
An Introduction to Parallel
Programming:

A hands-on Introduction (using OpenMP)

Tim Mattson
Human Learning Group
(retired from Intel Aug’2023)

With a lot of help from Helen He, Alice Koniges, David Eder, and many more

I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014

Introduction

2

To support my kayaking habit, I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

3

Preliminaries: Part 1
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and

experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you complete an exercise …
even if you get really frustrated.

Use homebrew to install gnu compilers on your Apple laptop

4

• Download Xcode. Be sure to choose the command line tools option.
• Go to the homebrew web site (brew.sh). Cut and paste the command near the top of the page to install

homebrew (in /opt/homebrew):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”

• Add /opt/homebrew/bin to your path. I did this by adding the following line to .zshrc

% export PATH=/opt/homebrew/bin:$PATH

• Install the latest gcc compiler

% brew install gcc

• This will install the compiler in /opt/homebrew/bin. Check /opt/homebrew/bin to see which gcc compiler was
installed. In my case, it installed gcc-13

• Test the compiler (and the openmp option) with a simple hello world program

% gcc-13 –fopenmp hello.c

I tested this on a new
(July 2023) MacBook
Air with an Apple M2

CPUWarning: Xcode uses the name gcc for Apple’s clang compiler.
Use Homebrew to load a real, gcc compiler.

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh

OpenMP Compilers on Apple Laptops: MacPorts
• To use OpenMP on your Apple laptop:
• Download Xcode. Be sure to choose the command line tools option.
• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc13

port select --list gcc

sudo port select –-set gcc mp-gcc13

gcc –fopenmp hello.c

5

Update to latest version of
MacPorts

Grab version 13 gnu
compilers (5-10 mins)

List versions of gcc on your
system

Select the mp enabled version of
the most recent gcc release

Test the installation with a simple
program

I have not tested this in a long time.
I greatly prefer homebrew.

But if you prefer MacPorts, this procedure
should work.

The best way to master parallel computing …

start with a simple approach to parallelism and build
an intellectual foundation by writing parallel code.

… and the simplest API for parallelism is?

6

7

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

Note: since we did not collect files with .cu or .cuf suffices, we undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023
Quantifying OpenMP: Statistical insights into usage and adoption,
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002

In a dataset
(HPCorpus) of

all C/C++/Fortan
github

repositories from
2013-2023,

OpenMP was
found to be the
most popular

parallel
programming

model

C$OMP TASKGROUP

8

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP: An API for Writing Parallel Applications

§A set of compiler directives and library routines for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions … supports non-uniform memories, vectorization and GPU programming

#pragma omp atomic seq_cst

The Growth of Complexity in OpenMP

9

The full spec is overwhelming. We focus on the Common Core: the 21 items most people restrict themselves to

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts (not including front matter, indices or appendices) for OpenMP Specs

Page C
ounts

Our goal in 1997 … A simple interface for application programmers

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

10

OpenMP Basic Definitions: Basic Solution Stack

11

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

11

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 12

13

OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
– It’s OK to have an exit() within the structured block.

14

Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include <stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

15

Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc –fopenmp

icc -fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

16

Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 printf(“ hello ”);
 printf(“ world \n”);
 }
}

Sample Output:
hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

A brief digression on the terminology of parallel
computing

17

Let’s agree on a few definitions:

• Active task:
– A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution.

18

• Computer:
– A machine that transforms input values into

output values.
– Typically, a computer consists of Control,

Arithmetic/Logic, and Memory units.
– The transformation is defined by a stored

program (von Neumann architecture).

• Task:
– A sequence of instructions plus a data

environment. A program is composed of
one or more tasks.

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit
concurrency in a problem to run tasks on
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems

Programs

Concurrent
Programs

Parallel
Programs If tasks execute in “lock step” they are not

concurrent, but they are still parallel.
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution modesl

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

24

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

25

OpenMP Execution model:

Fork-Join Parallelism:
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential
program evolves into a parallel program.

Parallel Regions

Initial
Thread

A Nested
Parallel
Region

Sequential Parts

The fork-Join model
is also used with

POSIX threads and
std::thread in C++

26

Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Thread Creation: Parallel Regions Example

• Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is
shared between all

threads.

Threads wait here for all threads to finish before
proceeding (i.e., a barrier)

27

28

Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();

 int nthrds = omp_get_num_threads();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

Runtime function to
return actual

number of threads
in the team

29

An Interesting Problem to Play With
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N
rectangles:

Where each rectangle has width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

i = 0

N

30

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

See hands-on/openmp/pi.c

31

Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 double tdata = omp_get_wtime();
 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
 tdata = omp_get_wtime() - tdata;
 printf(“ pi = %f in %f secs\n”,pi, tdata);
}

See hands-on/openmp/pi.c

The library routine
get_omp_wtime()
is used to find the

elapsed “wall
time” for blocks of

code

32

Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
 #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team

33

Hints: the Parallel Pi Program
• Use a parallel construct:
 #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

34

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 if (id == 0) nthreads = numthrds;
 for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program

Promote scalar to an array dimensioned by
number of threads to avoid race condition.

