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Introduction
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To support my kayaking habit, I 
work as a parallel programmer

Which means I know how to turn 
math into lines on a speedup plot

P
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Preliminaries: Part 1
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and 

experiment.
– Embrace active learning!

–Don’t cheat:  Do Not look at the solutions before you complete an exercise … 
even if you get really frustrated.



Use homebrew to install gnu compilers on your Apple laptop

4

• Download Xcode.  Be sure to choose the command line tools option.
• Go to the homebrew web site (brew.sh).  Cut and paste the command near the top of the page to install 

homebrew (in /opt/homebrew):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”

• Add /opt/homebrew/bin to your path.  I did this by adding the following line to .zshrc

% export PATH=/opt/homebrew/bin:$PATH

• Install the latest gcc compiler 

% brew install gcc

• This will install the compiler in /opt/homebrew/bin.   Check /opt/homebrew/bin to see which gcc compiler was 
installed.  In my case, it installed gcc-13

• Test the compiler (and the openmp option) with a simple hello world program

% gcc-13 –fopenmp hello.c

I tested this on a new 
(July 2023) MacBook 
Air with an Apple M2 

CPUWarning: Xcode uses the name gcc for Apple’s clang compiler.  
Use Homebrew to load a real, gcc compiler. 

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh


OpenMP Compilers on Apple Laptops: MacPorts
• To use OpenMP on your Apple laptop:
• Download Xcode.  Be sure to choose the command line tools option.
• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc13

port select --list gcc

sudo port select –-set gcc mp-gcc13

gcc –fopenmp hello.c
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Update to latest version of 
MacPorts

Grab version 13 gnu 
compilers (5-10 mins)

List versions of gcc on your 
system

Select the mp enabled version of 
the most recent gcc release

Test the installation with a simple 
program

I have not tested this in a long time.   
I greatly prefer homebrew.

But if you prefer MacPorts, this procedure 
should work. 



The best way to master parallel computing … 

start with a simple approach to parallelism and build 
an intellectual foundation by writing parallel code.  

… and the simplest API for parallelism is?  

6
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap

Note: since we did not collect files with .cu or .cuf suffices, we undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023
Quantifying OpenMP: Statistical insights into usage and adoption, 
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002

In a dataset 
(HPCorpus) of 

all C/C++/Fortan 
github 

repositories from 
2013-2023, 

OpenMP was 
found to be the 
most popular 

parallel 
programming  

model



C$OMP TASKGROUP
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP:  An API for Writing Parallel Applications

§A set of compiler directives and library routines  for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions …  supports non-uniform memories, vectorization and GPU programming  

#pragma omp atomic seq_cst



The Growth of Complexity in OpenMP
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The full spec is overwhelming. We focus on the Common Core: the 21 items most people restrict themselves to
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

10



OpenMP Basic Definitions: Basic Solution Stack
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OpenMP Runtime library

OS/system support for shared memory and threading
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OpenMP Basic Definitions: Basic Solution Stack
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For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 
i.e., lots of threads with “equal cost access” to memory 12
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OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom. 
– It’s OK to have an exit() within the structured block.
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Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include <stdio.h>
int main()
{

      

     printf(“ hello ”);
     printf(“ world \n”);

}
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Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

     

     printf(“ hello ”);
     printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc –fopenmp  

icc -fopenmp  Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}
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Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int  main()
{

#pragma omp parallel
 {

     printf(“ hello ”);
     printf(“ world \n”);
   }
}

Sample Output:
hello hello world

world

hello  hello world

world

OpenMP include file

Parallel region with 
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads 



A brief digression on the terminology of parallel 
computing

17



Let’s agree on a few definitions: 

• Active task: 
– A task that is available to be scheduled for execution.  When the task is moving through its sequence of 

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution. 

18

• Computer:
– A machine that transforms input values into 

output values. 
– Typically, a computer consists of Control, 

Arithmetic/Logic, and  Memory units.  
– The transformation is defined by a stored 

program (von Neumann architecture).

• Task:  
– A sequence of instructions plus a data 

environment.  A program is composed of 
one or more tasks.



Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit 
concurrency in a problem to run tasks on 
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems 

Programs

Concurrent 
Programs

Parallel 
Programs If tasks execute in “lock step” they are not 

concurrent, but they are still parallel.  
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.
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CPU/GPU execution modesl

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap
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OpenMP Execution model: 

Fork-Join Parallelism: 
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential 
program evolves into a parallel program.

Parallel Regions

Initial 
Thread

A Nested 
Parallel 
Region

Sequential Parts

The fork-Join model 
is also used with 

POSIX threads and 
std::thread in C++



26

Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 
number of threads

Runtime function 
returning a thread ID



Thread Creation: Parallel Regions Example

• Each thread executes the 
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

         int ID = omp_get_thread_num();
    pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is 
shared between all 

threads.

Threads wait here for all threads to finish before 
proceeding (i.e., a barrier)

27
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Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID       = omp_get_thread_num();

             int nthrds = omp_get_num_threads();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 

number of threads

Runtime function to 
return actual 

number of threads 
in the team
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An Interesting Problem to Play With 
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N 
rectangles:

Where each rectangle has width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0

i = 0

N
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Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;

   step = 1.0/(double) num_steps;

   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
}

See hands-on/openmp/pi.c
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Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;
               
   step = 1.0/(double) num_steps;
               double tdata = omp_get_wtime();
   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
           tdata = omp_get_wtime() - tdata;
               printf(“ pi = %f in %f secs\n”,pi, tdata);
}

See hands-on/openmp/pi.c

The library routine 
get_omp_wtime() 
is used to find the 

elapsed “wall 
time” for blocks of 

code
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Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
           #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads(); 
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team
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Hints: the Parallel Pi Program
• Use a parallel construct:
           #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to 

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– omp_set_num_threads();
– int omp_get_num_threads(); 
– int omp_get_thread_num();
– double omp_get_wtime();
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              if (id == 0)   nthreads = numthrds;
   for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program  

Promote scalar to an array dimensioned by 
number of threads to avoid race condition.

