
Wahid Redjeb1,2

wahid.redjeb@cern.ch

1CERN, European Organization for Nuclear Research, Meyrin, Switzerland
2RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany,

1

Efficient Memory Management

1

Wahid Redjeb - ESC2024, Bertinoro, October 2024 2

What is memory?

● In general, memory refers to the storage a program uses to write and
read data

○ RAM
○ GPU memory
○ HBM
○ Disk space (HDD, SDD)
○ Caches

Wahid Redjeb - ESC2024, Bertinoro, October 2024 3

Different types of memory

Secondary
Memory

(Storage)
e.g. SSD, HDD

● Secondary Memory (SSD, HDD) [variable storage]
● Main Memory (RAM) [usually tens of GBs]
● 3 levels of cache

● Small [32/64kB] separate L1 (I+D) caches for
each core.

● Medium [256kB - 6MB] combined L2 cache,
perhaps shared among some cores.

● Large [4 - 20MB] combined L3 cache shared
between all cores

Wahid Redjeb - ESC2024, Bertinoro, October 2024 4

Caches

● CPU looks for data in L1 -> L2 -> L3 -> RAM
● Data area loaded in cache in unit of cache lines

○ Usually 64bytes, but depends on
architecture

● Decision in which hierarchy level some data will
stay depends on hardware

○ Memory controllers looks at memory access
patterns

○ Cache locality
○ Cache lines might be promoted or demoted

depending on these patterns
● Cache eviction policies

○ LRU (Last-recently-used)
○ FIFO (First-in-First-Out)
○ Random

Wahid Redjeb - ESC2024, Bertinoro, October 2024 5

Different types of memory - Latency

A.Bocci, CERN

Wahid Redjeb - ESC2024, Bertinoro, October 2024 6

Different types of memory

Have a look at your system
● lscpu
● lstopo

Wahid Redjeb - ESC2024, Bertinoro, October 2024 7

Why are we interested in memory?

● Most of the memory is very slow compared to CPU operations

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Why are we interested in memory?

Everything here is better than
reading from main memory

When writing efficient code, the most
important thing to address is memory

But there’s no general rule, the best
solution to adopt depends on your
data

● Know your data

8

Wahid Redjeb - ESC2024, Bertinoro, October 2024

…

…

9

Virtual Memory
● Memory is managed through virtual memory OS
● Technique to let each process “think” it is alone in the system

○ The process sees contiguous memory
● Virtual memory maps virtual address to physical addresses in the

memory
○ RAM
○ Disk
○ GPU memory

Process A

Process B …

Virtual Memory

Virtual Memory

Physical Memory Memory

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Virtual and real physical memory is divided in
pages, usually 4kB

● The OS provides the CPU per-process page
tables to map a virtual address to contiguous
physical page frame
○ The Memory Management Unit (hardware)

looks at the page table and performs the
address translation

● The Translation Lookaside Buffer (TLB) helps
in performing the translation
○ Cache recent Translation
○ Avoid walking through the entire page

tables

10

Virtual Memory

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Data temporal locality
○ Exploit data that has just been read or written to memory
○ Exploit data that is “hot” in the processor cache

● Data spatial locality
○ Fully exploit cache line: work on adjacent data!
○ Avoid pointers chasing if possible

■ Pointers to pointers to pointers …
○ AoS → SoA

● Hide memory latency
○ Prefetch data in advance while working on previous data
○ Keep the processor busy while more data is fetched
○ Common strategy on GPU

● If possible avoid dynamic allocations
○ Remember: understand your data
○ Custom allocators

● Avoid high level abstraction

Data oriented design

11

Wahid Redjeb - ESC2024, Bertinoro, October 2024

BASICS

12

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Size of Data Types

Size of a type corresponds to the number of bytes needed to store an object of that type

● Use sizeof() operator to get the size of your type
○ Try it yourself with some common types
○ char, int, float, double, int *, std::vector<double>, std::vector<int>

● Define your own Class / Struct with different members and get the size of your class
○ Try to change the order of the members
○ Try to add a bool to your members

