhys.git
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Pi program … return max time
#include <mpi.h>
void main (int argc, char *argv[])
{       int i, my_id, numprocs;  double x, pi, step, sum = 0.0, mxtime=0.0;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs) ;
          MPI_Barrier(MPI_COMM_WORLD);
          double init_time = MPI_Wtime();
 my_steps = num_steps/numprocs ;  
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++) {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
         MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
         double wtime = MPI_Wtime()-init_time
 MPI_Reduce(&wtime, &mxtime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
          if(my_id == 0) printf(“ maximum time = %lf”,mxtime);
}



MPI defines a rich set of Collective operations



Collective Computations

P0
P1
P2
P3

P0
P1
P2
P3

A
B

D
C

A
B

D
C

ABCD

A
AB
ABC
ABCD

MPI_Reduce()

MPI_Scan()

Reduction: Take values on each P 
and combine them with an op (such as 
add) into a single value on one P.

Scan: Take values on each P and 
combine them with a scan operation 
and spread the scan array out among 
all P.

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)



Collective Data Movement

A
B

D
C

B C D

A
A

A
A

MPI_Bcast()

MPI_Scatter()

MPI_Gather()

P0
P1
P2
P3

P0
P1
P2
P3

Broadcast a value from P0 
(the root) and give a copy to 
P1, P2 and P3

Scatter an array on P0 (the 
root) to P1, P2, and P3

Gather values from P1, P2, 
and P3 into an array on P0 
(the root)

int MPI_Bcast( void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm )
int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)
int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

A

A



More Collective Data Movement

A
B

D
C

A0B0 C0D0
A1B1 C1D1

A3B3 C3D3
A2B2 C2D2

A0A1A2A3
B0 B1 B2 B3

D0D1D2D3
C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

MPI_Allgather()

MPI_Alltoall()

P0
P1
P2
P3

P0
P1
P2
P3

Gather a chunk from each P 
and put it into a single array.  
Each P gets a copy of the 
resulting array. 

All to All: Take chunks of data 
on each P and spread them out 
among the corresponding 
arrays on each P

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)
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MPI Collectives: Summary

• Collective communications: called by all processes in the group to create a global 
result and share with all participating processes.
– Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv, Bcast, Gather, 
Gatherv, Reduce, Reduce_scatter, Scan, Scatter, Scatterv 

• Notes:
– Allreduce, Reduce, Reduce_scatter, and Scan use the same set of built-in or user-

defined combiner functions. 
– Routines with the “All” prefix deliver results to all participating processes
– Routines with the “v” suffix allow chunks to have different sizes

• Global synchronization is available in MPI through a barrier which blocks until all 
the processes in the process group associated with the communicator call it.
– MPI_Barrier( comm )



Collective operations are powerful … use them when you can

Do not implement them from scratch on your own.  Think about how 
you’d implement, for example, a reduction.   

It is MUCH harder than you might think.

Collective Communication: Theory, Practice, and Experience FLAME Working Note #22
Ernie Chan, Marcel Heimlich, Avi Purkayastha, Robert van de Geijn, 

September 11, 2006,     https://www.cs.utexas.edu/~flame/pubs/InterCol_TR.pdf
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Outline
• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Message passing: Basic ideas and jargon
• We need to coordinate the execution of processes … which may be spread out 

over a collection of independent computers
• Coordination:

1. Process management (e.g., create and destroy)
2. Synchronization … timing constraints for concurrent processes)
3. Communication ... Passing a buffer from one machine to another

• A message passing interface builds coordination around messages (either 
explicitly or implicitly).

• The fundamental (and overly simple) timing model for a message:

Timecommunication = latency + Nbytes/bandwidth

Network fixed costs plus overheads Network asymptotic bytes per second
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Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

-  (address, count, datatype)

Address of 
Local  
Buffer

Count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
-  (source, tag)

• Where:
- Source is the rank of the sending process
- Tag: a user-defined int to keep track of different messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);

Rank of Destination node

Communicator
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Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received.  We can use it to find out information about 
the received message.  The most common usage is to find out how many items were in the message:

MPI_Status MyStat;        int count;      float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat);   // receive from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,
 MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm,
 MPI_Status* status)
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Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received.  We can use it to find out information about 
the received message.  The most common usage is to find out how many items were in the message:

MPI_Status MyStat;        int count;      float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat);   // receive from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,
 MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm,
 MPI_Status* status)

C language comments:   
• void* says the argument can take a 

pointer to any type.  The C compiler 
won’t do any type checking … it just 
needs a valid address to a block of 
memory. 

