
Understanding computers and how their
design impacts performance

Tim Mattson
Human Learning Group

4 books to make sense of the computer industry

4 books to make sense of the computer industry

They are all good
and worth reading,
but we’ll focus on
this one for now

Computing for Humans

Don Norman, trained in Electrical Engineering and cognitive
psychology, pioneered the idea of “Human centered design” in
computer system design.

Joined Apple in 1993, he helped solidify the company’s approach
to design … taking existing technology (e.g. Apple did not invent
the smart phone) and making it better by designing it around
user experience.

He summarizes his thinking in the famous book “The Invisible
Computer” published in 1998.

How many electric motors have you
purchased in the last few years?

6Source: S. Edwards, C.S. Columbia Univ. http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf From Donald Norman, The Invisible Computer, 1998.

A page from a Sears and
Roebuck Catalog: 1918

An example from the book “The Invisible Computer”

How many electric
motors. Have you
purchased recently?

They used to be
something you thought
about and bought
explicitly.

Now they are buried
inside cars, appliances
and other products …
motors are invisible

This motor, as shown above, will operate a sewing
machine. Easily attached; makes sewing a pleasure.
The many attachments shown on this age may be
operated by this motor and help to lighten the
burden of the home. Operates on usual city current of
105 to 115 volts. Shipping weight, about 5 pounds.

No 57F764. Price, complete as shown. $8.75

Home Motor.

http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf

7Source: S. Edwards, C.S. Columbia Univ. http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf From Donald Norman, The Invisible Computer, 1998.

A page from a Sears and
Roebuck Catalog: 1918

An example from the book “The Invisible Computer”

The PC is going the way
electric motors.

Dell Limited 386-16 PC (1987). 16 MHz Intel
80386 CPU, 1 MB RAM, 1.21 MB Floppy, and 40
MB hard drive. $4,799 ($13,574 in 2024 dollars).
https://www.pcmag.com/news/the-golden-age-of-dell-computers

Remember
these?

http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf

Invisible computers

8

Mercedes-Benz SL roadster
http://www.extremetech.com/extreme/125621-mercedes-benz-over-the-air-car-updates

~50 computers on average in a car.
High-end cars have ~100

Roku streaming stick 4K, ARM Cortex A55, 1GB RAM
https://developer.roku.com/docs/specs/hardware.md

Nintendo SwitchTM mobile gaming
console. Nvidia Tegra X1 with 4 ARM
Cortex A57 cores each with a NEON
vector unit, 4 GB DRAM, and an
Nvidia GM20B GPU (supports CUDA
and OpenCL 1.2). 64 GB Memory.

Hello BarbieTM, Uses AI in the cloud to
generate conversation. Launched and
terminated in 2015 due to privacy
concerns over stored dialog by children.
Marvell 88MW300 ARM Cortex-M4F processor
plus a 24 bit Nuvoton NAU8810 audio codec.
16 Mbit Gigadevice GD25Q16 Flash memory.
https://www.microcontrollertips.com/teardown-electronics-hello-barbie/

Cloud with FaaS

FaaS: Function as a service. You see
the function, not the hardware.

9

Python is the language of invisible computing

Consider the changes in most popular programming languages…

Log share of popularity score

http://pypl.github.io/PYPL.html

6%

16%

8%

30%

Share of total
scores

20242016

8%

25%

7%

12%

Invisible computers and scientific computing
• In scientific computing, we are often limited

by performance or problem-size.

• We must understand what is happening
inside our computers so we can design
software that meets our needs.

We must make our computers visible

• And we must use programming languages
that lets us directly deal with the hardware.

- C, C++, and Fortran are the key programming
languages of Scientific Computing.

Dynamic
Random
Access

memory

Control Unit

Arithmetic
Logic Unit

Instruction
Cache

Data
Cache

Unified
Cache

In
pu

t/o
ut

pu
t

Let’s go back to basics ….

What is a computer?

What is a computer:

• The computer as a black-box is not very helpful. We need a bit more detail.

12

• Computer:
– A machine that transforms input values into output values.