13

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Size of Data Types

14

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Size of Data Types

13 bytes

15

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Size of Data Types

sizeof(MyStruct) -> 2413 bytes

16

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Size of Data Types

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

13 bytes

17

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● To have a more efficient memory access from the CPU data types are aligned
● Alignment is an integer value representing the number of bytes between successive

addresses at which objects of this type can be allocated.
○ E.g.: type with alignment of 4 can be allocated only every 4 bytes

● The valid alignment values are non-negative integral powers of two.
● The operator alignof() gives you the alignment of a type
● You can request stricter alignment using alignas() specifier
● The alignment of any class object is given by the largest of the alignment of its

members

Alignment of data types

18

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

19

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

20

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13

 a a a a

0x14 0x15 0x16 0x17

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

21

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13

 a a a a b b b b b b b b

0x14 0x15 0x16 0x17

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

22

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13

 a a a a b b b b b b b b c

0x14 0x15 0x16 0x17

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(int) -> 4

alignof(double) -> 8

alignof(bool) -> 1

23

Padding
required for

double
alignment

Padding required to ensure
correct alignment for arrays

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13

 a a a a :(:(:(:(b b b b b b b b c :(:(:(

0x14 0x15 0x16 0x17

 :(:(:(:(

Wahid Redjeb - ESC2024, Bertinoro, October 2024

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Alignment of Data Types

alignof(double) -> 8

alignof(int) -> 4

alignof(bool) -> 1

24

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

 b b b b b b b b a a a a c :(:(:(

Padding
required to

ensure correct
alignment for

arrays

sizeof(MyStruct) = 16

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Alignment of Data Types - Optimize memory design

● Put data members in decreasing size order
● Group data members based on their size and

alignment
○ Dedicate some time to understand if you are

introducing padding and if you can avoid it
● Group data members based on their usage

○ Better to have data members that are used
together within a single cache line!

■ Cache line usually are 64bytes.

25

sizeof(MyStruct) = 16
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

 b b b b b b b b a a a a c :(:(:(

Padding
required to

ensure correct
alignment for

arrays

struct MyStruct {

int a; //4 bytes

double b; //8 bytes

bool c; // 1 byte

};

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Create a Class or struct for a Particle with the following members
○ 1 const std::string to hold the particle’s name;
○ 3 doubles for the x, y, z velocities
○ 3 bools to mark if there has been a collision along the x, y z directions
○ 1 float for the mass
○ 1 float for the energy
○ 3 doubles for the px, py, pz coordinates
○ 1 const int for the particle’s id

● What is the best order for your members?

Exercise

26

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● False sharing is a performance-degrading usage pattern that happens in
multi-threaded application

● If two cores are accessing different elements that are in the same cache line
○ Each core has it’s own copy of the cache line

● Core0 reads the value X from the cache line
○ It marks the cache line as exclusive

● Core1 reads the value Y from the its copy of the same cache line
○ Both core mark the cache line as shared

● Core0 decides to write in address space of X
○ Marks its cache line as updated

■ It has to send a message to Core1 saying it has updated the cache line
● Core1 marks its cache line as invalid

○ Has to re-read the cache line from main memory
● Core0 has to immediately return the result back to main memory

This process for keeping caches in coherence can be extremely expensive!

(False Sharing)

27

Wahid Redjeb - ESC2024, Bertinoro, October 2024 28

int X, int Y

Thread 0 Thread 1

Initial State

Wahid Redjeb - ESC2024, Bertinoro, October 2024 29

int X, int Y

E
Thread 0

int X
(int X, int Y)

Thread 1

Thread 0 wants to read X
→ Loads cache line (X, Y)
→ Marks cache as Exclusive

Wahid Redjeb - ESC2024, Bertinoro, October 2024 30

int X, int Y

E
Thread0

int X
(int X int Y)

S
Thread1

int Y
(int X, int Y)

Thread 1 wants to read Y
→ Loads cache line (X, Y)

Wahid Redjeb - ESC2024, Bertinoro, October 2024 31

int X, int Y

S
Thread0

int X
(int X int Y)