This is a common trick in SPMD programs to
create a cyclic distribution of loop iterations

Only one thread should copy the number of
threads to the global value to make sure
multiple threads writing to the same address
don’t conflict.

*SPMD: Single Program Multiple Data

35

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds, istart, iend;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 istart = id*(num_steps/numthrds); iend=(id+1)*(num_steps/numthrds);
 if(id == (numthrds-1)) iend = num_steps;
 if (id == 0) nthreads = numthrds;
 for (i=istart, sum[id]=0.0;i< iend; i++) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution

This is a common trick in SPMD algorithms …
it’s a blocked distribution with one block per
thread.

SPMD: Single Program Multiple Data

Results*

threads 1st
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

36

37

SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large.

MPI programs almost always use this pattern … it is probably the
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared
data structures.

Replicate the program.

Add glue code

Break up the data

A brief digression to talk about
performance issues in parallel

programs

38

39

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased performance
from running on P processors.

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup: happens when
no parallel overhead and algorithm is
100% parallel.

n Super-linear Speedup: typically due to
cache effects … i.e. as P grows,
aggregate cache size grows so more of
the problem fits in cache

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a
part that is fundamentally serial.

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

• If you had an unlimited number of processors:

• If the serial fraction is a and the parallel fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s
Law

Amdahl’s Law

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

So now you should understand my silly introduction slide.

43

We measure our
success as parallel
programmers by how
close we come to ideal
linear speedup.

A good parallel
programmer always
figures out when you
fall off the linear
speedup curve and
why that has
occurred.

45

Exercise
• Go back to your parallel pi program and explore how well it scales with the number

of threads.
• Can you explain your performance with Amdahl’s law? If not what else might be

going on?

– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N An environment variable. Sets the default

number of threads to request to N. Use this
instead of requesting a number of threads with
omp_set_thread_num(). Let’s you change
number of threads without recompiling code.

Results*

threads 1st
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

46

47

Why Such Poor Scaling? False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

48

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 #define PAD 8 // assume 64 byte L1 cache line size
 void main ()
 { int i, nthreads; double pi, sum[NUM_THREADS][PAD] ;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id][0] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
 }

Pad the array so each
sum value is in a

different cache line

Example: Eliminate false sharing by padding the sum array

Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default
optimization level (O2) on Apple OS
X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor
at 1.7 Ghz and 4 Gbyte DDR3
memory at 1.333 Ghz.

49

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
!'(;"#()GCD)H II)311&,()JK):L2(M7)3/()%"#()1"N(
O+"'),3"#)PQ
R))))"#2)"S)#2/T(3'19))'+&:%()-"S)1&,U<=>5?@ABCDEVUGCDV 9
12(-)6)7.8IP'+&:%(Q)#&,512(-19
+,-51(25#&,52/T(3'1P<=>5?@ABCDEQ9
!-T34,3)+,- -3T3%%(%
R
"#2)"S)"'S#2/T'19
'+&:%()W9
"')6)+,-54(252/T(3'5#&,PQ9
#2/T'1 6)+,-54(25#&,52/T(3'1PQ9
";)P"')66)8Q)))#2/T(3'1 6)#2/T'19
;+T)P"6"'S)1&,U"'V68.89"*)#&,512(-19)"6"X#2/T'1Q)R
W)6)P"X8.YQZ12(-9
1&,U"'VU8V)X6)K.8IP7.8XWZWQ9

[
[
;+TP"68S)-"68.89"*#2/T(3'19"XXQ-")X6)1&,U"VU8V)Z)12(-9

[

50

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

51

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order
constraints and to protect access to shared data

52

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 B = big_SPMD_job(id, nthrds);

 #pragma omp critical
 res += consume (B);

}

Threads wait their turn
– only one thread at a
time calls consume()

53

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable

statement.

double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id==0) numthrds = nthrds;

 Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
 Brr[id] = really_big_and_ugly(id, nthrds, Arr);
}

Threads wait until all
threads hit the barrier.
Then they can go on.

54

Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical

PI Program with False Sharing

*Intel compiler (icpc) with no
optimization on Apple OS X 10.7.3
with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333
Ghz.

threads 1st
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an array made
the coding easy, but led to false sharing and
poor performance.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

56

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum * step;
 }
 }

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel region …
so you must sum it in here. Must protect summation
into pi in a critical region so updates don’t conflict

No array, so no false sharing.