Input computer Output

Computer models: Turing Machine
• Alan Turing proposed a general model of a computer and showed that it was universal:

• Read an “infinite” tape of 1’s and 0’s. Based on the pattern of values, shift the tape, read values
and write values. These are controlled by transition rules (i.e. a program)

• This was useful for proving mathematical theorems about computing, but not for actually working
with computers.

Read/Write head –
encompasses

transition rules

0 1 0 0 1 11 1 1 0 0 0 0 01 0 0 1 1 1.

Alan Turing
(1912-1954)

Von Neumann or a “stored Program” Model
• A computer consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),

(3) registers that hold values close to the ALU, and (4) memory that holds
both the data and the sequence of instructions(the program).

Image Source: Felice Pantaleo, CERN, ESC’23

Start

End

Stop?

Fetch Instruction pointed to
by the program counter (PC)

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

Execute Instructions

Write back the result

Increment PC

yes

no

Von Neumann computer model

Program Execution

Von Neumann or a “stored Program” Model
• A computer consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),

(3) registers that hold values close to the ALU, and (4) memory that holds
both the data and the sequence of instructions(the program).

Image Source: Felice Pantaleo, CERN, ESC’23

Cache
Hierarchy

L2 …
 com

bined D and I

L1D
 for Data

L1I
for Instructions

Memory is slow compared to the Processor. Add
high speed memory (a cache) close to the processor.

Start

End

Stop?

Fetch Instruction pointed to
by the program counter (PC)

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

Execute Instructions

Write back the result

Increment PC

yes

no

Program Execution

Modern computers follow the von-Neuman model

To understand them more deeply, we need to look
into computer architecture

Computer Architecture: Computer attributes visible to a user

• Computer architecture is composed of 3 topics

17

1. Instruction set architecture (ISA): the interface to the
computer presented to a programmer

3. The hardware: The implementation of the computer
itself (largely the silicon implementation)

2. The microarchitecture: A design for how the ISA is
implemented

RISC-V assembly code for the “pi
program loop” generated by gcc -O3

Intel 80286
microarchitecture

Electron microscope image of
an Intel transistor for the 14 nm
process technology

Assembly code from the compiler explorer at https://godbolt.org/
80286 image source: By Appaloosa - https://commons.wikimedia.org/w/index.php?curid=6902962
Transistor image source: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

Instruction Set Architecture (ISA)
• Instruction set architecture (ISA): the interface to the hardware presented to a programmer
• Two major classes of ISA
– CISC: Complex instruction set. Large set of instructions to cover numerous special cases. Example: Intel® x86 ISA
– RISC: Reduced instruction set. Smaller set of instructions, easier to work with and implement. Example: ARMv8

18

ISA features Intel x86* (CISC) ARMv8 (RISC)

Class of ISA Register/memory ISA … operations can
reference registers or memory.

Load-Store… can only access memory through load-store
operations.

Memory address Bytes addressing Byte addressing, but objects must be aligned
An object (A) of size s bytes is aligned if &A mod s = 0.

Registers exposed in
architecture definition

16 general purpose and 16 floating point 31 general purpose
32 floating point registers

Encoding an ISA …
Instruction widths

Variable length, ranging from 1 to 18 bytes.
Can result smaller executables.

Fixed length, 4 byte
Thumb instructions: 2-byte

Number of instructions Exact count is difficult … over 3500 Base = 354, SIMD/FP = 404, SVE = 508 … total ~1266

* these numbers are for the Intel® 64 x86 ISA. * SIMD: single instruction multiple data or vector instructions. FP: floating point SVE: Scalable vector instructions

ISA details are challenging to nail down. The Intel ISA manual is over 5000 pages.
Hence numbers on this slide convey a general sense of size and miss many details and special cases.

Instruction sets: Complex (CISC) vs Reduced (RISC)

19

https://godbolt.org/

• Load double at address [r0] into register d16
• Load double at address [r1] into register d17
• Add double in d17 to double in d16, put result in d16
• Store double in d16 to address [r2]
• Branch to return address lr

• Load double at address [rdi] into register xmm0
• Add double at address [rsi] to xmm0, put result in xmm0

• Store double in xmm0 to address [rdx]
• Branch to return address on the stack

All ops on registers

Consistency means
smaller and

simpler instruction
set

Ops work on
registers and
addresses in

memory.