S
Thread1

int Y
(int X, int Y)

Thread 1 wants to read Y
→ Loads cache line (X, Y)
→ Marks cache as shared and tells thread 0 to mark cache as shared as well

Wahid Redjeb - ESC2024, Bertinoro, October 2024 32

int X, int Y

M
Thread0

int X
(int X int Y)

I Thread1

Thread 0 does some operations and then wants to update X
→ Flags the cache line as modified and notify thread 1
→ Thread 0 update the cache line → writes back (coherence write-back)
-> Thread 1 now has to invalidate its cache and throw it away

Wahid Redjeb - ESC2024, Bertinoro, October 2024 33

int X, int Y

I Thread0 M
Thread 1

int Y
(int X,int Y)

Thread 1 now wants to update Y
→ Has to reload the cache
→ Flags the cache line as modified and notify thread 0
→ Thread 0 now has to invalidate its cache and throw it away

Wahid Redjeb - ESC2024, Bertinoro, October 2024 34

int X, int Y

S Thread0 S
Thread 1

int Y
(int X,int Y)

Thread 0 now wants to update again Y
→ Has to reload the cache
→ But thread 1 needs to update the cache line (coherence write-back)
→ Flag cache as shared

Wahid Redjeb - ESC2024, Bertinoro, October 2024

False Sharing

35

● False sharing is a performance-degrading usage pattern that happens
in multi-threaded application
○ Triggers mechanism of cache coherency

■ Caches are continuously getting evicted → low cache usage
● High cache misses

Small exercise: https://github.com/infn-esc/esc24/tree/main/hands-on/memory/false_sharing

g++ false_sharing.cc -pthread

https://github.com/infn-esc/esc24/tree/main/hands-on/memory/false_sharing

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● If you can, use “local” data
○ Local to each thread, if you need to store some results, store it in a local

variable and then gather the results of the multiple threads at the end
○ E.g.: sum of vector entries

■ You split the vector in different blocks and then you assign each block to a
different thread
● Each thread will perform the summation on its own block
● Don’t update an entry of the block with the partial sum, store the

partial sum in a local variable —> don’t touch the cached data!
■ This will get much more clear with the lectures on parallelism

● Align your data to the cache line size
○ Such that each thread will load a different cache line to avoid interference

between the two threads
○ Add padding to your data structure or use alignas(CACHE_SIZE)

36

How to avoid false sharing?

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● void* std::malloc(std::size_t size);
○ Allocates size bytes of uninitialized storage (on the heap).
○ If successful returns pointer to the beginning of newly allocated memory
○ On failure returns a null pointer
○ Suitable alignment for any scalar type
○ Nothing is initialized, just raw memory
○ Requires manual freeing of the memory

● void* std::calloc(std::size_t num, std::size_t size);
○ Allocate memory for an array of num objects of size size
○ Initialized it to all bits zero

● void* std::aligned_alloc(std::size_t alignment, std::size_t size);
○ Allocate a block of memory of at least size bytes
○ The memory buffer is aligned alignment bytes

■ Useful in SIMD to avoid Cache False Sharing
● Require memory aligned to a cache line (64bytes usually)

Memory operations - Allocation

37

Wahid Redjeb - ESC2024, Bertinoro, October 2024

You can ask for the cache size by using

#include <new>

auto cls_constructive = std::hardware_constructive_interference_size;

There’s also.

Auto cls_destructive = std::hardware_destructive_interference_size;

They are the same on x86 architecture, but different on ARM.

38

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● std::free(void* ptr);
○ Frees allocated memory block by malloc(), calloc() aligned_alloc()
○ The content of the memory is not erased!