• A type with a * means the function 
expects a pointer to that type.  So I 
would declare a variable as 
MPI_Status MyStat and then put 
the variable in the function call with 
an ampersand (&) … for example 
&MyStat



MPI Data Types for C

MPI Data Type C Data Type
MPI_BYTE

MPI_CHAR signed char
MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
MPI_LONG_DOUBLE long double
MPI_PACKED

MPI_SHORT short
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_UNSIGNED_CHAR unsigned char

MPI defines 
predefined data 
types that must be 
specified when 
passing messages.
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What about C++?
• MPI used to have a C++ interface.
• The MPI forum, however, deprecated that interface. 

– It did not add much value compared to using the C interface in C++.
– Supporting another language in the MPI specification adds a huge amount of work.

• The major challenge in moving between C++ and C is how to handle buffers when your 
arrays use std::vector or std::array.  

• The following should work* (I haven’t fully tested these options):
vector<float> a(25);

MPI_Send(a.data(), 25, MPI_FLOAT, …)

MPI_Send( &a[0],  25, MPI_FLOAT, …)

MPI_Send( &a.front(), 25, MPI_FLOAT, …)
• You cannot send from an iterator …. Let recv determine size/capacity.

*Source: Victor Eijkhout of TACC. https://theartofhpc.com/
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Exercise: Ping-Pong Program
• Goal

– Measure the time to communicate a small message between nodes. Compare on-node vs between-node 
latencies.

• Program
– Write a program to bounce a messages (a single value) between a pair of processes.  Bounce the 

message back and forth multiple times and report the average one-way communication time.  Then modify 
it to handle larger messages and explore communication time as a function of message size. 

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

MPI Data Type C Data Type
MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

int MPI_Send (void* buf, int count,MPI_Datatype datatype, int dest,int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,MPI_Datatype datatype, int source,int tag, 
 MPI_Comm comm, MPI_Status* status)

MPI_STATUS_IGNORE

Timecommunication = latency + Nbytes/bandwidth

Network fixed costs plus overheads Network asymptotic bytes per second
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Solution: Ping-Pong Program
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define VAL 42
#define NREPS  10
#define TAG 5

int main(int argc, char **argv)  {
 int rank, size;
 double t0;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int bsend = VAL;
 int brecv = 0;
 MPI_Status stat;

   MPI_Barrier(MPI_COMM_WORLD);
 if(rank == 0) t0 = MPI_Wtime();

 for(int i=0;i<NREPS; i++){
   if(rank == 0){
    MPI_Send(&bsend, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);
    MPI_Recv(&brecv, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD, &stat);
    if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
    brecv = 0;
   }
   else if(rank == 1){
    MPI_Recv(&brecv, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, &stat);
    MPI_Send(&bsend, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD);
    if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
    brecv = 0;
   }
 }
 if(rank == 0){

   double t = MPI_Wtime() - t0;
   double lat = t/(2*NREPS);
   printf(" lat = %f seconds\n",(float)lat);
 }
 MPI_Finalize();

}
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Ping Pong for different message sizes … but first a bit of C

• Input parameters from the command line (so you don’t need to recompile for each case):

int main(int argc, char **argv)
{
  if (argc == 3){
    int msg_size = atoi(*++argv);
    int num_pings = atoi(*++argv);
     }
     else{
        int msg_size = 1;
        int num_pings = 10;
     }

• Allocate memory and initialize buffer (i.e., a dynamic array of doubles)

double *msg = (double*)malloc(msg_size*sizeof(double));
for(int i; i<msg_size; i++) msg[i] = (double) i;

Define a default case for when skipped command line are omitted

Argc à number of command line arguments
**argv àPointer to a set of strings

Argc == 3 à the executable Plus two args

*++argv à increment to point to next string

atoi() àconverts a string to an int

Malloc allocates memory 
as a void*.  Cast to the 
desired type

Msg is a pointer but we treat it like an array
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Working with command line arguments
#include <mpi.h>
int main(int argc, char **argv)  {
 int rank, size, param;
 double t0;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
  if(my_ID == 0){
  if (argc == 2){

         param = atoi(*++argv);
           if(param%2 == 0) param += 1; // if odd, make param even
     else {
          param = 5;
     }
    MPI_Bcast (&param, 1, MPI_INT, 0, MPI_COMM_WORLD);
          // now do the computation (not shown).
 MPI_Finalize();

}

• You typically need to 
do some processing of 
command line 
arguments before 
proceeding with a 
computation.  

• The common pattern is 
to pick a node to do 
that work and then 
broadcast the results 
to the other nodes 
before proceeding. Broadcast one 

value of 
MPI_INT from 
node 0 to all 
other nodes
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Buffers
• Message passing is straightforward, but there are subtleties

– Buffering and deadlock
– Deterministic execution
– Performance 

• When you send data, where does it go?  The following is the typical flow:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from slides provided by Bill Gropp of UIUC
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Blocking Send-Receive Timing Diagram 
(Receive before Send)

send side                               receive side

MPI_Send:  T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and 
available to user

It is important to post the receive before 
sending, for highest performance. 