Create a scalar local to each
thread to accumulate partial sums.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))"#2)#2/K(3'19)'+&:%())-"68.89 12(-)6)7.8LH'+&:%(I)#&,512(-19
+,-51(25#&,52/K(3'1H<=>5?@ABCDEI9
!-K34,3)+,- -3K3%%(%
J
"#2)"M)"'M)#2/K'19))))'+&:%()NM)1&,9
"')6)+,-54(252/K(3'5#&,HI9
#2/K'1 6)+,-54(25#&,52/K(3'1HI9
";)H"')66)8I)))#2/K(3'1 6)#2/K'19)))
;+K)H"6"'M)1&,68.89"*)#&,512(-19)"6"O#2/K'1I)J
N)6)H"O8.PIQ12(-9
1&,)O6)R.8LH7.8ONQNI9

S
!-K34,3)+,- $K"2"$3%

-")O6)1&,)Q)12(-9
S
S

Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3
with a dual core (four HW thread) Intel® CoreTM i5 processor at
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

57

58

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 #pragma omp critical
 sum += 4.0/(1.0+x*x);
 }
 }
 }

Example: Using a critical section to remove impact of false sharing

What would happen if you put the
critical section inside the loop?

59

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

60

The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel
{
 #pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

61

Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for
 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and
a worksharing for construct

62

Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable

by the programmer

DYNAMIC Unpredictable, highly variable
work per iteration

Least work at runtime :
scheduling done at
compile-time

Most work at runtime :
complex scheduling
logic used at run-time

63

Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

64

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
 j = 5;
 for (i=0;i< MAX; i++) {
 j +=2;
 A[i] = big(j);
 }

int i, A[MAX];
 #pragma omp parallel for
 for (i=0;i< MAX; i++) {
 int j = 5 + 2*(i+1);
 A[i] = big(j);
 } Remove loop

carried
dependence

Note: loop index
“i” is private by
default

65

Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double ave=0.0, A[MAX];
 for (int i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

• How do we handle this case?

66

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, A[MAX];
#pragma omp parallel for reduction (+:ave)
 for (int i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

67

Reduction … with arrays
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.

double arr[N] = {0.0};
#pragma omp parallel for reduction(+:arr[0:N])
 for (int j=0;i< M; i++) {
 double val = A_Function(j);
 for (int i=0; i<N; i++){
 arr[i] += SomeFunction(i,val);
 }
 }

Indicates an array section with N
elements starting at element 0

68

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
(we just don’t cover this topics here)

69

Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

70

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)
 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 pi = step * sum;
}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum.
Note … the loop index is
local to a thread by default.

71

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{
 double pi, sum = 0.0;
 step = 1.0/(double) num_steps;

 #pragma omp parallel for reduction(+:sum)
 for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Using modern C style, we
put declarations close to
where they are used …
which lets me use the
parallel for construct.

Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68

72

…. Let’s pause a moment and consider
one of the fundamental issues EVERY
parallel programmer must grapple with

73

74

Load Balancing
• A parallel job isn’t done until the last thread is

finished

• Example: Partition a problem into equal sized
chunks but for work that is unevenly distributed
spatially.
– Thread 2 has MUCH more work. The uneven distribution of

work will limit performance.

• A key part of parallel programming is to design how
you partition the work between threads so every
thread has about the same amount of work. This
topic is referred to as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work

75

Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you
partition the work between threads so every thread has
about the same amount of work.

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work

76

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

0
1
2
3

Colors mapped to 4 different Threads

77

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads

take the same amount of time
– Partitioning or decomposition … breaking up the problem

domain into partitions (or chunks) and assigning different partitions
to different threads.

– Granularity … the size of the block of work. Find grained (small
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into
partitions such that there are many more partitions than threads to
do the work

0
1
2
3

Colors mapped to 4 different Threads

78

Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable

by the programmer

DYNAMIC Unpredictable, highly variable
work per iteration

Least work at runtime :
scheduling done at
compile-time

Most work at runtime :
complex scheduling
logic used at run-time

79

Loop Worksharing Constructs: The schedule clause
• The schedule clause … most common cases:

#pragma omp parallel for schedule (static)

Int small = 8; // loop iterations, i.e., width of boxes in the figure

#pragma omp parallel for schedule (static, small)

Thread IDs

We’ll finish with loops by looking one
more time at synchronization overhead

80

81

The nowait clause
• Barriers are really expensive. You need to understand when they are implied

and how to skip them when it’s safe to do so.
double A[big], B[big], C[big];

#pragma omp parallel
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

82

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

83

Data Environment: Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

84

double A[10];
 int main() {
 int index[10];
 #pragma omp parallel
 work(index);
 printf(“%d\n”, index[0]);
 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

85

Data Sharing: Changing storage attributes

• One can selectively change storage attributes for constructs using the
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used

on parallel constructs

86

Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
 int i, j;
 double A[N][N], B[N][N], C[N][N];
 init_arrays(N, *A, *B, *C);

 #pragma omp parallel for private(j)
 for (i = 0; i < 1000; i++)
 for(j = 0; j<1000; j++)
 C[i][j] = A[i][j] + B[i][j];
}

• private(var) creates a new local copy of var for each thread.

OpenMP makes the loop
control index on the
parallel loop (i) private by
default … but not for the
second loop (j)

87

Data Sharing: Private clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)
 tmp += j;
 printf(“%d\n”, tmp);
}

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

When you need
to refer to the

variable tmp that
exists prior to the
construct, we call

it the original
variable.

Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

88

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of
incr with an initial value of 0

88

89

Exercise: Mandelbrot set area
• The supplied program (mandel.c) computes the area of

a Mandelbrot set.