■ Any object in the memory is not destroyed!
○ Careful in moving the pointer given by malloc → don’t do it!
○ The free operation returns the memory to the system

Memory operations - Freeing memory

39

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Remember, std::malloc(), std::calloc(), std::aligned_alloc() return raw,
uninitialized memory

● T* new T(args…);
○ Allocates and creates object T

● T* new(ptr) T{args…};
○ ptr is some memory previously allocated
○ Constructs an object of type T using its constructor T::T(args…)

■ The object is created in the allocated memory at ptr
● T* new(ptr) T[N]{args…};

○ ptr is some memory previously allocated
○ Constructs N object of type T using its constructor T::T(args…)

■ The object is created in the allocated memory at ptr
● T* new(std::align_val_t(alignment) T{args…}

○ Constructs an object of type T using its constructor T::T(args…)
■ Memory is aligned to alignment bytes
■ The object is created in the allocated memory at ptr

Memory operations - Constructing objects

40

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Before freeing the memory (std::free()), you have to destroy the created objects

● std::destroy_at(T* ptr);
○ Calls destructor of object of type T at the memory address ptr
○ Equivalent to ptr->~T();

● std::destroy_n(T* ptr, std::size_t n);
○ Calls destructor of n objects of type T starting at the memory address ptr

● std::destroy(T* first, T* last);
○ Calls destructor of the objects of type T in the range [first, last]

● If you allocated with T* new(std::align_val_t(alignment)) T{args…}
○ delete(T* ptr, std::align_val_t(alignment))

Memory operations - Destroy objects

41

Wahid Redjeb - ESC2024, Bertinoro, October 2024

As we noticed, both malloc and new requires the programmer to free/destroy the object
manually to avoid memory leaks.

Memory Leak: Failure to release unreachable memory, which can no longer be
allocated again by any process during execution of the allocating process. A memory
leak occurs when a program allocates memory on the heap but it fails to deallocate the
memory when not needed, losing the reference to the allocated memory (unreachable).
Results in an increasing memory usage that slows down the program.

42

Memory Leak

Wahid Redjeb - ESC2024, Bertinoro, October 2024

#include <iostream>

void function() {

 int* ptr = (int*)std::malloc(sizeof(int)*10);

//forgot to free the memory

}

int main (){

for(int i = 0; i < 10; i++) {

 function(); // call function

//don’t have any way to reach ptr

//my reference to allocated memory got lost

 }

 return 0 ;

}

43

Memory Leak - Example - ASan

g++ memory_leak.cc -fsanitize=address

./a.out

===
==19662==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 400 byte(s) in 10 object(s) allocated from:
#0 0x7389410b4887 in __interceptor_malloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
#1 0x5cd7bc97325e in function() (/home/wa/Documents/Wahid/Bertinoro/a.out+0x125e)
#2 0x5cd7bc97327f in main (/home/wa/Documents/Wahid/Bertinoro/a.out+0x127f)
#3 0x738940829d8f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58

SUMMARY: AddressSanitizer: 400 byte(s) leaked in 10 allocation(s).

Wahid Redjeb - ESC2024, Bertinoro, October 2024

#include <iostream>

void function() {

 int* ptr = (int*)std::malloc(sizeof(int)*10);

//forgot to free the memory

}

int main (){

for(int i = 0; i < 10; i++) {

 function(); // call function

//don’t have any way to reach ptr

//my reference to allocated memory got lost

 }

 return 0 ;

}

44

Memory Leak - Example - Valgrind

g++ memory_leak.cc

valgrind --leak-check=full ./a.out

==17482== Memcheck, a memory error detector
==17482== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==17482== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info
==17482== Command: ./a.out
==17482==
==17482==
==17482== HEAP SUMMARY:
==17482== in use at exit: 400 bytes in 10 blocks
==17482== total heap usage: 11 allocs, 1 frees, 73,104 bytes allocated
==17482==
==17482== 400 bytes in 10 blocks are definitely lost in loss record 1 of 1
==17482== at 0x4848899: malloc (in usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so)
==17482== by 0x10919E: function() (in /home/wa/Documents/Wahid/Bertinoro/a.out)
==17482== by 0x1091BF: main (in /home/wa/Documents/Wahid/Bertinoro/a.out)
==17482==
==17482== LEAK SUMMARY:
==17482== definitely lost: 400 bytes in 10 blocks
==17482== indirectly lost: 0 bytes in 0 blocks
==17482== possibly lost: 0 bytes in 0 blocks
==17482== still reachable: 0 bytes in 0 blocks
==17482== suppressed: 0 bytes in 0 blocks
==17482==

Wahid Redjeb - ESC2024, Bertinoro, October 2024

A smart pointer is an object that works like a pointer, but it also manages the lifetime of
the object it is pointing to.