T0: MPI_Recv

Local 
buffer can
be reused

T3: Transfer Complete

time time
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Exercise: Ring program
• Start with the basic ring program we provide.  Compile as:

> mpicc ring.c ring_naive.c

• Study the code (ring.c and ring_naive.c) and note how I manage the computation 
of where the message goes to and where it comes from for each node.

• Run it for a range of message sizes and notes what happens for large messages.

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);



66

• Send a large message from process 0 to process 1
– If there is insufficient storage at the destination NIC (Network Interface Unit), the send must wait 

for the user to provide the memory space (through a receive) to drain buffers inside the NIC
• What happens with this code?

Sources of Deadlocks

Process 0

Send(to 1)
Recv(from 1)

Process 1

Send(to 0)
Recv(from 0)

• This code could deadlock … it depends on the 
availability of system buffers in which to store the 
data sent until it can be received 

Slide source: based on slides from Bill Gropp, UIUC
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Some Solutions to the “deadlock” Problem

• Order the operations more carefully:

• Use a collective “swap” so buffers created when the communication 
operation is posted: 

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: based on slides from Bill Gropp, UIUC
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Non-Blocking Communication
• Non-blocking operations return immediately and pass ‘‘request handles” that can be 

waited on and queried
– MPI_Isend( start, count, datatype, dest, tag, comm, request )
– MPI_Irecv( start, count, datatype, src, tag, comm, request )
– MPI_Wait( request, status )

• One can also test without waiting using  MPI_TEST
– MPI_Test( request, flag, status )

• Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait

•  Note the MPI types:
MPI_Status status;       // type used with the status output from recv
MPI_Request request;  // the type of the handle used with isend/ircv

Non-blocking operations are extremely important … they 
allow you to overlap computation and communication.
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buffer unavailable 
to user

Non-Blocking Send-Receive Diagram

send side             receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable 
to user

receive buffer 
filled and available 

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available 
to user
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Exercise: Ring program
• Start with the basic ring program you wrote.  .

– Using blocking Send/Recv, It may deadlock if the network stalls due to there being no place to put a 
message (i.e. no receives in place so the send blocking on when its buffer can be reused hangs).

• Make it more stable for large messages by:
– Split-phase … half the nodes “send than receive” while the other half “receive then send”.
– Sendrecv … a collective communication send/receive.
– Isend/Irecv … nonblocking send receive

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat; MPI_Request request;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
MPI_Isend( Buff, count, datatype, dest, tag, comm, &request )
MPI_Irecv( Buff, count, datatype, src, tag, comm, &request )
MPI_Wait( &request, &status )
MPI_Sendrecv (snd_buff,  buff_count, MPI_DOUBLE, to, tag,
                rcv_buf,     buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);
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Example: shift messages around a ring (part 1 of 2)
#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{
  int num, rank, size, tag, next, from;
  MPI_Status status1, status2;
  MPI_Request req1, req2;

  MPI_Init(&argc, &argv);
  MPI_Comm_rank( MPI_COMM_WORLD, &rank);
  MPI_Comm_size( MPI_COMM_WORLD, &size);
  tag = 201;
  next = (rank+1) % size;
  from = (rank + size - 1) % size;
  if (rank == 0) {
    printf("Enter the number of times around the ring: ");
    scanf("%d", &num);

    printf("Process %d sending %d to %d\n", rank, num, next);
    MPI_Isend(&num, 1, MPI_INT, next, tag, 
                                              MPI_COMM_WORLD,&req1);
    MPI_Wait(&req1, &status1);
  } 

do {
    MPI_Irecv(&num, 1, MPI_INT, from, tag, 
                                              MPI_COMM_WORLD, &req2);
    MPI_Wait(&req2, &status2);
    
    if (rank == 0) {
      num--;
      printf("Process 0 decremented number\n");
    }

    printf("Process %d sending %d to %d\n", rank, num, next);
    MPI_Isend(&num, 1, MPI_INT, next, tag, 
                                               MPI_COMM_WORLD, &req1);
    MPI_Wait(&req1, &status1);
  } while (num != 0);

  if (rank == 0) {
    MPI_Irecv(&num, 1, MPI_INT, from, tag, 
                                               MPI_COMM_WORLD, &req2);
    MPI_Wait(&req2, &status2);
  }
  MPI_Finalize();
  return 0;
} 
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Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n  map onto a mesh with stepsize h and k

n Central difference approximation for spatial 
derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1
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Example: Explicit finite differences
• Combining time derivative expression using spatial derivative at t = tn

2
11

1 2
h

uuu
k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn 
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1 )21( +-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
    for (int x = 1; x < N-1; ++x)
          u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);
 

n Explicit methods are easy to compute … each point updated based on nearest 
neighbors.  Converges for r<1/2.
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