• The program has been parallelized with OpenMP, but
we were lazy and didn’t do it right.

• Find and fix the errors.

• Once you have a working version, try to optimize the
program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

#pragma omp parallel private (list)
#pragma omp parallel shared (list)
#pragma omp parallel firstprivate (list)
#pragma omp parallel default(none)
#pragma omp for reduction(op:list)

The Mandelbrot Set Area Program (original code)
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
 int i, j;
 int num=0;
 double C_real, C_imag;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for private(eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(C_real, C_imag);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
}

90

void testpoint(double C_real, double C_imag){
 double zr, zi;
 int iter;
 double temp;

 zr=C_real; zi=C_imag;
 int numoutside = 0;
 for (iter=0; iter<MXITR; iter++){
 temp = (zr*zr)-(zi*zi)+C_real;
 zi = zr*zi*2+C_imag;
 zr = temp;
 if ((zr*zr+zi*zi)>4.0) {
 numoutside++;
 }
 }
 return 0;
}

The Mandelbrot Set Area Program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
 int i, j;
 int num=0;
 double C_real, C_imag;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(C_real, C_imag);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
}

91

void testpoint(double C_real, double C_imag){
 double zr, zi;
 int iter;
 double temp;

 zr=C_real; zi=C_imag;
 int numoutside = 0;
 for (iter=0; iter<MXITR; iter++){
 temp = (zr*zr)-(zi*zi)+C_real;
 zi = zr*zi*2+C_imag;
 zr = temp;
 if ((zr*zr+zi*zi)>4.0) {
 #pragma omp critical
 numoutside++;
 }
 }
 return 0;
}

• eps was not initialized … OK to leave it shared
• Make j, C_real, and C_imag private
• Protect updates of numoutside

92

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

Concurrency vs. Parallelism
• Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly, they can be

described as logically making forward progress at the same time.

• Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010PE = Processing Element

The fundamental execution model of Multithreading
A collection of active threads, scheduled fairly, that share an address space and execute concurrently.

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time

Consider two threads: a producer/consumer pair

94

#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) {
 flag = 0; answer=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
 int id = omp_get_thread_num();
 if (id == 0) {
 answer = 42;
 flag = 1;
 }

 else if (id == 1){
 while (flag == 0) { }

 if(answer!=42) err++;
 }
 }
 }
 return 0;
}

Thread zero produces the answer and
then sets a flag to communicate the
answer to another thread

Thread one “spins" in a while loop
until the flag is non-zero which
indicates that answer is available.

In the jargon of concurrent
programming, this is called
a “spin lock”

Put this in a file sync.c and compile as: gcc –fopenmp –O3 sync.c

The program went through a few loop iterations and then hangs …. Why?

One thread produces a result
that a different thread consumes

95

Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

96

Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory
consistency model

(or “memory model”
for short) provides
the rules needed to

answer this
question.

97

Memory Models …
l The fundamental issue is how do the values of variables across the memory hierarchy interact with

the statements executed by two or more threads?
l Two options:

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

!

! !

! !

!

1. Sequential Consistency

- Threads execute and the
associated loads/stores
appear in some order defined
by the semantically allowed
interleaving of program
statements.

- All threads see the same
interleaved order of loads
and stores

2. Relaxed Consistency

- Threads execute and the
associated loads/stores
appear in some order
defined by the semantically
allowed interleaving of
program statements.

- Threads may see
different orders of loads
and stores

Most (if not all) multithreading programming models assume relaxed consistency. Maintaining
sequential consistency across the full program-execution adds too much synchronization overhead.

Why did this program fail?

98

#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) {
 flag = 0; answer=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
 int id = omp_get_thread_num();
 if (id == 0) {
 answer = 42;
 flag = 1;
 }

 else if (id == 1){
 while (flag == 0) { }

 if(answer!=42) err++;
 }
 }
 }
 return 0;
}

The compiler can
reorder statements, so
flag is set to 1 before
answer is set to 42

Thread 1 can load flag from the register file.
It may not even go to cache (let alone

memory) to see an updated value.

Regardless of how the compiler orders
stores to answer and flag, thread 1 may

see a different order than thread 0

Two issues:
(1) Can thread 1 fail to see updates to flag? (2) Can flag be 1 while answer is still 0?

Why did this program fail?

99

#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) {
 flag = 0; answer=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
 int id = omp_get_thread_num();
 if (id == 0) {
 answer = 42;
 flag = 1;
 }

 else if (id == 1){
 while (flag == 0) { }

 if(answer!=42) err++;
 }
 }
 }
 return 0;
}

The compiler can
reorder statements, so
flag is set to 1 before
answer is set to 42

Thread 1 can load flag from the register file.
It may not even go to cache (let alone

memory) to see an updated value.

Regardless of how the compiler orders
stores to answer and flag, thread 1 may

see a different order than thread 0

Two issues:
(1) Can thread 1 fail to see updates to flag? (2) Can flag be 1 while answer is still 0?