Exploits the RAII (Resources acquisition is initialization) idiom:

● Resources are acquired in the constructor
● Resources are released in the destructor

In short: remove the need of manually freeing the allocated memory

In depth explanation this afternoon by Francesco :)

45

Smart Pointers

Wahid Redjeb - ESC2024, Bertinoro, October 2024 46

Unique Pointer: Implementation example

#include <iostream>
template<typename Pointee>
class UniquePtr {
Pointee* m_p;
public:
explicit UniquePtr(Pointee* p): m_p{p} {} //aquire the resource
~UniquePtr() { delete m_p; } //delete the resource
UniquePtr(UniquePtr const&) = delete; //more in Francesco’s lectures
UniquePtr& operator=(UniquePtr const&) = delete; //more in Francesco’s lectures
Pointee* operator->() { return m_p; }
Pointee& operator*() { return *m_p; }
};

int main (){
UniquePtr<int> p{new int{42}};
std::cout << *p << “\n”;
return 0;

}

>> 42

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Two main principles:

● Exploit time locality
○ If a program accesses one memory address, there is a good chance that it will access the

same address again after a short amount of time.
■ E.g loops (variable sum continuously updated)

● Exploit spatial locality
○ If a program accesses one memory address, there is a good chance that it will also access

other nearby addresses.

Note: Data Structure and Memory Access are two faces of the same coin. You should design them
together!

Optimize Memory Access

47

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Sequential Memory Access

x0 x1 x2 … … xN-1 xN

● Consecutive element access
● Good cache locality
● Good memory bandwidth
● Each cycle can read consecutive memory area

○ Cached Memory Access
● Good use of prefetcher

Perfect memory access pattern for CPUs!

48

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Random Memory Access

x0 x1 x2 … … xN-1 xN

● Elements are accessed in random order
● Cache locality not ensured anymore
● Bad memory bandwidth
● Impossible to prefetch data
● Prefetcher not used

Never use this!

49

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Strided Memory Access

 xi … xi+k … xi+2

k
… xi+3

k
…

● Elements are accessed at fixed intervals
● Good use of prefetcher

○ Pattern easy to predict

● Very common pattern on GPU
○ Stride size = Grid Size
○ Coalesced memory access

■ Good cache locality and bandwidth

xi xi+1 xi+2 xi+k
xi+k+2 …xi+k+

1
…

50

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Matrix multiplication: Given two matrices two matrices A and B with elements aij and bij
with 0 ≤ i, j < N the product is

51

Optimize Memory Access - Example

for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 for (k = 0; k < N; ++k)
 res[i][j] += A[i][k] * B[k][j]

A is accessed sequentially → good!
B is not → everytime I jump to another row. For each iteration in the
k-loop a get a cache-hit-miss. → Bad spatial locality!

What Every Programmer Should Know About Memory, Ulrich Drepper

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Let’s transpose B, then the matrix multiplication would look like this:

52

Optimize Memory Access - Example

double Bt[N][N];
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 Bt[i][j] = B[j][i];
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 for (k = 0; k < N; ++k)
 res[i][j] += A[i][k] * Bt[j][k]

A is accessed sequentially → good!
Bt is accessed sequentially → good!

What Every Programmer Should Know About Memory, Ulrich Drepper

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● The way you access memory is not only driven by the algorithm, but it strongly
depends on how you designed your datastructure

● Let’s investigate our GoodParticle datastructure
○ https://github.com/infn-esc/esc24/tree/main/hands-on/memory/datastructures

● Write a function to initialize a collection of N GoodParticles
○ Assign some value to each member of GoodParticle
○ Pick a x_max value
○ And a time value t

● Write another function that takes as input the collection, and x_max
● Iterate over the elements of this collection and for each element:

○ Update the position x → x = x + px / mass * t
○ If x < 0 or x > x_max → set hit_x to true