“infinite” heat 
bath (fixed 

temperature, 
T2)

“infinite” heat 
bath (fixed 

temperature, 
T1)

T2T1
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three 
point “stencil” across the domain 
(u[t]) and computing a new value of 
the center point (u[t+1]) at each stop.
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Heat Diffusion equation 

int main()
{
   double *u   = malloc (sizeof(double) * (N));    
   double *up1 = malloc (sizeof(double) * (N));
                                                     
   initialize_data(uk, ukp1, N, P); // initialize, set end temperatures
   for (int t = 0; t < N_STEPS; ++t){
      for (int x = 1; x < N-1; ++x)
          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  
      temp = up1; up1 = u; u = temp;
    }
return 0;

T2T1

A well known trick with 2 arrays so I 
don’t overwrite values from step k-1 
as I fill in for step k

Note: I don’t need the 
intermediate “u[t]” values 

hence “u” is just indexed by x.
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Heat Diffusion equation 

int main()
{
   double *u   = malloc (sizeof(double) * (N));    
   double *up1 = malloc (sizeof(double) * (N));
                                                     
   initialize_data(uk, ukp1, N, P); // initialize, set end temperatures
   for (int t = 0; t < N_STEPS; ++t){
      for (int x = 1; x < N-1; ++x)
          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  
      temp = up1; up1 = u; u = temp;
    }
return 0;

T2T1

How would you 
parallelize this program?
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Exercise: Parallel heat diffusion
• Goal

– Parallelize the heat diffusion code (MPI_Exercises/heat-eqn-seq.c) with OpenMP … should be a quick and 
easy way to familiarize yourself with the code.

– As you do this, think about how you might parallelize this with MPI

#pragma omp parallel
#pragma omp for
#pragma omp critical
#pragma omp single
#pragma omp barrier
int omp_get_num_threads();
int omp_get_thread_num();
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Heat Diffusion equation 

T2T1

• Start with our original picture of the problem … a one 
dimensional domain with end points set at a fixed 
temperature.
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Heat Diffusion equation 

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• What about the ends of each chunk … where the stencil will 
run off the end and hence have missing values for the 
computation?

?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell



85

Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell

How would you 
allocate memory 
to create chunks 
of the right size 
with ghost cells 
in your code?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

MPI_Comm_size (MPI_COMM_WORLD, &P);
double *u   = malloc (sizeof(double) * (2 + N/P))
double *up1 = malloc (sizeof(double) * (2 + N/P)); 

Let’s be lazy and assume P is 
a divisor of N (i.e.; N%P = 0)
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell

Write the code 
for the update of 

an individual 
chunk … 

accounting for 
edges using the 

ghost cells.
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Heat Diffusion MPI Example: Updating a chunk 
// Compute interior of each “chunk”
  for (int x = 2; x < N/P; ++x)
    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed 
// (first element on Process 0 and the last element on process P-1). 
  if (myID != 0)
    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

  if (myID != P-1)
    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations
  temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assumed N was 
evenly divided by P.  Clearly, I’d never 

do this in a “real” program.

Update array values using local data 
and values from ghost cells.

u[0] and u[N/P+1] are 
the ghost cells
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Heat Diffusion MPI Example: Communication 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3

Try to write the code for this communication pattern.
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells” to hold
double *up1 = malloc (sizeof(double) * (2 + N/P)); // values from my neighbors
                                                     
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

  if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
 

  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
  

  if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);
 

Note: the edges of domain are held at a fixed temperature.
• Node 0 has no neighbor to the left
• Node P has no neighbor to its right

Send my “left” boundary value to the neighbor on my “left’

Receive my “right” ghost cell from the neighbor to my “right’

Send my “right” boundary value  to the neighbor to my “right’

Receive my “left” ghost cell from the neighbor to my “left”
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3

We now put all the pieces together for the full program
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells” to hold
double *up1 = malloc (sizeof(double) * (2 + N/P)); // values from my neighbors
                                                     
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){
  if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
  if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

  for (int x = 2; x < N/P; ++x)
    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
  if (myID != 0)
    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  
  if (myID != P-1)
    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);
  temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;
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The Geometric Decomposition Pattern

T2T1

Ghost 
cell

Ghost 
cell

§ This is an instance of a very important design pattern … the Geometric decomposition pattern.
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Communicating boundary data

• Communicating boundary data was ugly and error prone:

• The constant MPI_PROC_NULL when used as a to/from parameter in a 
message passing function causes the function to return with MPI_SUCCESS 
as soon as it can.   

if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
  if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

MPI_Send (&u[1], 1, MPI_DOUBLE, MPI_PROC_NULL, 0, MPI_COMM_WORLD);
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Exercise: MPI heat diffusion
• Goal

– Make the provided code, heat-eqn-mpi.c, simpler and less error prone
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Partitioned Arrays

• Realistic problems are 2D or 3D; require 
more complex data distributions.