This is a common trick in SPMD programs to 
create a cyclic distribution of loop iterations

Only one thread should copy the number of 
threads to the global value to make sure 
multiple threads writing to the same address 
don’t conflict.  

*SPMD: Single Program Multiple Data
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds, istart, iend;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              istart = id*(num_steps/numthrds );       iend=(id+1)*(num_steps/numthrds);
              if(id == (numthrds-1)) iend = num_steps;
              if (id == 0)   nthreads = numthrds;
   for (i=istart, sum[id]=0.0;i< iend; i++) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution  

This is a common trick in SPMD algorithms … 
it’s a blocked distribution with one block per 
thread.  

SPMD: Single Program Multiple Data



Results*

threads 1st 
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large. 

MPI programs almost always use this pattern … it is probably the 
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 
data structures. 

Replicate the program.

Add glue code

Break up the data



A brief digression to talk about 
performance issues in parallel 

programs

38
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Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume 

Compute N independent  tasks on one processor

Ideally Cut 
runtime by ~1/P 
(Note: Parallelism 
only speeds-up the 
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume 

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

§Speedup: the increased performance 
from running on P processors.  

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:   happens when 
no parallel overhead and algorithm is 
100% parallel.  

n Super-linear Speedup:  typically due to 
cache effects … i.e. as P grows, 
aggregate cache size grows so more of 
the problem fits in cache 



Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a 
part that is fundamentally serial. 

 

seqpar Time
P
fractionparallelfractionserialPTime *)__()( +=

• If you had an unlimited number of processors:

• If the serial fraction is a  and the parallel fraction is (1- a) then the speedup is: 
 

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s 
Law



Amdahl’s Law

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9



So now you should understand my silly introduction slide.
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We measure our 
success as parallel 
programmers by how 
close we come to ideal 
linear speedup.

A good parallel 
programmer always 
figures out when you 
fall off the linear 
speedup curve and 
why that has 
occurred.
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Exercise
• Go back to your parallel pi program and explore how well it scales with the number 

of threads. 
• Can you explain your performance with Amdahl’s law?  If not what else might be 

going on?

– int omp_get_num_threads(); 
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N An environment variable. Sets the default 

number of threads to request to N.  Use this 
instead of requesting a number of threads with 
omp_set_thread_num().  Let’s you change 
number of threads without recompiling code.



Results*

threads 1st 
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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Why Such Poor Scaling?    False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the 

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are 
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM
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#include <omp.h>
  static long num_steps = 100000;         double step;
  #define NUM_THREADS 2
  #define PAD 8         // assume 64 byte L1 cache line size
  void main ()
  {    int i, nthreads;  double pi, sum[NUM_THREADS][PAD] ;
       step = 1.0/(double) num_steps;
       omp_set_num_threads(NUM_THREADS);
       #pragma omp parallel
       {    
            int i, id,nthrds;
            double x;
            id = omp_get_thread_num();
            nthrds = omp_get_num_threads();
            if (id == 0)   nthreads = nthrds;
            for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                  x = (i+0.5)*step;
     sum[id][0] += 4.0/(1.0+x*x);
            }
       }
       for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
  }

Pad the array so each 
sum value is in a 

different cache line

Example: Eliminate false sharing by padding the sum array



Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default 
optimization level (O2) on Apple OS 
X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor 
at 1.7 Ghz and 4 Gbyte DDR3 
memory at 1.333 Ghz.

49

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
!'(;"#()GCD)H II)311&,()JK):L2( M7)$3$/()%"#()1"N(
O+"'),3"#)PQ
R))))"#2)"S)#2/T(3'19))'+&:%()-"S)1&,U<=>5?@ABCDEVUGCDV 9
12(-)6)7.8IP'+&:%(Q)#&,512(-19
+,-51(25#&,52/T(3'1P<=>5?@ABCDEQ9
!-T34,3)+,- -3T3%%(%
R
"#2)"S)"'S#2/T'19
'+&:%()W9
"')6)+,-54(252/T(3'5#&,PQ9
#2/T'1 6)+,-54(25#&,52/T(3'1PQ9
";)P"')66)8Q)))#2/T(3'1 6)#2/T'19
;+T)P"6"'S)1&,U"'V68.89"*)#&,512(-19)"6"X#2/T'1Q)R
W)6)P"X8.YQZ12(-9
1&,U"'VU8V)X6)K.8IP7.8XWZWQ9

[
[
;+TP"68S)-"68.89"*#2/T(3'19"XXQ-")X6)1&,U"VU8V)Z)12(-9

[



50

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order 
constraints and to protect access to shared data
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Synchronization: critical  

• Mutual exclusion: Only one thread at a time can enter a critical region.

float  res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      B =  big_SPMD_job(id, nthrds);

      #pragma omp critical 
             res += consume (B);

      
}

Threads wait their turn 
– only one thread at a 
time calls consume()
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Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable 

statement. 

double Arr[8], Brr[8];            int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{    int id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      if (id==0) numthrds = nthrds; 

      Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier 
      Brr[id] = really_big_and_ugly(id, nthrds, Arr); 
}

Threads wait until all 
threads hit the barrier.  
Then they can go on.
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Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial 

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence 
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical



PI Program with False Sharing

*Intel compiler (icpc) with no 
optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz 
and 4 Gbyte DDR3 memory at 1.333 
Ghz.

threads 1st 
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

Recall that promoting sum to an array made 
the coding easy, but led to false sharing and 
poor performance.
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               sum += 4.0/(1.0+x*x);
          }
         #pragma omp critical
    pi += sum * step;
    }
 }

Example: Using a  critical section to remove impact of false sharing 

Sum goes “out of scope” beyond the parallel region … 
so you must sum it in here.   Must protect summation 
into pi in a critical region so updates don’t conflict

No array, so no false sharing. 