We need to enforce ordering
constraints between the concurrent
threads … we need to consider the

memory model and put the right
synchronization constructs in place.

Memory Models: Happens-before and synchronized-with relations

• Multithreaded execution … concurrency in action
– The compiler doesn’t understand instruction-ordering across threads …

loads/stores to shared memory across threads can expose ambiguous
orders of loads and stores

– Instructions between threads are unordered except when specific ordering
constraints are imposed, i.e., synchronization.

– Synchronization lets us force that some instructions happens-before other
instructions

• Two parts to synchronization:
– A synchronize-with relationship exists at statements in 2 or more threads

at which memory order constraints can be established.
– Memory order: defines the view of loads/stores on either side of a

synchronized-with operations.
100

• Single thread execution:
– Program order ... Loads and stores appear to occur in the order defined

by the program’s semantics. If you can’t observe it, however, compilers
can reorder instructions to maximize performance.

Thread 1Thread 0

synchronize-with

Memory orders defined at the
synchronize-with statements

define happens-before
relationships between

Loads/stores in the black/red
sections of threads 0 and 1.

Atomic Operations and Synchronized-with

• An atomic operation can only be observed in one of two states
– The operation has not happened yet
– The operation has happened and is complete (no side-effects remain to be resolved)

• For example, on an atomic load or store operation, the load or store
has happened and is complete, or it has not occurred.

101

Thread 1Thread 0

synchronize-with

• A synchronized-with relationship is established
between a pair of atomic operations.

• The variables involved are visible to the programmer
(such as with atomic constructs) or the variables are
internal to a high level synchronization construct
(barrier, critical, locks, etc).

#pragma omp atomic write
 y = New_value;

#pragma omp atomic read
 New_value = y;

Memory orders
• Memory orders establish which loads and stores can be

moved around synchronized-with relations.

• The key construct is flush. … flush defines a point in a
program at which a thread is guaranteed to see a
consistent view of memory.

• The default case for flush (i.e., no additional clauses) is a
strong flush:

– Previous read/writes by this thread have
completed and are visible to other threads

– No subsequent read/writes by this thread
have occurred

102

Thread 1Thread 0

synchronize-with
#pragma flush
#pragma omp atomic write
 y = New_value;#pragma flush

#pragma omp atomic read
 Loc_value = y; Sync

Source
Sync
Sink

Memory orders defined at the synchronize-with
statements define happens-before relationships between
Loads/stores in the black/red sections of threads 0 and 1.

A strong flush on its own does NOT define a
synchronization point. The flush only addresses

memory orders.

To synchronize threads, you need a
synchronized-with relation which in this case, comes

from an atomic write paired with an atomic read
Black operations on Thread 1 happen-before Red

operations on thread 0.

Memory orders
• Memory orders establish which loads and stores can be

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:

103

Thread 1Thread 0

synchronize-with
#pragma flush release
#pragma omp atomic write
 y = New_value;#pragma flush acquire

#pragma omp atomic read
 Loc_value = y; Sync

Source
Sync
Sink

– Acquire: Reads/writes that follow the
read-with-acquire cannot happen-before
the read-with-acquire operation.

– Release: Reads/Writes prior to the
write-with-release must happen-before
the write-with-release. Black operations on Thread 1

happen-before Red
operations on thread 0.

Memory orders
• Memory orders establish which loads and stores can be

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:

104

Thread 1Thread 0

synchronize-with
#pragma omp atomic write release
 y = New_value;#pragma omp atomic read acquire

 Loc_value = y;
Sync

Source
Sync
Sink

– Acquire: Reads/writes that follow the
read-with-acquire cannot happen-before
the read-with-acquire operation.

– Release: Reads/Writes prior to the
write-with-release must happen-before
the write-with-release. Black operations on Thread 1

happen-before Red
operations on thread 0.

We can combine the flush and the atomic constructs

#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
 int id = omp_get_thread_num();
 if (id == 0) {
 answer = 42;

 #pragma omp write release
 flag = 1;
 }
 else if (id == 1){
 int fetch = 0;

 while (fetch == 0) {
 #pragma omp atomic read acquire
 fetch = flag;
 }
 if(answer!=42) err++;
 }
 }
 return 0;
}

producer/consumer program correctly synchronized

105

Other Memory orders in OpenMP
• Other OpenMP memory orders

– acq_rel: Applies acquire and release memory order
constraints at a single point in a program’s execution.

– seq_cst: sequential consistency. All data accessible
to a thread are written to memory, subsequent writes
are set to load from memory (akin to the strong flush)

106

Thread 1Thread 0

synchronize-with

Black operations on Thread 1
happen-before Red

operations on thread 0.

#pragma omp write seq_cst
 y = New_value;#pragma omp read seq_cst

 New_value = y;

The most important memory order to use is seq_cst.

It can be more expensive, but it is the safest case.

107

Keep it simple … let OpenMP take care of Flushes for you
• A flush operation is implied by OpenMP constructs …
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help. It is very difficult to manage

flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them.