Complex but extra
options for
aggressive

optimization

CISC
RISC

Compare assembly code for a simple
function for CISC (x86-64) and RISC
(ARM) processors

Computer Architecture: CISC vs RISC
• Intel pioneered processors for mass-market-computing through the IBM PC.

• Intel’s x86 ISA is a CISC instruction set … it played a key role in the history of computing.
- Starting with the Intel 8086 CPU in 1978 and continuing to today, it is the dominant

architecture for servers and laptops.

• ARM: the dominant commercial RISC vendor starting with the ARM1.
- ARM1, 1985, 25 thousand transistors compared to Intel’s 1985 CPU (i386) with 275 thousand

transistors.

• Every new CPU ISA since 1980 has been based on a RISC ISA.
- As we’ll see later, internal to a modern CISC CPU from Intel is a RISC execution engine.

The “golden handcuffs” of legacy applications will keep CICS/x86 around for many years. But in
terms of innovative designs and the future, RISC has “won”.

RISC across the computer industry
• ARM licenses CPU designs for others to implement.
– Used extensively in cell-phones, tablets, Apple laptops, embedded

processors, and other devices. The number one CPU by volume.
– ARM is moving into Servers and HPC … For example, Nvidia is

shipping chips for HPC using ARM (Nvidia® HopperTM)
– ARM charges a royalty for each unit sold and vigorously

protects it’s monopoly over the ISA.

• Just as Open Source Software changed the nature of the
software industry, an Open Source ISA will change the
hardware industry.

• RISC-V (pronounced RISK-Five) is an open source ISA.
– 2010: research project in the Computer Science Department at the University of

California, Berkeley.
– 2011: The first RISC-V specifications were released.
– 2015: RISC-V International was established to promote adoption and

standardization of the RISC-V ISA. Now has over 200 members.

21

• Load-store ISA
• 32 bit instruction format
• RISC-V base ISA has only 50

instructions compared to 354 for
ARM8 base ISA

Big companies like Apple and Google will tire of paying royalties per unit to ARM. The future is RISC-V

RISC-V block diagram

Microarchitecture … the details for how an
architecture is implemented

23Image Source: Victor Eijkhout, processor architecture lecture, 2023

A modern CPU

Intel® X86
architecture

Sandy Bridge
Microarchitecture

By the time we are done, most
of this will make sense to you.

Structure of a
Sandy Bridge

CPU core

24Source: Eijkhout – Processor Architecture – Fall’2023

Block Diagram of an Intel Sandy Bridge Core (used in Core i7, i5, i3 CPUs)

By the time we are done, much
of this will make sense to you.

Launched 2011 and the core microarchitecture at Intel until 2013

• A microarchitecture supports
the architecture with
aggressive optimization to
achieve high performance.

• A modern microarchitecture
can be extremely complex …
both for CISC and RISC chips

The key to performance inside a CPU: Instruction level parallelism (ILP)

• The fundamental equation of quantitative architecture analysis:

25

• An architecture that lets multiple instructions make forward progress each cycle reduces the Cycles per Instruction
(CPI) … if all goes well, we can design architectures where CPI < 1.

• We do this with Instruction Level Parallelism (ILP)

• Main ways to implement ILP in a design:
- Pipelined execution: overlap execution across multiple stages
- Superscalar execution: multiple-issue of independent instructions
- branch prediction, speculative execution, prefetching
- out-of-order execution

𝑇𝑖𝑚𝑒!"# = 𝑁$%&'()*'$+%& ∗
,-.&

/%&'()*'$+%
∗ &.*+%0&

,-.

,-.&
/%&'()*'$+%

= 1+'2-	%)45.(*,*-.&	'+	.6.*)'.	2	7(+8(24	
9!"#$%&'$!("#

 = CPI

𝑁$%&'()*'$+%&≡ Number of instructions in an executable

Let’s look at evolution of Instruction level parallelism
through the lens of the history of x86 CPUs

“X86 … an architecture that is difficult to explain and impossible to love”
Hennessy and Patterson, 2nd ed, page D-2

While we focus on x86 chips, all
the techniques we’ll discuss are

used in RISC chips as well

Pipelining

27

• Intel added pipelined instructions to i486 in 1989

• More than doubled the performance compared to a i386 at the same clock rate.