Create a scalar local to each 
thread to accumulate partial sums.
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Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) Intel® CoreTM i5 processor at 
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

SPMD 
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               #pragma omp critical
                    sum += 4.0/(1.0+x*x);
          }
     }
 }

Example: Using a  critical section to remove impact of false sharing 

What would happen if you put the 
critical section inside the loop?
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap
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The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel
{
       #pragma omp for 
 for (I=0;I<N;I++){
  NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made 
“private” to each thread  by default.  

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop
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Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}
}

#pragma omp parallel 
#pragma omp for   
 for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and 
a worksharing for construct
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double  res[MAX];  int i;
#pragma omp parallel 
{ 
    #pragma omp for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
} 

These are equivalent 

double  res[MAX];  int i;
#pragma omp parallel for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
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Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without 

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
     j = 5;
 for (i=0;i< MAX; i++) {
         j +=2;
         A[i] = big(j); 
    } 

int i,  A[MAX];
    #pragma omp parallel for
 for (i=0;i< MAX; i++) {
         int j = 5 + 2*(i+1);
          A[i] = big(j); 
    } Remove loop 

carried 
dependence

Note: loop index 
“i” is private by 
default
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Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence 
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double  ave=0.0, A[MAX];
   for (int i=0;i< MAX; i++) {
         ave + = A[i];
   } 
   ave = ave/MAX; 

• How do we handle this case?
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Reduction
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy. 
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.  

double  ave=0.0, A[MAX]; 
#pragma omp parallel for reduction (+:ave)
 for (int i=0;i< MAX; i++) {
         ave + = A[i];
  } 
  ave = ave/MAX; 
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Reduction … with arrays
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy. 
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.  

double  arr[N] = {0.0};
#pragma omp parallel for reduction(+:arr[0:N])
 for (int j=0;i< M; i++) {
       double val = A_Function(j);
       for (int i=0; i<N; i++){
         arr[i] += SomeFunction(i,val);
       } 
   }

Indicates an array section with N 
elements starting at element 0
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OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
(we just don’t cover this topics here)
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Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
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Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{    int i;   double x, pi, sum = 0.0; 
      step = 1.0/(double) num_steps;
      #pragma omp parallel 
      {
           double x;
          #pragma omp for reduction(+:sum)
     for (i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
     }
       }
   pi = step * sum;
}

Create a scalar local to each thread to hold 
value of x at the center of each interval

Create a team of threads … 
without a parallel construct, you’ll 
never have more than one thread

Break up loop iterations 
and assign them to 
threads … setting up a 
reduction into sum.  
Note … the loop index is 
local to a thread by default.
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Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{
     double pi, sum = 0.0; 
      step = 1.0/(double) num_steps;

      #pragma omp parallel for reduction(+:sum)
      for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
      }
      pi = step * sum;
}

Using modern C style, we 
put declarations close to 
where they are used … 
which lets me use the 
parallel for construct.



Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

SPMD 
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68
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…. Let’s pause a moment and consider 
one of the fundamental issues EVERY 
parallel programmer must grapple with

73
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Load Balancing
• A parallel job isn’t done until the last thread is 

finished

• Example:  Partition a problem into equal sized 
chunks but for work that is unevenly distributed 
spatially.
– Thread 2 has MUCH more work.  The uneven distribution of 

work will limit performance.

• A key part of parallel programming is to design how 
you partition the work between threads so every 
thread has about the same amount of work.  This 
topic is referred to as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you 
partition the work between threads so every thread has 
about the same amount of work.  

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to 
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done 

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

 

0
1
2
3

Colors mapped to 4 different Threads
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads 

take the same amount of time
– Partitioning or decomposition … breaking up the problem 

domain into partitions (or chunks) and assigning different partitions 
to different threads.

– Granularity … the size of the block of work.  Find grained (small 
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into 
partitions such that there are many more partitions than threads to 
do the work 

0
1
2
3

Colors mapped to 4 different Threads
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause … most common cases:

#pragma omp parallel for schedule (static)

Int small = 8; // loop iterations, i.e., width of boxes in the figure

#pragma omp parallel for schedule (static, small)

Thread IDs



We’ll finish with loops by looking one 
more time at synchronization overhead

80
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The nowait clause
• Barriers are really expensive.  You need to understand when they are implied 

and how to skip them when it’s safe to do so. 
double A[big], B[big], C[big];

#pragma omp parallel 
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier 
#pragma omp for 
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end 
of a parallel region

implicit barrier at the end of a for 
worksharing construct

no implicit barrier 
due to nowait
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap
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Data Environment:   Default storage attributes

• Shared memory programming model: 
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel 

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.
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double A[10];
     int main() {
 int index[10];
    #pragma omp parallel  
       work(index);
 printf(“%d\n”, index[0]);
   }

extern double A[10];
void work(int *index) {
  double temp[10];
  static int count;
  ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread
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Data Sharing:  Changing storage attributes

• One can selectively change storage attributes for constructs using the 
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared 
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used 

on parallel constructs
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Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
  int i, j;
  double A[N][N], B[N][N], C[N][N];
  init_arrays(N, *A, *B, *C);

  #pragma omp parallel for private(j)
  for (i = 0; i < 1000; i++)
      for( j = 0; j<1000; j++)
                C[i][j] = A[i][j] + B[i][j];
}

• private(var)  creates a new local copy of var for each thread.

OpenMP makes the loop 
control index on the 
parallel loop (i) private by 
default … but not for the 
second loop (j)
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Data Sharing: Private clause

void wrong() {
      int tmp = 0;
#pragma omp parallel for private(tmp)
      for (int j = 0; j < 1000; ++j) 
     tmp += j;
      printf(“%d\n”, tmp);
}

• private(var)  creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not 
initialized

tmp is 0 here

When you need 
to refer to the 

variable tmp that 
exists prior to the 
construct, we call 

it the original 
variable.



Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed
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incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of 
incr with an initial value of 0

88



89

Exercise: Mandelbrot set area
• The supplied program (mandel.c) computes the area of 

a Mandelbrot set. 

• The program has been parallelized with OpenMP, but 
we were lazy and didn’t do it right.

• Find and fix the errors. 

• Once you have a working version,  try to optimize the 
program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the 
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0. 

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp critical
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();

#pragma omp parallel private (list) 
#pragma omp parallel shared (list)
#pragma omp parallel firstprivate (list)
#pragma omp parallel default(none)
#pragma omp for reduction(op:list)



The Mandelbrot Set  Area Program (original code)
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(eps)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
       testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       int numoutside = 0;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
                  numoutside++;
         }
       }
       return 0;
}



The Mandelbrot Set  Area Program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
    testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       int numoutside = 0;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
           #pragma omp critical
                  numoutside++;
         }
       }
       return 0;
}

• eps was not initialized … OK to leave it shared
• Make j, C_real, and C_imag private
• Protect updates of numoutside
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap



Concurrency vs. Parallelism
• Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, they can be 

described as logically making forward progress at the same time.

• Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010PE = Processing Element

The fundamental execution model of Multithreading
A collection of active threads, scheduled fairly, that share an address space and execute concurrently.   

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time



Consider two threads: a producer/consumer pair
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#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

Thread zero produces the answer and 
then sets a flag to communicate the 
answer to another thread

Thread one “spins" in a while loop 
until the flag is non-zero which 
indicates that answer is available. 

In the jargon of concurrent 
programming, this is called 
a “spin lock”

Put this in a file sync.c and compile as:     gcc –fopenmp –O3 sync.c 

The program went through a few loop iterations and then hangs …. Why?

One thread produces a result 
that a different thread consumes
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory 
consistency model 

(or “memory model” 
for short) provides 
the rules needed to 

answer this 
question. 
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Memory Models …
l The fundamental issue is how do the values of variables across the memory hierarchy interact with 

the statements  executed by two or more threads?
l Two options:

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

!

! !

! !

!

1. Sequential Consistency

- Threads execute and the 
associated loads/stores 
appear in some order defined 
by the semantically allowed 
interleaving of program 
statements.

- All threads see the same 
interleaved order of loads 
and stores 

2. Relaxed Consistency

- Threads execute and the 
associated loads/stores 
appear in some order 
defined by the semantically 
allowed interleaving of 
program statements.

- Threads may see 
different orders of loads 
and stores

Most (if not all) multithreading programming models assume relaxed consistency.  Maintaining 
sequential consistency across the full program-execution adds too much synchronization overhead. 



Why did this program fail?
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#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

The compiler can 
reorder statements, so 
flag is set to 1 before 
answer is set to  42

Thread 1 can load flag from the register file.   
It may not even go to cache (let alone 

memory) to see an updated value.

Regardless of how the compiler orders 
stores to answer and flag, thread 1 may 

see a different order than thread 0

Two issues:
(1) Can thread 1 fail to see updates to flag?                       (2) Can flag be 1 while answer is still 0?



Why did this program fail?
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#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

The compiler can 
reorder statements, so 
flag is set to 1 before 
answer is set to  42

Thread 1 can load flag from the register file.   
It may not even go to cache (let alone 

memory) to see an updated value.

Regardless of how the compiler orders 
stores to answer and flag, thread 1 may 

see a different order than thread 0

Two issues:
(1) Can thread 1 fail to see updates to flag?                       (2) Can flag be 1 while answer is still 0?

We need to enforce ordering 
constraints between the concurrent 
threads … we need to consider the 

memory model and put the right 
synchronization constructs in place.



Memory Models: Happens-before and synchronized-with relations

• Multithreaded execution … concurrency in action
– The compiler doesn’t understand instruction-ordering across threads … 

loads/stores to shared memory across threads can expose ambiguous 
orders of loads and stores

– Instructions between threads are unordered except when specific ordering 
constraints are imposed, i.e., synchronization.

– Synchronization lets us force that some instructions happens-before other 
instructions

• Two parts to synchronization:
– A synchronize-with relationship exists at statements in 2 or more threads 

at which memory order constraints can be established. 
– Memory order: defines the view of loads/stores on either side of a 

synchronized-with operations.
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• Single thread execution:
– Program order ... Loads and stores appear to occur in the order defined 

by the program’s semantics.  If you can’t observe it, however, compilers 
can reorder instructions to maximize performance.

Thread 1Thread 0

synchronize-with

Memory orders defined at the 
synchronize-with statements 

define happens-before 
relationships between 

Loads/stores in the black/red 
sections of threads 0 and 1.



Atomic Operations and Synchronized-with

• An atomic operation can only be observed in one of two states
– The operation has not happened yet
– The operation has happened and is complete (no side-effects remain to be resolved)

• For example, on an atomic load or store operation, the load or store 
has happened and is complete, or it has not occurred.  
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Thread 1Thread 0

synchronize-with

• A synchronized-with relationship is established 
between a pair of atomic operations.

• The variables involved are visible to the programmer 
(such as with atomic constructs) or the variables are 
internal to a high level synchronization construct 
(barrier, critical, locks, etc).

#pragma omp atomic write
      y = New_value;

#pragma omp atomic read
      New_value = y;



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The key construct is flush. … flush defines a point in a 
program at which a thread is guaranteed to see a 
consistent view of memory.  

• The default case for flush (i.e., no additional clauses) is a 
strong flush:

– Previous read/writes by this thread have 
completed and are visible to other threads

– No subsequent read/writes by this thread 
have occurred
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Thread 1Thread 0

synchronize-with
#pragma flush
#pragma omp atomic write
      y = New_value;#pragma flush

#pragma omp atomic read
      Loc_value = y; Sync 

Source
Sync 
Sink

Memory orders defined at the synchronize-with 
statements define happens-before relationships between 
Loads/stores in the black/red sections of threads 0 and 1.