• OpenMP programs that:
• Do not use non-sequentially consistent atomic constructs;
• Do not rely on the accuracy of a false result from omp_test_lock and omp_test_nest_lock; and
• Correctly avoid data races

… behave as though operations on shared variables were simply interleaved in an order consistent
with the order in which they are performed by each thread. The relaxed consistency model is
invisible for such programs, and any explicit flushes in such programs are redundant.

This has not been a detailed
discussion of the full OpenMP

memory model. The goal was to
explain how memory models work
and to understand the subset of
features people commonly use.

108

One more Synchronization construct to cover: Locks
• A Lock provides mutual exclusion (just like the critical construct) but through lock variables and functions. Locks

give you additional flexibility in how mutual exclusion fits in with your code.

Note: a thread always
accesses the most recent
copy of the lock, so you don’t
need to use a flush on the
lock variable.

Lock set and unset
imply a strong flush

• You create a lock variable:

• Initialize the lock:

• Set the lock … if the lock is not set
already, you hold the lock. If it is set
already, you wait until its unset:

• When you are done … unset the lock
so others can use it:

• When all threads are done … free
resources used by the lock:

• Test if the lock is set. If it isn’t set,
the calling thread sets the lock.
Otherwise, return false so it can do
useful work while waiting.

omp_lock_t my_lock;

omp_init_lock(my_lock);

omp_set_lock(my_lock);

omp_unset_lock(my_lock);

while (!omp_test_lock(my_lock){
 // the lock is held by another thread
 // do something useful then try again
}
// you now have set the lock

omp_destroy_lock(my_lock);

 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck, even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
 ix = (int) x[i]; //truncate to int

 if(((int) x[i])%2 == 0) {
 omp_set_lock(&even_lck);
 even_count++;

 omp_unset_lock(&even_lck);
 }
 else{

 omp_set_lock(&odd_lck);
 odd_count++;

 omp_unset_lock(&odd_lck);
 }
 }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
109

Synchronization: Locks Example
• Count odds and evens in an input array(x) of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates,
but in parallel for each case.

110

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

111

We skipped tasking since you’ll
do it with TBB (which does

tasking better than OpenMP)

W
e

co
ve

re
d

m
os

t o
f t

he
 c

om
m

on
 c

or
e

… But more importantly, we covered the most of the concepts
you need to understand parallel computing

• Parallelism vs concurrency … and how it maps onto GPUs and CPUs

• How we talk about performance: Speedup and Amdahl’s law

• SPMD and Loop level parallelism design patterns

• Load Balancing

• False sharing, race conditions, and other challenges of shared address spaces

• Memory models and the challenges of working with them

• Synchronization: mutual exclusion, barriers, and atomic operations with flush

112

Parallel Fibonacci with OpenMP tasks

113

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
} 113

GPU programming: Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

114

Unified shared
memory … allocate
on host, visible on

device too

CUDA kernel as
function

Enqueue the kernel
to execute on the

Grid

Avoid CUDA … it is
proprietary and will

lock you in to NVIDIA

GPU programming: Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>

int main () {
 int N = ... ;
 float *a, *b, *c;
 sycl::queue q;
 *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
 // ... allocate other arrays (b and c), fill with data

 q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
 q.wait();
}

115

Create a queue
for SYCL

commands

Unified shared
memory … allocate
on host, visible on

device too

Kernel as a C++
Lambda function

 [=] means capture external
variables by value.

Vector addition with OpenMP
•Let’s add two vectors together …. C = A + B

int main(){
 float *a, *b, *c; int n = 10000;
 // allocate and fill a and b

 #pragma omp target map(to:a(0:n), b(0:n)) map(tofrom:c(0:n))
 #pragma omp loop
 for (i=0; i<n; i++)
 c[i] = a[i] + b[i];

}

This code is portable
… it works with or

without Unified
Shared Memory

117

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t cover
• Recap

118

OpenMP Organizations

• OpenMP Architecture Review Board (ARB) URL, the “owner” of the OpenMP
specification:

www.openmp.org

Get involved, get your organization to join the ARB.

Help define the future of OpenMP

Resources
• www.openmp.org has a wealth of helpful resources

119

Including a
comprehensiv
e collection of
examples of

code using the
OpenMP

constructs

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that Covers the

Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

• It’s geared towards people learning
OpenMP, but as one commentator put it
… everyone at any skill level should
read the memory model chapters.

• Available from MIT Press

120www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/

Books about OpenMP

121

A great book that covers
OpenMP features beyond

OpenMP 2.5

Books about OpenMP

122

The latest book on OpenMP …

Came out in early November 2023.

A book about how to use OpenMP to
program a GPU.

123

Background references

l A book about how to “think
parallel” with examples in
OpenMP, MPI and java

A great book that explores key
patterns with Cilk, TBB,
OpenCL, and OpenMP (by
McCool, Robison, and Reinders)

124

Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion

Additional exercises for consolidation

• We provide three exercises you can use to solidify your understanding of OpenMP.
1. Optimizing the Mandelbrot-area program.
2. Building a histogram in parallel: This exercise explores different ways to synchronize code and how they impact

performance. Given the importance of synchronization in multithreaded programming, this is an important skill to
refine.