• We need to parallelize the computation by 
partitioning this index space

• Example: Consider a 2D domain over 
which we wish to solve a PDE using an 
explicit finite difference solver .  The figure 
shows a five point stencil … update a 
value based on its value and its 4 
neighbors.

• Start with an array and stencil à
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Partitioned Arrays: Column block distribution

• Split the non-unit-stride dimension (P-1) times to produce P chunks, assign the ith chunk to Pi. …. 
To keep things simple, assume N%P = 0 

• In a 2D finite-differencing program (exchange edges), how much do we have to communicate? 
O(N) values per processor

P is the
# of processors

N is the order of our 
square matrix

P0 P1 P2 P3
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Partitioned Arrays: Block distribution
• If we parallelize in both dimensions, then we have (N/P1/2)2 elements per processor, 

and we need to send  O(N/P1/2) values from each processor. Asymptotically better 
than O(N).

P is the
# of processors

Assume a p by p 
square mesh … 
p=P1/2

N is the order of our 
square matrix

Dimension of each 
block is N/P1/2

P0,0 P0,1

P1,0
P1,1
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Partitioned Arrays: block cyclic distribution

• LU decomposition (A= LU) .. Move down the 
diagonal transform rows to “zero the column” below 
the diagonal.

§ Zeros fill in the right lower triangle of the 
matrix … less work to do. 

§ Balance load with cyclic distribution  of 
blocks of A mapped onto a grid of nodes 
(2x2 in this  case … colors show the 
mapping to nodes).  

* * ** * * * *
0 * ** * * * *
0 0 ** * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *



Matrix Transpose:  
Column block decomposition 

You can only learn this stuff by doing it so we’re going 
to design an algorithm to transpose a matrix using a 
partitioned array model based on column blocks. 

Transpose

P0 P1 P2 P3 P0 P1 P2 P3

A B

Aij = Bji

Let’s keep things simple.  The order of A and B is N.   N = blk*P where blk is the order of the square subblocks 



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … how will each 
Processor march through 
its set of blocks?



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

There is more than one way to do this.

Since its an SPMD program, you want a 
symmetric path through the blocks on 
each processor.

A great approach is for everyone to start 
from their diagonal and shift down  

Phase 0 … transpose your diagonal

Start

Start

Start

Start



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge).

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

Start

Start

Start

Start



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge.

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

Start

Start

Start

Start We know the sender … 
who receives the block?



Matrix Transposition

P0 P1 P2 P3

A

Let’s keep things simple.  N = blk*P where blk is the order of the square subblocks 

We are going to create a 
transpose program that 
uses the SPMD pattern.

That’s Single Program 
Multiple Data.

We’ll run the same program 
on each node.

What is the high level 
structure of this algorithm?

That is … How will each 
Processor march through 
its set of blocks?

Shift down (with a circular shift pattern … 
i.e. when you run off an edge, wrap 
around to the opposite edge.

Phase 0 … transpose your diagonal
Phase 1 … deal with next block “down”

We know the sender … 
who receives the block?
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Exercise: Matrix Transpose Program
• Start with the basic transpose program we provide (transpose.c and several trans_*.c functions).

> mpicc transpose.c trans_utility.c trans_sendrcv.c
• Your task … deduce a general expression for the sender and receiver (FROM and TO)  for each phase. 
• Go to trans_sendrcv.c and enter your definitions for the TO and FROM macros (what is there now is 

wrong … I just wanted something to show how macros work).
• Test and verify correctness
• Try different message passing approaches.
• Can you overlap the local transpose and the communication between nodes?

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat; MPI_Request request;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
MPI_Isend( Buff, count, datatype, dest, tag, comm, &request )
MPI_Irecv( Buff, count, datatype, src, tag, comm, &request )
MPI_Wait( &request, &status )
MPI_Sendrecv (snd_buff,  buff_count, MPI_DOUBLE, to, tag,
                rcv_buf,     buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);
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Outline
• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

10

Real Programmers always try to overlap communication 
and computation .. Post your receives using MPI_Irecv() 
then where appropriate, use MPI_Isend(). 



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

10

Real Programmers always try to overlap communication 
and computation .. Post your receives using MPI_Irecv() 
then where appropriate, use MPI_Isend(). 

My friends on the MPI forum hate this slide.
These are indeed the functions most people use, but these date 

back to MPI 1.5 ...   The spec is currently at version 5.0

Master these 12 constructs before exploring newer features in MPI.  
Then learn about:
• Support for mixing MPI and OpenMP
• Topologies
• One-sided communication
• User defined types
• Shared memory programming within MPI (no need for OpenMP)
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Does a shared address space make 
programming easier?  