A strong flush on its own does NOT define a 
synchronization point.  The flush only addresses 

memory orders.

To synchronize threads, you need a 
synchronized-with relation which in this case, comes 

from an atomic write paired with an atomic read
Black operations on Thread 1 happen-before Red 

operations on thread 0.



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the 
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:
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Thread 1Thread 0

synchronize-with
#pragma flush release 
#pragma omp atomic write
      y = New_value;#pragma flush acquire 

#pragma omp atomic read
      Loc_value = y; Sync 

Source
Sync 
Sink

– Acquire: Reads/writes that follow the 
read-with-acquire cannot happen-before 
the read-with-acquire operation.

– Release: Reads/Writes prior to the 
write-with-release must happen-before 
the write-with-release. Black operations on Thread 1 

happen-before Red 
operations on thread 0.



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the 
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:
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Thread 1Thread 0

synchronize-with
#pragma omp atomic write release
      y = New_value;#pragma omp atomic read acquire

      Loc_value = y;
Sync 

Source
Sync 
Sink

– Acquire: Reads/writes that follow the 
read-with-acquire cannot happen-before 
the read-with-acquire operation.

– Release: Reads/Writes prior to the 
write-with-release must happen-before 
the write-with-release. Black operations on Thread 1 

happen-before Red 
operations on thread 0.

We can combine the flush and the atomic constructs



#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
  int id = omp_get_thread_num();
  if (id == 0) {
   answer = 42;

       #pragma omp write release
       flag = 1;
  }
  else if (id == 1){
       int fetch = 0;

  while (fetch == 0)  { 
         #pragma omp atomic read acquire
           fetch = flag;
       }
    if(answer!=42) err++;
  }
 }
 return 0;
}

producer/consumer program correctly synchronized
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Other Memory orders in OpenMP
• Other OpenMP memory orders

– acq_rel: Applies acquire and release memory order 
constraints at a single point in a program’s execution. 

– seq_cst:  sequential consistency.  All data accessible 
to a thread are written to memory, subsequent writes 
are set to load from memory (akin to the strong flush)
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Thread 1Thread 0

synchronize-with

Black operations on Thread 1 
happen-before Red 

operations on thread 0.

#pragma omp write seq_cst
      y = New_value;#pragma omp read seq_cst

      New_value = y;

The most important memory order to use is seq_cst.  

It can be more expensive, but it is the safest case.
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Keep it simple … let OpenMP take care of Flushes for you
• A flush operation is implied by OpenMP constructs … 
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help.  It is very difficult to manage 

flushes on your own.  Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them. 

• OpenMP programs that: 
• Do not use non-sequentially consistent atomic constructs; 
• Do not rely on the accuracy of a false result from omp_test_lock and omp_test_nest_lock; and 
• Correctly avoid data races  

… behave as though operations on shared variables were simply interleaved in an order consistent 
with the order in which they are performed by each thread. The relaxed consistency model is 
invisible for such programs, and any explicit flushes in such programs are redundant. 

This has not been a detailed 
discussion of the full OpenMP 

memory model. The goal was to 
explain how memory models work  
and to understand the subset of 
features people commonly use.
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One more Synchronization construct to cover: Locks
• A Lock provides mutual exclusion (just like the critical construct) but through lock variables and functions.    Locks 

give you additional flexibility in how mutual exclusion fits in with your code.

Note: a thread always 
accesses the most recent 
copy of the lock, so you don’t 
need to use a flush on the 
lock variable.

Lock set and unset 
imply a strong flush

• You create a lock variable:

• Initialize the lock:

• Set the lock  … if the lock is not set 
already, you hold the lock.  If it is set 
already, you wait until its unset:

• When you are done … unset the lock 
so others can use it:

• When all threads are done … free 
resources used by the lock:

• Test if the lock is set.  If it isn’t set, 
the calling thread sets the lock.  
Otherwise, return false so it can do 
useful work while waiting.

omp_lock_t    my_lock;

omp_init_lock( my_lock);

omp_set_lock( my_lock);

omp_unset_lock( my_lock);

while (!omp_test_lock(my_lock){
        // the lock is held by another thread
        // do something useful then try again
}
// you now have set the lock

omp_destroy_lock( my_lock);



 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck,   even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
     ix = (int) x[i];  //truncate to int

  if(((int) x[i])%2 == 0) {      
        omp_set_lock(&even_lck);
      even_count++;

     omp_unset_lock(&even_lck);
     }
     else{     

        omp_set_lock(&odd_lck);
         odd_count++;

        omp_unset_lock(&odd_lck);
  }
  }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
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Synchronization: Locks Example
• Count odds and evens in an input array(x)  of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates, 
but in parallel for each case.
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap



OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items
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We skipped tasking since you’ll 
do it with TBB (which does 

tasking better than OpenMP)
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… But more importantly, we covered the most of the concepts 
you need to understand parallel computing

• Parallelism vs concurrency … and how it maps onto GPUs and CPUs

• How we talk about performance:   Speedup and Amdahl’s law

• SPMD and Loop level parallelism design patterns

• Load Balancing

• False sharing, race conditions, and other challenges of shared address spaces

• Memory models and the challenges of working with them

• Synchronization: mutual exclusion, barriers, and atomic operations with flush
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Parallel Fibonacci with OpenMP tasks
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• Binary tree of tasks

• Traversed using a recursive 
function

• A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait)

• x,y are local, and so by default 
they are  private to current task

– must be shared on child tasks so they 
don’t create their own firstprivate
copies at this level! 

int fib (int n)
{   int x,y;
   if (n < 2) return n;

#pragma omp task shared(x)
   x = fib(n-1);
#pragma omp task shared(y)
   y = fib (n-2);
#pragma omp taskwait
   return (x+y);
}

Int main()
{  int NW = 5000;
   #pragma omp parallel
   { 
       #pragma omp single
             fib(NW);
   }
} 113



GPU programming: Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c), fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
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Unified shared 
memory … allocate 
on host, visible on 

device too

CUDA kernel as 
function

Enqueue the kernel 
to execute on the 

Grid

Avoid CUDA … it is 
proprietary and will 

lock you in to NVIDIA



GPU programming: Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>
 
int main () {
    int N = ... ;
    float *a, *b, *c;
   sycl::queue q;
    *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
  // ... allocate other arrays (b and c), fill with data

       q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
        q.wait();
}
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Create a queue 
for SYCL 

commands

Unified shared 
memory … allocate 
on host, visible on 

device too

Kernel as a C++ 
Lambda function

 [=] means capture external 
variables by value.