3. Traversing linked lists: OpenMP added tasks to solve what we call irregular parallelism (i.e., they do not map onto
basic for-loops). Parallelizing the traversal of linked lists with using tasks requires a lot of creativity. There are
several ways to do this each with different impacts on performance.

• In some cases, the exercises content we presented, but didn’t include in prior exercises. Hence,
expect to need to review the lecture slides to figure out some key details.

125

126

Exercise: Mandelbrot set area
• The supplied program (mandel.c) computes the area of

a Mandelbrot set.

• The program has been parallelized with OpenMP, but
we were lazy and didn’t do it right.

• Find and fix the errors.

• Once you have a working version, try to optimize the
program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

#pragma omp parallel private (list)
#pragma omp parallel shared (list)
#pragma omp parallel firstprivate (list)
#pragma omp parallel default(none)
#pragma omp for reduction(op:list)

Exercise: different options for synchronization
• In the file hist.c, we provide a

program that generates a large array
of random numbers and then
generates a histogram of those
values.

• This is a ”quick and informal” way to
test a random number generator … if
all goes well the bins of the
histogram should be the same size.

• Parallelize the filling of the histogram
You must assure that your program
is race free and gets the same result
as the sequential program.

• Using everything we’ve covered
today, manage updates to shared
data in multiple ways. Try to
minimize the time to generate the
histogram.

• Time ONLY the assignment to the
histogram. Can you beat the
sequential time?

127

#define num_trials 1000000 // number of x values
#define num_buckets 50 // number of buckets in histogram
static long xlow = 0.0; // low end of x range
static long xhi = 100.0; // High end of x range

int main (){
 double x[num_trials]; // array used to assign counters in the historgram
 long hist[num_buckets]; // the histogram
 double bucket_width; // the width of each bucket in the histogram
 double time;

 seed(xlow, xhi); // seed the random number generator over range of x
 bucket_width = (xhi-xlow)/(double)num_buckets;

 // fill the array. << code not shown >>

 // initialize the histogram << code not shown >>

 // Assign x values to the right histogram bucket
 time = omp_get_wtime();
 for(int i=0;i<num_trials;i++){

 long ival = (long) (x[i] - xlow)/bucket_width;

 hist[ival]++;

 }

 time = omp_get_wtime() - time;

 // compute statistics and output results << code not shown >>

 return 0;
}

Only focus
on this part of
the program

128

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

• Parallelize this program selecting from the following list
of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). Don’t
make any changes to the “process functions”

p = listhead ;
while (p) {
 process(p);
 p=p->next;
}

129

Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion

130

Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP
is difficult.

p = listhead ;
while (p) {
 process(p);
 p=p->next;
}

131

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”

132

Linked Lists with OpenMP (without tasks)
• See the file solutions/linked_notasks.c

while (p != NULL) {
 p = p->next;
 count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

Number of
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

133

Linked Lists with OpenMP (without tasks)

while (p != NULL) {
 p = p->next;
 count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

Number of
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much
code to add
and three

passes through
the data, this is

really ugly.

There has got
to be a better
way to do this

• See the file solutions/linked_notasks.c

What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each
task.
– The thread that encounters the task construct may execute

the task immediately.
– The threads may defer execution until later

Serial Parallel

134

What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task
construct will package up the code block and its data
for execution

• Tasks can be nested: i.e., a task may itself generate
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks

135

136

Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a
nowait clause).

#pragma omp parallel
{
 do_many_things();
 #pragma omp single
 { exchange_boundaries(); }
 do_many_other_things();

}

*This used to be called the “master thread”. The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

Task Directive

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

137

Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car” “s are fun”
– “I think “ “car” “race” “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program depends on
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”. They produce
race conditions. Programs containing data races are undefined (in OpenMP but also
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

138This exercise comes from Ruud van der Pas of Oracle

Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{ printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 139

Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are
to new storage that is created and initialized with the value of the existing storage of
that name when the task is encountered

140 140

141

Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

141

142

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main(). You
don’t need to make any changes to the “list functions”

143

Parallel Linked List Traversal
#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

143

144

When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region. Common examples:
– Tasks generated inside a single construct: all tasks complete before exiting the barrier on the

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of

the parallel region.

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .

144

Example

145

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts, but
this does not include
tasks created inside
fred() and daisy()

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

145

Example

146

#pragma omp parallel
{
 #pragma omp single nowait
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

146

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

int main()
{
 int NW = 5000;
 fib(NW);
}

147

Parallel Fibonacci

148

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
} 148

Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

n 3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

149

150

Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?