Time

Effort

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be 
quite easy 

Multi-threading

But difficult debugging and 
optimization means overall 

project takes longer 

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 
2003

Proving that a shared address space program using 
semaphores is race free is an NP-complete problem*
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MPI References
• The Standard itself at http://www.mpi-forum.org
• Additional tutorial information at http://www.mcs.anl.gov/mpi
• The core reference books: 

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
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Additional books to help you master MPI

§ Parallel Programming with MPI, by Peter Pacheco, 
Morgan-Kaufmann, 1997.
§ Only covers MPI 1.0 so it’s out of date, but it is a 

very friendly and gentle introduction.
§ Peter Pacheco is a teacher first and foremost 

and that shows in the way he organizes the 
material in this book.

§ Patterns for Parallel Programing, by Tim Mattson, 
Beverly Sanders, and Berna Massingill.
§ Only covers MPI 1.0 so it’s out of date.
§ Focusses on how to use MPI, not the structure of 

the standard itself.
§ Shows how patterns are expressed across MPI, 

OpenMP, and concurrent Java
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Outline
• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

• Wait … there is one more case for us to consider … HPC and the cloud
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Hardware is diverse … and its only getting worse!!!

CPU

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Write 
code with 
TBB or  

OpenMP

Work with the 
compiler to 

vectorize code
Use a portable 
API but if you 

must, use CUDA.  
It’s all the same 

model

OpenMP lets you “do it all”.  
Or combine CUDA and 

OpenMP (or TBB).

MPI works in the cloud, but 
its not really “cloud-like”

All you need is MPI



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
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Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X



Disaggregated Computing for SW Defined Servers (SDS)
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Consider a Rack composed of multiple pools

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match 
a software defined server to the workload

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:



Disaggregated Computing for SW Defined Servers (SDS)

120

Consider a Rack composed of multiple pools

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match 
a software defined server to the workload

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:

The idea of disaggregated computing for SDS is so 
ridiculous, I can’t believe anyone would suggest it. 

 It reduces operational costs and improves utilization 
of system components, but the performance would be 
terrible for anything other than totally compute bound 

problems!!!

The network overheads would kill you!!!



Networking technology… replace generic data center 
network with a cluster of cliques
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SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A clique:  A graph where every vertex is 
connected to every other vertex

A  Clique: a network of 
diameter one with 

O(¼N2) bisection bandwidth

Combine with next 
generation optical networks 

to hit latencies close to 
DRAM latencies (100 ns)



Latencies every engineer should know … 
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L1 cache reference 1.5 ns 
L2 cache reference 5 ns 
Branch misprediction 6 ns 
Uncontended mutex lock/unlock 20 ns 
L3 cache reference 25 ns 
Main memory reference 100 ns 
“Far memory”/Fast NVM reference 1,000 ns (1us) 
Read 1 MB sequentially from memory 12,000 ns (12 us) 
SSD Random Read 100,000 ns (100 us) 
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us) 
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms) 
Read 1 MB sequentially from disk 10,000,000 ns (10 ms) 
Disk seek 10,000,000 ns (10 ms) 
Send packet California→Netherlands→California (150 ms) 

Source: The Datacenter as a Computer: 
Designing Warehouse-Scale Machines, 
Luiz Andre Barroso, Urs Holzle, 
Parthasarathy Ranganathan, 3rd edition, 
Morgan & Claypool, 2019.

SSD NI
C

SSD NI
C

SSD NI
C

SSD NI
C

SSDNI
C

SSDNI
C

SSDNI
C

SSDNI
C

A cluster of nodes with a 
Clique network topology and 
low latency optical network…

Yields one hop network 
latencies on par with DRAM 
access latencies.



Take out the big stuff & you’re left with lots of µs overheads

123Source: Fig 1 from “Attack of the Killer Microseconds”, Barroso, Marty, Patterson, and Ranganathan, Comm ACM vol 60, # 4, p. 48, 2017

All those SW overheads add up … like bricks that combine to build a networking-wall … 
turning a 2 µs network into a 100 µs network…

Computer Scientists need to rethink system SW stacks to minimize latencies … 
fast RDMA, reduce sync contention, low latency interrupt handlers, and more …. 

All to hit O(µs) latencies. 



Disaggregated Computing for SW Defined Servers (SDS):
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Consider a Rack composed of multiple pools

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

CPU pool

GPU pool

FPGA pool

SSD pool

DRAM pool

NVRAM pool

Dynamically compose across pools to match 
a software defined server to the workload

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

Based on  “The five Epochs of distributed computing” talk by Amin Vahdat of Google:



Low latency, high bandwidth network between cliques

SW Defined clusters of SW defined Servers
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ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

ICache
Scheduler

SSD SSD SSD SSD

…

• Dynamic … changing 
from one job to the next.