■ Else, set it to false and change the sign of px

Memory Access - Data Structures

53

https://github.com/infn-esc/esc24/tree/main/hands-on/memory/datastructures

Wahid Redjeb - ESC2024, Bertinoro, October 2024

GoodParticle memory access

x +=

54

Wahid Redjeb - ESC2024, Bertinoro, October 2024

GoodParticle memory access

x += px

55

Wahid Redjeb - ESC2024, Bertinoro, October 2024

GoodParticle memory access

x += px/m * t

56

Wahid Redjeb - ESC2024, Bertinoro, October 2024

GoodParticle memory access

p.x += p.px/p.m * t
p.hit_x = statement? true : false

57

Wahid Redjeb - ESC2024, Bertinoro, October 2024

GoodParticle memory access

Particle 1

Particle 2

58

p.x += p.px/p.m * t
p.hit_x = statement? true : false

Next iteration

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Our problem needs only some members of our class GoodParticle
○ We are paying the price of loading the full object for accessing its members
○ sizeof(GoodParticle) = 96bytes
○ sizeof(doublex) + sizeof(doublepx) + sizeof(doublehit_x) + sizeof(floatmass) = 21bytes

■ We are using only 22% of what we are reading!
● Our std::vector<GoodParticle> is commonly called Array of Struct

○ Very common dastracture coming from Object Oriented Programming (OOP)
■ Self contained objects

● Bad cache locality and bad memory bandwidth
■ Commonly used because it easy to represent the reality

● Not so good for manipulating data in some scenario
● In principe we would like to have a data structure that allow us to use only what we

need in a specific piece of code

GoodParticle memory access

59

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Array of Structs vs Struct of Arrays

struct Particle {
 double x;
 double y;
 double z;

…
};

std::vector<Particle> particles;

● All data fields for each element are
stored together in a contiguous block
of memory.

● Cache locality might be loss if not all
the elements are used

struct ParticleSoA {
 std::vector<double> x;
 std::vector<double> y;
 std::vector<double> z;

…
};

ParticleSoA particles;

● Each data field of all elements is
stored in separate arrays.

● This layout is beneficial when you
need to perform operations on some
fields for all elements concurrently

60

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Take the last exercise
○ Implement an SoA version of GoodParticle
○ Add two more functions, one for initializing the SoA collection and one to

perform the operation previously discussed
● Try to time it

○ Try to use compiler optimization (-O1 -O2 -O3)
○ What happens?

● What memory access pattern are we using now?
● Is your data structure interface that different?

AoS vs SoA

61

Wahid Redjeb - ESC2024, Bertinoro, October 2024

AoS vs SoA

Padding

● Sequential access pattern on each member of
our object!

● Use only what you need
○ You can pass to your function only the

members you are going to use

int N = 100;
std::vector<GoodParticleAoS> particles(N);
96 bytes * 100 = 9600 bytes
9600 bytes / 64 bytes/cacheline = 150 cache lines

ParticleSoA particles(N);
21 bytes * 100 = 2100 bytes
2100 / 64 bytes/cacheline = 33 cache lines!

62

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● So far our SoA uses std::vector, which is useful to be able to resize our datastructure
● However, resizing is quite expensive
● Better to have fixed sized SoA

○ If you don’t know your exact size, better to put a Max Value
■ Knowing the size (and alignment) at compile time helps the compiler to

optimize your code
● Especially true for vectorization!

● Moreover, you can use single memory buffers to allocate and deallocate memory in
one go, or to transfer it to accelerators
○ And you could also reuse the same memory!

More on SoA

63

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Modify your ParticleSoA struct such that:
○ Contains a single memory buffer and a single size
○ Contains M pointers pointing to the beginning of each “column”
○ Explicit constructor that takes the number of particle you want to allocate

■ Allocates the needed memory with a single operation
■ Set each pointer to the beginning of the column
■ Remember alignment!

○ Note → if you allocate the buffer with std::malloc it will give you a void* pointer
■ You can use reinterpret_cast<T*> to cast your pointer to a different type

g++ -Wall -Wextra -fsanitize=alignment,address your_program.cc

To check if gcc is happy with your alignment!