Vector addition with OpenMP
•Let’s add two vectors together …. C = A + B

int main(){
  float *a, *b, *c;  int n = 10000;
  // allocate and fill a and b

  #pragma omp target map(to:a(0:n), b(0:n)) map(tofrom:c(0:n))
  #pragma omp loop
  for (i=0; i<n; i++)
    c[i] = a[i] + b[i];

}

This code is portable 
… it works with or 

without Unified 
Shared Memory
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• OpenMP stuff we didn’t  cover
• Recap
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OpenMP Organizations

• OpenMP Architecture Review  Board (ARB) URL, the “owner” of the OpenMP 
specification:

www.openmp.org  

Get involved, get your organization to join the ARB.

Help define the future of OpenMP



Resources
• www.openmp.org has a wealth of helpful resources

119

Including a 
comprehensiv
e collection of 
examples of 

code using the 
OpenMP 

constructs

http://www.openmp.org/


To learn OpenMP:
• An exciting new book that Covers the 

Common Core of OpenMP plus a few key 
features beyond the common core that 
people frequently use

• It’s geared towards people learning 
OpenMP, but as one commentator put it 
… everyone at any skill level should 
read the memory model chapters.

• Available from MIT Press

120www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/


Books about OpenMP
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A great book that covers 
OpenMP features beyond 

OpenMP 2.5



Books about OpenMP
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The latest book on OpenMP … 

Came out in early November 2023.

A book about how to use OpenMP to 
program a GPU.
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Background references

l A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java

A great book that  explores key 
patterns with Cilk, TBB, 
OpenCL, and OpenMP (by 
McCool, Robison, and Reinders)
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Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion



Additional exercises for consolidation

• We provide three exercises you can use to solidify your understanding of OpenMP.
1. Optimizing the Mandelbrot-area program.  
2. Building a histogram in parallel: This exercise explores different ways to synchronize code and how they impact 

performance.  Given the importance of synchronization in multithreaded programming, this is an important skill to 
refine.

3. Traversing linked lists: OpenMP added tasks to solve what we call irregular parallelism (i.e., they do not map onto 
basic for-loops).  Parallelizing the traversal of linked lists with using tasks requires a lot of creativity.  There are 
several ways to do this each with different impacts on performance.

• In some cases, the exercises content we presented, but didn’t include in prior exercises.  Hence, 
expect to need to review the lecture slides to figure out some key details.
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Exercise: Mandelbrot set area
• The supplied program (mandel.c) computes the area of 

a Mandelbrot set. 

• The program has been parallelized with OpenMP, but 
we were lazy and didn’t do it right.

• Find and fix the errors. 

• Once you have a working version,  try to optimize the 
program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the 
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0. 

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp critical
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();

#pragma omp parallel private (list) 
#pragma omp parallel shared (list)
#pragma omp parallel firstprivate (list)
#pragma omp parallel default(none)
#pragma omp for reduction(op:list)



Exercise: different options for synchronization
• In the file hist.c, we provide a 

program that generates a large array 
of random numbers and then 
generates a histogram of those 
values.

• This is a ”quick and informal” way to 
test a random number generator … if 
all goes well the bins of the 
histogram should be the same size.

• Parallelize the filling of the histogram  
You must assure that your program 
is race free and gets the same result 
as the sequential program. 

• Using everything we’ve covered 
today, manage updates to shared 
data in multiple ways.  Try to 
minimize the time to generate the 
histogram.  

• Time ONLY the assignment to the 
histogram.    Can you beat the 
sequential time?
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#define   num_trials   1000000 // number of x values
#define   num_buckets  50    // number of buckets in histogram
static long xlow     = 0.0;   // low end of x range
static long xhi     = 100.0;  // High end of x range

int main (){
 double x[num_trials];   // array used to assign counters in the historgram
 long  hist[num_buckets]; // the histogram
 double bucket_width;    // the width of each bucket in the histogram
 double time;

 seed(xlow, xhi);  // seed the random number generator over range of x
 bucket_width = (xhi-xlow)/(double)num_buckets;

 // fill the array. << code not shown >>

 // initialize the histogram << code not shown >>

 // Assign x values to the right histogram bucket
 time = omp_get_wtime();
 for(int i=0;i<num_trials;i++){

  
   long ival = (long) (x[i] - xlow)/bucket_width;

   hist[ival]++; 

 }

 time = omp_get_wtime() - time;
  
   // compute statistics and output results << code not shown >>

 return 0;
}

Only focus 
on this part of 
the program



128

Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of 
Fibonacci numbers at each node.

• Parallelize this program selecting from the following list 
of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  Don’t 
make any changes to the “process functions”

p = listhead ;
while (p) { 
  process(p);
  p=p->next;
} 
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Backup content
• Extra exercises
• Irregular parallelism and OpenMP tasks
• Worksharing Revisited
• Synchronization Revisited: Additional options for Mutual exclusion
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Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP 
is difficult.

p = listhead ;
while (p) { 
  process(p);
  p=p->next;
} 
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  You 
don’t need to make any changes to the “list functions”
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Linked Lists with OpenMP (without tasks)
• See the file solutions/linked_notasks.c

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds
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Linked Lists with OpenMP (without tasks)

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much 
code to add 
and three 

passes through 
the data, this is 

really ugly.