• SW defined severs 
composed of 
heterogeneous 
components 

• Dynamically composed 
into a cluster

• Integrated over a 5G 
network to devices (and 
people) at the edge



Implications for Software development



A High-Level Taxonomy of parallel applications*
• Program: a sequence of operations (work) that modify data
• Task: a subset of the work defined by a program.
• Parallel application: a collection of tasks that run in parallel.

• The tasks are usually concurrent (i.e. unordered) except for fixed points where they 
synchronize (often including an exchange of data).

• Time is regular when synchronization events happen at ~common frequencies between 
tasks.

• Data is regular when is it roughly the same size across a set of tasks.
• We define the following four application classes:

Loosely synchronous:  regular Data, irregular timeSynchronous:  regular Data, regular  time

Asynchronous: irregular in Time and Data Embarrassingly Parallel: independent tasks

The programmer must assure that the needs of the application can be met by the hardware

*Source:  The Caltech Concurrent Computation Project, mid-1980s



Distributed/Parallel Computing today

HW Granularity  ∝ amount of computing in time equal to mean network latencyCoarse 
grained

Fine 
grained

Loosely synchronous
Synchronous

Asynchronous
Embarrassingly Parallel

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X



Programming Distributed computers
There is a clean split between 
applications that run in the cloud and 
those that need a dedicated HPC cluster.

This is reflected in the programming 
models used:

• Cloud: Remote Procedure Call (RPC), 
distributed object store distinct from 
tasks, execution flows as task graphs 
for Function as a service.  Heavy use 
of microservices.

• HPC Cluster: SPMD design pattern 
with MPI … also PGAS with SHMEM.

Distributed Computing today

HW Granularity  ∝ amount of computing in time equal to mean latencyCoarse 
grained

Fine 
grained

Loosely synchronous Synchronous
Asynchronous

Embarrassingly Parallel

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models 
work well together.   

An impenetrable wall separates 
them from the cloud-native world



Optically-networked disaggregated cloud systems ... 
cloud and cluster overlap … or even merge!

Cloud HPC Cluster

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

X

X
X
X
X
X

Chip-to-chip optical 
networks push latency 
down and bandwidth up

Data Streaming Accelerator 
reduces tail latency.

P4/P5/P6 + Infrastructure 
Processing Units drive 
down latency and reduces 
jitter

With Low Latencies, high bandwidths and stable performance, we can do loosely synchronous and synchronous 
applications in the cloud.    The economics of the cloud vs dedicated HPC clusters means the cloud will dominate HPC

HPC applications will need to change to deal with reliability and network inhomogeneities.   



The three domains of parallel programming
Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

There will always be a need for top-end scalable systems in  
supercomputer centers, but economics will push the bulk of 

scientific computing into the cloud.



Writing Parallel Distributed Applications

Network technology evolution:
• Lower and more predictable latencies
• Erase distinctions between HPC clusters & the cloud

In response … we must support:
• One code base à multiple execution models

Ideally with declarative semantics … 
Core Patterns + coordination language/API

Application source code written with a 
high-level language such as Python:

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à  microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data  structures à in process memory
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data  structures à process heap
• Durable store: local file system

Software generator Hardware 
cost model



Writing Parallel Distributed Applications

Network technology evolution:
• Lower and more predictable latencies
• Erase distinctions between HPC clusters & the cloud

In response … we must support:
• One code base à multiple execution models

Software generator Hardware 
cost model

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à  microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data  structures à in process memory
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data  structures à process heap
• Durable store: local file system

We call this machine programming

Ideally with declarative semantics … 
Core Patterns + coordination language/API

Application source code written with a 
high-level language such as Python:

Intention Adaptation

InventionData Data

Data



The Three Pillars of Machine Programming
MAPL/PLDI’18

1352nd ACM SIGPLAN Workshop on Machine Learning and Programming  Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

Justin Gottschlich, Intel
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel
Michael Carbin, MIT
Martin, Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenebaum, MIT
Tim Mattson, Intel

A position paper laying out our vision for how to solve the machine 
programming problem. The three Pillars:

– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaption: Evolve in a changing hardware/software world

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

This is a long talk I 
won’t go into now



OK, Now we are really done
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Backup Content

• Mixing OpenMP and MPI

• Loading MPI on your system
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How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program 
working on a data set

•Create the MPI program 
with its data decomposition.

• Use OpenMP inside each 
MPI process.
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Pi program with MPI and OpenMP
#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{
 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) ;
           MPI_Finalize();
}

Get the MPI 
part done 
first, then 
add OpenMP 
pragma 
where it 
makes sense 
to do so

For many years, this was 
all you needed to do to 
make OpenMP and MPI 

work together.