Program: OpenMP tasks
#include <omp.h>
 static long num_steps = 100000000;
 #define MIN_BLK 10000000
 double pi_comp(int Nstart,int Nfinish,double step)
 { int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
} 151

int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum =

pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

152

153

Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number

and granularity of tasks

153

154

Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion

155

The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

156

Loop Worksharing Constructs: The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE environment variable (or the

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

157

Schedule Clause When To Use

STATIC Pre-determined and predictable by the
programmer

DYNAMIC Unpredictable, highly variable work per
iteration

GUIDED Special case of dynamic to reduce
scheduling overhead

AUTO When the runtime can “learn” from
previous executions of the same loop

Loop Worksharing Constructs: The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

158

Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes

balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops
in the nest with the collapse clause:

159

Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section
 x_calculation();
 #pragma omp section
 y_calculation();
 #pragma omp section
 z_calculation();
 }

}

By default, there is a barrier at the end of the “omp sections”. Use the “nowait” clause to turn off the barrier.

Array Sections with Reduce
#include <stdio.h>
#define N 100
void init(int n, float (*b)[N]);
int main(){
int i,j; float a[N], b[N][N]; init(N,b);
for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)
for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 a[j] += b[i][j];
 }
}
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);
return 0;

160

Works the same as any other reduce … a
private array is formed for each thread,
element wise combination across threads
and then with original array at the end

Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?

161

Optimizing mandel.c
 wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(c);
 }
 }
 wtime = omp_get_wtime() - wtime;

162

$ export OMP_SCHEDULE=“dynamic,100”
$./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory)
and the gcc version 9.1. Times are the minimum time from three runs

163

Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion

164

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order constraints
between threads and to protect access to shared data

Covered in this section

Covered earlier

165

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory
location (the update of X in the following example)

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

#pragma omp parallel

{
 double B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

166

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a
memory location (the update of X in the following example)

#pragma omp parallel

{
 double B, tmp;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic
 X += tmp;

}

Atomic only protects the
read/update of X

The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a

memory operation so it occurs atomically:
 # pragma omp atomic [read | write | update | capture]

167

• Atomic can protect loads
 # pragma omp atomic read
 v = x;

• Atomic can protect stores
 # pragma omp atomic write
 x = expr;

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t
provide a clause)
 # pragma omp atomic update
 x++; or ++x; or x--; or –x; or
 x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

 # pragma omp atomic capture
 statement or structured block

168

• Where the statement is one of the following forms:
 v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:
 {v = x; x binop = expr;} {x binop = expr; v = x;}

{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

169

Synchronization: Lock Routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(),

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a memory
fence (a “flush”) of all
thread visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on
intended use (e.g. contended, uncontended, speculative, unspeculative)

 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck, even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
 ix = (int) x[i]; //truncate to int

 if(((int) x[i])%2 == 0) {
 omp_set_lock(&even_lck);
 even_count++;

 omp_unset_lock(&even_lck);
 }
 else{

 omp_set_lock(&odd_lck);
 odd_count++;

 omp_unset_lock(&odd_lck);
 }
 }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
170

Synchronization: Simple Locks Example
• Count odds and evens in an input array(x) of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates,
but in parallel for each case.

Exercise
• In the file hist.c, we provide a

program that generates a large array
of random numbers and then
generates a histogram of values.

• This is a ”quick and informal” way to
test a random number generator … if
all goes well the bins of the
histogram should be the same size.

• Parallelize the filling of the histogram
You must assure that your program
is race free and gets the same result
as the sequential program.

• Using everything we’ve covered
today, manage updates to shared
data in multiple ways. Try to
minimize the time to generate the
histogram.

• Time ONLY the assignment to the
histogram. Can you beat the
sequential time?

171

#define num_trials 1000000 // number of x values
#define num_buckets 50 // number of buckets in histogram
static long xlow = 0.0; // low end of x range
static long xhi = 100.0; // High end of x range

int main (){
 double x[num_trials]; // array used to assign counters in the historgram
 long hist[num_buckets]; // the histogram
 double bucket_width; // the width of each bucket in the histogram
 double time;

 seed(xlow, xhi); // seed the random number generator over range of x
 bucket_width = (xhi-xlow)/(double)num_buckets;

 // fill the array. << code not shown >>

 // initialize the histogram << code not shown >>

 // Assign x values to the right histogram bucket
 time = omp_get_wtime();
 for(int i=0;i<num_trials;i++){

 long ival = (long) (x[i] - xlow)/bucket_width;

 hist[ival]++;

 }

 time = omp_get_wtime() - time;

 // compute statistics and output results << code not shown >>

 return 0;
}

Only focus
on this part of
the program

172

Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin …
but this effectively serializes the loops and adds huge overhead as the runtime
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 #pragma omp critical
 hist[ival]++;
}

Easy to write and
correct, but terrible
performance

173

Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for

updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
 omp_init_lock(&hist_locks[i]); hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 omp_set_lock(&hist_locks[ival]);
 hist[ival]++;
 omp_unset_lock(&hist_locks[ival]);
 }

 #pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
 omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

174

Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
 for(i=0;i<NVALS;i++){
 ival = (int) x[i];
 hist[ival]++;
}

Easy to write and correct, Uses a lot of
memory on the stack, but its fast …
sometimes faster than the serial method.

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1. Times are
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)