There has got 
to be a better 
way to do this

• See the file solutions/linked_notasks.c



What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each 
task.
– The thread that encounters the task construct may execute 

the task immediately.
– The threads may defer execution until later

Serial Parallel

134



What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task 
construct will package up the code block and its data 
for execution

• Tasks can be nested: i.e., a task may itself generate 
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the 
other threads wait at a barrier and execute the tasks
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Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread 
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a 
nowait clause).

#pragma omp parallel  
{ 
 do_many_things();
      #pragma omp single
 {     exchange_boundaries();   }
 do_many_other_things();

} 

*This used to be called the “master thread”.  The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    



Task Directive

#pragma omp parallel
{ 
  #pragma omp single
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
  #pragma omp task
     billy(); 
   } 
}

One Thread 
packages tasks

Create some threads

Tasks executed by 
some thread in some 
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

                     structured-block    
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Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car”  “s are fun”
– “I think “ “car” “race”  “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).    

• This is called a “Race Condition”.  It occurs when the result of a program depends on 
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.  They produce 
race conditions.  Programs containing data races are undefined (in OpenMP but also 
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

138This exercise comes from Ruud van der Pas of Oracle



Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{  printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 139



Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct 

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct 
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are 
to new storage that is created and initialized with the value of the existing storage of 
that name when the task is encountered

140 140
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Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be 

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel 
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
   ...
#pragma omp task
   {
       int C;
       compute(A, B, C);
   }
}

A is shared
B is firstprivate
C is private
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main().  You 
don’t need to make any changes to the “list functions”
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Parallel Linked List Traversal
#pragma omp parallel
{ 
  #pragma omp single
   { 
    p = listhead ;
    while (p) { 
       #pragma omp task firstprivate(p)       
             {         
               process (p);
             }
       p=next (p) ;
     } 
   } 
}

makes a copy of p 
when the task is 
packaged

Only one thread 
packages tasks

143
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When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region.  Common examples:
– Tasks generated inside a single construct:  all tasks complete before exiting the barrier on the 

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of 

the parallel region.   

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .
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Example
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#pragma omp parallel
{ 
  #pragma omp single 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

fred() and daisy() 
must complete before 
billy() starts, but 
this does not include 
tasks created inside 
fred() and daisy()

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier
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Example
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#pragma omp parallel
{ 
  #pragma omp single nowait 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

The barrier at the end of the 
single is expensive and not 
needed since you get the 
barrier at the end of the 
parallel region.   So use 
nowait to turn it off.

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier
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Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive 
implementation!

int fib (int n)
{
   int x,y;
   if (n < 2) return n;

   x = fib(n-1);
   y = fib (n-2);
   return (x+y);
}

int main()
{
   int NW = 5000;
   fib(NW);
}
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Parallel Fibonacci

148

• Binary tree of tasks

• Traversed using a recursive 
function

• A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait)

• x,y are local, and so by default 
they are  private to current task

– must be shared on child tasks so they 
don’t create their own firstprivate
copies at this level! 

int fib (int n)
{   int x,y;
   if (n < 2) return n;

#pragma omp task shared(x)
   x = fib(n-1);
#pragma omp task shared(y)
   y = fib (n-2);
#pragma omp taskwait
   return (x+y);
}

Int main()
{  int NW = 5000;
   #pragma omp parallel
   { 
       #pragma omp single
             fib(NW);
   }
} 148



Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be 
solved directly

n 3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve
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Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works.  Think about the 
computation you want to do at the leaves.  If you go all the way down to one 
iteration per leaf-node, won’t you just swamp the system with tasks?



Program: OpenMP tasks  
#include <omp.h>
  static long num_steps = 100000000;
  #define MIN_BLK  10000000
  double pi_comp(int Nstart,int Nfinish,double step)
  {   int i,iblk;
      double x, sum = 0.0,sum1, sum2;
      if (Nfinish-Nstart < MIN_BLK){
         for (i=Nstart;i< Nfinish; i++){
            x = (i+0.5)*step;
            sum = sum + 4.0/(1.0+x*x); 
         }
      }
      else{
         iblk = Nfinish-Nstart;
         #pragma omp task shared(sum1)
              sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step);
         #pragma omp task shared(sum2)
               sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step);
         #pragma omp taskwait
            sum = sum1 + sum2;
     }return sum;
} 151

int main ()
 {
   int i;
   double step, pi, sum;
    step = 1.0/(double) num_steps;
    #pragma omp parallel  
    {
        #pragma omp single
            sum =    

pi_comp(0,num_steps,step);
     }
      pi = step * sum;
 }  



Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st SPMD SPMD 
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52
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Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number 

and granularity of tasks

153
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The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for 
 for (I=0;I<N;I++){
  NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause
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Loop Worksharing Constructs:  The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks 
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule  and chunk size taken from the OMP_SCHEDULE environment variable (or the 

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.  
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Schedule Clause When To Use

STATIC Pre-determined and predictable by the 
programmer

DYNAMIC Unpredictable, highly variable work per 
iteration

GUIDED Special case of dynamic to reduce 
scheduling overhead

AUTO When the runtime can “learn” from 
previous executions of the same loop

Loop Worksharing Constructs:  The schedule clause

Least work at 
runtime : 
scheduling done 
at compile-time

Most work at 
runtime : 
complex 
scheduling logic 
used at run-time



#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
  for (int j=0; j<M; j++) {
         .....
  } 
} 

158

Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes 

balancing the load difficult.

Number of loops 
to be 
parallelized, 
counting from 
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops 
in the nest with the collapse clause: 
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Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.  

#pragma omp parallel
{

   #pragma omp sections
   {
   #pragma omp section
            x_calculation();
   #pragma omp section
 y_calculation();
   #pragma omp section
 z_calculation();
   }

}

By default, there is a barrier at the end of the “omp sections”.  Use the “nowait” clause to turn off the barrier.