• The five stage i4586 pipeline, one cycle per stage

- Fetch an instruction from the instruction cache.
- Decode the instruction.
- Translate memory addresses and displacements for the instruction
- Execute the instruction.
- Retire the instruction, write results back to registers and/or memory.

Five
instructions
going through
the pipeline

Cycles (each stage takes one cycle)
1 2 3 4 5 6 7 8 9

Note: after five cycles, the pipeline is full and we get a result per cycle.

Cache

Fetch Buffer

Decoder

Scheduler

Execution
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989

Pipelining
Performance

28

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Five
instructions
going through
the pipeline

Cycles (assuming each stage takes one cycle)
1 2 3 4 6 7 8 9 10

Note: after five cycles, the pipeline is full and we get a result per cycle.

ℓ = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑡𝑎𝑔𝑒𝑠
𝜏 = 𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑠𝑡𝑎𝑔𝑒

• Given the following definitions:

• Runtime without pipelining:	 𝐭(𝒏) = 𝒏𝓵𝝉

• With pipelining you need to setup the pipeline (costs 𝑠 cycles) and fill the pipeline
(costs ℓ cycles) at which point you have completed one instruction. Then for the
next (𝑛 - 1) cycles you get one result per cycle. The runtime with pipelining is:

𝑡 𝑛 = (𝑠 + ℓ + 𝑛-1) 𝜏

• For n much greater than (𝑠 + 	ℓ − 1),
	

Cache

Fetch Buffer

Decoder

Scheduler

Execution
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989

𝒕 𝒏 ≈ 𝒏 𝝉 , so	the	code	runs	ℓ	times	faster.

Superscaler + branch prediction

29

L2
Unified
Cache

L1 Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Registers

Execution
Pipeline

Execution
Pipeline

Branch
Prediction

• The Pentium CPU was introduced in 1993 with major innovations
- Superscalar execution: Added a second execution pipeline so it could

keep two pipelined instruction streams in flight at the same time.

- Branch prediction: Speculate on branches a program might take to load
next instructions and get a head start should the branch be taken.

- Separate L1 caches for data and instructions: A unified second level
cache that holds data and instructions but separate L1 caches for data
and instructions to reduce conflicts.

PentiumTM 3.1 Million transistors, 66
Mhz, 5 stage pipeline

… plus an integrated floating point unit
shared between pipelines

1993

Branch prediction is important. With two execution
pipelines, its challenging to keep enough work in the

execution units so they are fully occupied.

Out of Order (OOO) + speculation

30

• The Pentium Pro CPU was a major performance upgrade and
made Intel CPUs suitable for demanding technical computing
workloads (and was used inside the computer ranked as the
fastest computer in the world from 1996 to 2000).

• It added the following microarchitectural innovations:
- Input CISC instructions were decoded into fixed-length, load/store

micro-ops (µop). This made the internal execution engine inside
the Intel CPU a RISC chip.

- Micro-ops were reordered and executed based on availability of
data … hence compared to input CISC instructions, they execute
Out of Order (OOO)

- Micro-ops complete in-order … i.e., they are retired in an order
consistent with the input program

- Register usage efficiency greatly enhanced by renaming them to
avoid spurious conflicts due to register naming in code.

- Dynamic speculative execution to generate enough work to fully
occupy the execution units ... a powerful capability but branch
misprediction is very expensive as all involved pipelines must be
flushed.

1995

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

In-order

Out-of-order

Pentium Pro CPU, 5.5 Million transistors, 200 MHz,
14 stage pipeline

Port 4 (store data)

Simultaneous Multithreading … or the Intel Marketing term, hyperthreading

31

• Out of order execution of pipelined execution units creates
so much opportunity for instruction level parallelism that it
can be challenging to keep the resources fully occupied.

• Solution … replicate the in-order front end of the processor
so two front-ends feed a single out-of-order backend.

• These two in-order front ends are managed as distinct
threads by the OS typically with single cycle context
switching overhead between them. We call these
hardware threads.

• They are usually exposed to the operating system as an
additional core … so the case hyperthreading case on this
slide results in the OS treating the system having two
cores.