Exercise

64

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Allocating and deallocating can be very expensive
● We can try to reduce the impact of the allocations and deallocation by reusing

some allocated memory

● Write a class representing an allocator
○ Should have an allocate(), deallocate() and free() methods
○ Let’s take inspiration from the CUB caching allocator
○ Next slide for more details

More exercises: Caching Allocator

65

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Idea: reuse memory already preallocated but not used
● Let’s decide to only allocate memory in fixed size blocks

● Everytime I ask for some memory the allocator should decide the minimum block it
has to allocate.
○ For example if I ask for 24kB of memory it would allocate 32kB

● Once the memory is not used anymore, we don’t release the memory, but instead
we keep the memory in a pool
○ If another allocation fits this 32kB of memory, the same block will be reused
○ Otherwise, we create another block

More exercises: Caching Allocator

66

Wahid Redjeb - ESC2024, Bertinoro, October 2024

More exercises: Caching Allocator
Ask allocation

32kB

Allocate a big
enough block

24kB 24kB

32kB

Assign block for
request allocation

Ask for deallocation

24kB

32kB

deallocating Caching allocated block

32kB

32kB

67

Wahid Redjeb - ESC2024, Bertinoro, October 2024

More exercises: Caching Allocator
Ask for another
allocation

512kB

Allocate a big
enough block

490kB
490kB

512kB

Assign block for
request allocation

Ask for de allocation

490kB

512kB

deallocating Caching allocated block

512kB

32kB 512kB

68

Wahid Redjeb - ESC2024, Bertinoro, October 2024

More exercises: Caching Allocator
Ask for another
allocation

30kB

32kB

Take block from
cached blocks

30kB

32Kb

512kB

512kB

69

Wahid Redjeb - ESC2024, Bertinoro, October 2024

More exercises: Caching Allocator

Ask for deallocation

24kB

32kB

deallocating Caching allocated block

32kB

32kB 512kB

70

Wahid Redjeb - ESC2024, Bertinoro, October 2024

More exercises: Caching Allocator

512kB

512kB

512kB

32kB
4096kB

4096kB

Cached → Available for reuse

32kB 512kB

32MB

Currently used memory

71

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● At this point I hope the illustration helped …

● Write an allocator that allocates blocks of memory fitting the requested size (blocks
of memory of power of 2)
○ The allocator should have a min_number_bin and max_number_bin, max

allocation size
○ Bin growth (8^bin_number)
○ If requested allocation is bigger than max_number_bin, allocate space

normally
○ If requested size is bigger than max_allocation_size, return bad alloc
○ Remember alignment!
○ Use your allocator to allocate members in your ParticleSoA structure!
○ Put some std::cout here and there to see the allocations/deallocations

More exercises: Caching Allocator

72

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● At some point you will know how to deal with multi-threading using TBB
○ That means you will have to deal with race conditions!

● Can you make your allocator thread-safe?
● But possibilities are even more now, for example you can also decide to have an

allocator for each thread or for each group of threads!

Caching Allocator - Bonus

73

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Stuff becomes more and more complex … now you have a GPU and you are the
guru of GPU programming
○ You can manage both CPU and GPU memory with allocators!
○ I am not going to provide a solution for this exercise, but in case you are eager

to try, you can have a look at the caching allocator used by CMS

Caching Allocator - Bonus Bonus

Real example in CMS!

From A.Bocci -
ACAT2022

74

https://github.com/cms-patatrack/pixeltrack-standalone/blob/master/src/cuda/CUDACore/CachingHostAllocator.h

Wahid Redjeb - ESC2024, Bertinoro, October 2024

Memory Fragmentation

Allocate 1kB, 4kB, 2kB

Deallocate 1kB, 4kB

Allocate 2kB

Allocate 4kB → Unable

4kB are available, but not of contiguous
memory
→ Memory Fragmentation

● UNIX system uses the glibc
memory allocator

75

Wahid Redjeb - ESC2024, Bertinoro, October 2024

If your program allocates and deallocates objects with different life times, you get
memory fragmentation and the process might not be able to return the memory to the
OS