Array Sections with Reduce
#include <stdio.h> 
#define N 100 
void init(int n, float (*b)[N]); 
int main(){ 
int i,j; float a[N], b[N][N]; init(N,b); 
for(i=0; i<N; i++) a[i]=0.0e0; 

#pragma omp parallel for reduction(+:a[0:N]) private(j) 
for(i=0; i<N; i++){ 
   for(j=0; j<N; j++){ 
          a[j] += b[i][j]; 
   } 
} 
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]); 
return 0; 
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Works the same as any other reduce … a 
private array is formed for each thread, 
element wise combination across threads 
and then with original array at the end



Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?
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Optimizing mandel.c
 wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
 for (i=0; i<NPOINTS; i++) {
  for (j=0; j<NPOINTS; j++) {
   c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
   c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
   testpoint(c);
  }
 }
 wtime = omp_get_wtime() - wtime;
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$ export OMP_SCHEDULE=“dynamic,100”
$ ./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) 
and the gcc version 9.1.  Times are the minimum time from three runs   
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order constraints 
between threads and to protect access to shared data

Covered in this section

Covered earlier



165

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory 
location (the update of X in the following example)

#pragma omp parallel

{ 
         double tmp, B;

        B =  DOIT();

         

 #pragma omp atomic 
 X += big_ugly(B);

}

#pragma omp parallel

{ 
        double B; 

        B =  DOIT();

         

 #pragma omp atomic 
 X +=  big_ugly(B);

}
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Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a 
memory location (the update of X in the following example)

#pragma omp parallel

{ 
        double B, tmp;

        B =  DOIT();

        tmp = big_ugly(B);

 #pragma omp atomic 
 X +=  tmp;

}

Atomic only protects the 
read/update of X



The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a 

memory operation so it occurs atomically:
 # pragma omp atomic [read | write | update | capture]
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• Atomic can protect loads
 # pragma omp atomic read
  v = x; 

• Atomic can protect stores
 # pragma omp atomic write
  x = expr; 

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t 
provide a clause)
 # pragma omp atomic update
  x++;  or ++x;  or x--;  or –x;  or 
  x binop= expr; or x = x binop expr;

This is the 
original OpenMP 

atomic



The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

 # pragma omp atomic capture
  statement or structured block
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• Where the statement is one of the following forms:
  v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr;

• Where the structured block is one of the following forms:
  {v = x;  x binop = expr;} {x  binop = expr;     v = x;}

{v=x;    x=x binop expr;} {X = x binop expr;   v = x;}
{v = x;   x++;} {v=x;     ++x:}
{++x;     v=x:} {x++;      v = x;}
{v = x;    x--;} {v= x;     --x;}
{--x;        v = x;} {x--;        v = x;}

The capture semantics in atomic were added to map onto common hardware 
supported atomic operations and to support modern lock free algorithms
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Synchronization: Lock Routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(), 

omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread 

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(), 

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock, 
so you don’t need to use a flush on the lock variable.

A lock implies a memory 
fence (a “flush”) of all 
thread visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on 
intended use (e.g. contended, uncontended, speculative, unspeculative) 



 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck,   even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
  ix = (int) x[i];  //truncate to int

  if(((int) x[i])%2 == 0) {      
     omp_set_lock(&even_lck);
      even_count++;

     omp_unset_lock(&even_lck);
  }
  else{     

     omp_set_lock(&odd_lck);
      odd_count++;

     omp_unset_lock(&odd_lck);
  }
 }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
170

Synchronization: Simple Locks Example
• Count odds and evens in an input array(x)  of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates, 
but in parallel for each case.



Exercise
• In the file hist.c, we provide a 

program that generates a large array 
of random numbers and then 
generates a histogram of values.

• This is a ”quick and informal” way to 
test a random number generator … if 
all goes well the bins of the 
histogram should be the same size.

• Parallelize the filling of the histogram  
You must assure that your program 
is race free and gets the same result 
as the sequential program. 

• Using everything we’ve covered 
today, manage updates to shared 
data in multiple ways.  Try to 
minimize the time to generate the 
histogram.  

• Time ONLY the assignment to the 
histogram.    Can you beat the 
sequential time?
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#define   num_trials   1000000 // number of x values
#define   num_buckets  50    // number of buckets in histogram
static long xlow     = 0.0;   // low end of x range
static long xhi     = 100.0;  // High end of x range

int main (){
 double x[num_trials];   // array used to assign counters in the historgram
 long  hist[num_buckets]; // the histogram
 double bucket_width;    // the width of each bucket in the histogram
 double time;

 seed(xlow, xhi);  // seed the random number generator over range of x
 bucket_width = (xhi-xlow)/(double)num_buckets;

 // fill the array. << code not shown >>

 // initialize the histogram << code not shown >>

 // Assign x values to the right histogram bucket
 time = omp_get_wtime();
 for(int i=0;i<num_trials;i++){

  
   long ival = (long) (x[i] - xlow)/bucket_width;

   hist[ival]++; 

 }

 time = omp_get_wtime() - time;
  
   // compute statistics and output results << code not shown >>

 return 0;
}

Only focus 
on this part of 
the program
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Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin … 
but this effectively serializes the loops and adds huge overhead as the runtime 
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     #pragma omp critical   
          hist[ival]++;
}

Easy to write and 
correct, but terrible 
performance
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Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for 

updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
       omp_init_lock(&hist_locks[i]);    hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     omp_set_lock(&hist_locks[ival]);   
          hist[ival]++;
     omp_unset_lock(&hist_locks[ival]);
   }

 #pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
  omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual 
exclusion on update 
to hist array
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Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and 
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     hist[ival]++;
}

Easy to write and correct, Uses a lot of 
memory on the stack, but its fast … 
sometimes faster than the serial method.   

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop 
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1.   Times are 
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)