Don’t put MPI calls in a 
parallel region, and 

everything just works.

Technically, this doesn’t 
work anymore.
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You must tell MPI at initialization about planned Thread use
• MPI includes a version of MPI_Init() that defines how to handle threads.   If you are going 

to mix threads with MPI, you required to use this new initialization function.

int MPI_Init_thread( int *argc, char **argv, int required, int *provided )
• int *argc: number of values on the command line.
• char ***argv: Pointer to and array of pointers holding the arguments as character strings
• Int MPI threading mode that you require
• Int * provided: a pointer to an int that identifies the thread mode you got.

MPI defines four constants that represent the different thread modes
1. MPI_THREAD_SINGLE:  Only one thread will execute.
2. MPI_THREAD_FUNNELED:  The process may be multi-threaded, but only the 

initial thread will make MPI calls (all MPI calls are funneled to the initial thread).
3. MPI_THREAD_SERIALIZED:  The process may be multi-threaded, and multiple 

threads may make MPI calls, but only one at a time: MPI calls are not made 
concurrently from two distinct threads (all MPI calls are serialized).

4. MPI_THREAD_MULTIPLE:  Multiple threads may call MPI, with no restrictions.

The 4 constants are ordered integers of type int .. That is Multiple>Serialized>Funneled>Single



141

Pi program with MPI and OpenMP
#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{
 int i, my_id, numprocs,got;  double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
  MPI_Init_thread(&argc, &argv,MPI_THREAD_FUNNELED, &got) ;
        if(got<MPI_THREAD_FUNNELED)  MPI_Abort();
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
 {
    x = (i+0.5)*step;
    sum += 4.0/(1.0+x*x);
 }
 sum *= step ; 
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) ;
           MPI_Finalize();
}

Funneled has never let me 
down.

… Stil, it is recommended 
that you always verify you 

actually got the level  of 
thread support you 

requested
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Hybrid OpenMP/MPI works, but is it worth it?

• Literature* is mixed on the hybrid model: sometimes its better, sometimes MPI alone is best.
• There is potential for benefit to the hybrid model

– MPI algorithms often require replicated data making them less memory efficient.
– Fewer total MPI communicating agents means fewer messages and less overhead from message conflicts.
– Algorithms with good cache efficiency should benefit from shared caches of multi-threaded programs.
– The model maps perfectly with clusters of SMP nodes.

• But really, it’s a case by case basis and to large extent depends on the particular application.

*L. Adhianto and Chapman, 2007
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Backup Content

• Mixing OpenMP and MPI

• Loading MPI on your system



Use homebrew to install gnu compilers on your Apple laptop
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• Go to the homebrew web site (brew.sh).  Cut and paste the command near the top of the page to install 
homebrew (in /opt/homebrew):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”

• Add /opt/homebrew/bin to your path.  I did this by adding the following line to .zshrc

% export PATH=/opt/homebrew/bin:$PATH

• Install the latest gcc compiler 

% brew install gcc

• This will install the compiler in /opt/homebrew/bin.   Check /opt/homebrew/bin to see which gcc compiler 
was installed.  In my case, it installed gcc-13

• Test the compiler (and the openmp option) with a simple hello world program

% gcc-13 –fopenmp hello.c

I tested this on a 
new (July 2023) 

MacBook Air with an 
Apple M2 CPU

Warning: by default Xcode usese the name gcc for Apple’s clang 
compiler.  

Use Homebrew to load a real, gcc compiler. 

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh
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OpenMP and MPI on Apple Laptops: MacPorts

• To use OpenMP and MPI on your Apple laptop:
• Download Xcode.  Be sure to choose the command line tools that match your OS.
• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc14

port select --list gcc

sudo port select –-set gcc mp-gcc14

sudo port install mpich-gcc14

mpicc –fopenmp hello.c

mpiexec –n 4 ./a.out

Update to latest version of MacPorts

Grab version 13 gnu compilers

List versions of gcc on your system

Select the mp enabled version of the 
most recent gcc release

Test the installation with a simple program

I have not tested this in a long time.   
I greatly prefer homebrew.

But if you prefer MacPorts, this 
procedure should work. 

Grab the library that matches the version 
of your gcc compiler.
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MPIch library on Apple Laptops: MacPorts

• To use MPI on your Apple laptop:
– Download Xcode.  Be sure to choose the command line tools that match your OS.
– Install MacPorts (if you haven’t already … use the installer for your OS from macports.org).

sudo port selfupdate

sudo port install mpich-gcc9

mpicc hello.c

mpiexec –n 4 ./a.out

Update to latest version of 
MacPorts

Grab the library that matches the 
version of your gcc compiler.

Test the installation with a simple 
program