● Alternative allocators
○ Might give you better performance and reduce memory fragmentation

■ But detailed studies are necessary on the full application
● Jemalloc

○ Used by Mozilla Firefox, Facebook, …
○ Tries to avoid memory fragmentation

● TCMalloc
○ Developed by Google
○ Fast C implementation of malloc and new, multithreaded

Jemalloc and TCMalloc

76

Wahid Redjeb - ESC2024, Bertinoro, October 2024

There are tools for looking at your memory management and for debugging memory
problems:

● AddressSanitizer
○ Instrument the program at compile time

■ g++ program.cc -fsanitize=address
● Enable AddressSanitizer → usually is enough

■ Much more options can be enabled
https://github.com/google/sanitizers/wiki/addresssanitizerflags

○ Much faster and usually more precise
■ It has all the symbols available at compilation time

77

AddressSanitizer

https://github.com/google/sanitizers/wiki/addresssanitizerflags

Wahid Redjeb - ESC2024, Bertinoro, October 2024

There are tools for looking at your memory management and for debugging memory
problems:

● Valgrind
○ Instrument the binary → runtime
○ valgrind -tool=memcheck ./a.out

■ Valgrind is a tool suite, so you can enable different other tools
● Cachegrind → performs cache analysis
● Massif → performs heap analysis
● Helgrind → thread debugging tools → race conditions

○ Much more slower

78

Valgrind

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● I would say AddressSanitizer → faster
● But you should use both, especially in case you want to look at performance

improvements

79

Which one to use?

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Design your datastructures together with your algorithms
○ Don’t try to represent reality with code

■ If some data need different treatment, try to separate them from the rest
● Remember caches

○ E.g.: take some time in writing your for loops
■ Can I design my loop to have a better access pattern?
■ Can I redesign my Datastructure layout to have a better access pattern?
■ Is there anything I can bring out of my loop?

● Try to avoid re-allocation
○ E.g.: std::vector<>.reserve()
○ Custom allocators

● If you have big allocation to do
○ Try to split it!

● Keep in mind false sharing!
● Try to reduce allocation size → reduce your data types (double —> float)
● Avoid copying → pass by ref instead of value

80

Some hints

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Memory is what keeps you away from running code efficiently
● Keep memory always in mind when you are developing your software
● Remember to understand your hardware and map what you are programming on it
● Investigate your data before developing your data structure and try to understand

the memory footprint and how to better access the memory
● Profile profile profile

○ perf, ASan, valgrind, intel VTune

Take Away Message

81

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Thanks Andrea Bocci for all the inputs and help in preparing the lecture!
● Reducing memory footprint using jemalloc

○ https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc
● What Every Programmer Should Know About Memory

○ https://akkadia.org/drepper/cpumemory.pdf
● What Programmers Should Know About Memory Allocation - S. Al Bahra, H. Sowa,

P. Khuong - CppCon 2019
○ https://www.youtube.com/watch?v=gYfd25Bdmws&t

● CppCon 2014: Mike Acton "Data-Oriented Design and C++"
○ https://www.youtube.com/watch?v=rX0ItVEVjHc&t=2838s

● Computer Architecture A Quantitative Approach - Fifth Edition -J. Hennessy, D.
Patterson

● jemalloc

Reference

82

https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc
https://akkadia.org/drepper/cpumemory.pdf
https://www.youtube.com/watch?v=gYfd25Bdmws&t=815s
https://www.youtube.com/watch?v=rX0ItVEVjHc&t=2838s
http://jemalloc.net

Wahid Redjeb - ESC2024, Bertinoro, October 2024

BONUS

Bonus

83

Wahid Redjeb - ESC2024, Bertinoro, October 2024

● Here’s a program with the aim of fragmenting the memory from Zac blog post
○ https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-

heap-fragmentor-cpp
● Compile it and try to look at the

Jemalloc example

84

https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp
https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp

Wahid Redjeb - ESC2024, Bertinoro, October 2024 85