2002

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comps)

Port 2 (load)

Port 3 (store address)

In-order

Out-of-order

Port 4 (store data)

Register Alias Table

L1 Instruction Cache

Fetch Buffer

Decoder

Branch
Prediction

Decoder Decoder

µop queue µop cache

Register Alias Table

Pentium 4 CPU, 125 Million transistors, 3.06 GHz, 20 stage pipeline

Be careful with hyperthreading. If your work load can saturate
the functional units on a CPU with a single thread,
hyperthreading adds overhead and can slow down your code.

HPC programmers working highly optimized, compute bound
codes often turn it off by default.

ILP is great, but we can get carried away

Normalized Power vs. scalar performance for Intel CPUs

33

Assume multiple generations of
Intel CPUs using the same
process technology as for i486.

Any changes are due to
microarchitectural
enhancements

This shows the unsustainable
power demands of every
deepening pipelines.

Energy per instruction Trends in Intel® Microprocessors,
Ed Grochowski Murali Annavaram, 2006

31 stage
pipeline

20 stage
pipeline

12 stage
pipeline

5 stage
pipelinePower and Performance

scaled to the i486 … e.g.,
Petium 4 is 6 times faster
than an i486 but uses 22
times more power. 1989

2000

Normalized Power vs. scalar performance for Intel CPUs

34

Assume multiple generations of
Intel CPUs using the same
process technology as for i486.

Any changes are due to
microarchitectural
enhancements

This shows the unsustainable
power demands of every
deepening pipelines.

This plot ended around 2006.
More modern CPUs have
pipeline depths of 14 to 20

Energy per instruction Trends in Intel® Microprocessors,
Ed Grochowski Murali Annavaram, 2006

31 stage
pipeline

20 stage
pipeline

12 stage
pipeline

5 stage
pipeline

<20 Pipeline
stages

1989

2003

2000

Branch prediction
• Percentage of instructions wasted for SPEC integer benchmarks running on an Intel core i7. These are wasted

due to incorrect branch predictions.

• On average, 19% of the instructions are wasted for these benchmarks on an Intel Core i7. The amount of
wasted energy is greater, however, since the processor must use additional energy to restore the state when
it speculates incorrectly.

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Enough about the processors, what about the
memory hierarchy

37

the Memory Hierarchy

Random Access Memory

We like to draw pictures like this

But reality is much more complex

CPU core
L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Clusters of DRAM chips

DRAM: Dynamic Random Access Memory L1, L2, L3 pronounced Level 1, Level 2, Level 3. Also written sometimes as $L1, $L2, $L3

Latencies across the Memory Hierarchy

38Source: Victor Eijkhout – Processor Architecture – Fall’2023

39

Latencies across the Memory Hierarchy

Memory access occurs as Cache Lines
• Load/Store a data element to/from memory as a block of bytes in the level 1 cache ($L1). This is called a Cache line.

• The size of an L1 cache line is a property of the architecture, but it is generally 64 bytes aligned in memory at 64 Bytes.

• Example, load element 17 of an array of doubles. You get the following cache line in the L1 data cache

requested
A 32 KB $L1
holds 512

cache lines

Recall the Latencies across the memory hierarchy

Fetching a cache line all the way from memory costs
hundreds of cycles.

Therefore, make sure you do as much as you can
with any cache line you access

Use as much of a cache line as you can per access
• If you only use the one item you requested, you waste a huge amount of bandwidth to memory.

requested

• Spatial locality: use all the elements in a line before fetching the next line.
– Good Spatial locality … C/C++ use a row-major layout for multidimensional arrays, make the last index change the fastest.
– Its easier to see what’s happening if we represent the array through pointers (which is the most common case in C anyway).

float matrix[Nrows][Ncols];
for (int i = 0; i<Nrows; i++)
 for (int j= 0; j<Ncols; j++)
 matrix[i][j] += increment;

float *matrix;
matrix = (float*) malloc(Nrows*Ncols*sizeof(float));
for (int i = 0; i<Nrows; i++)
 for (int j= 0; j<Ncols; j++)
 *matrix(i*Nrows+j) += increment;

– Terrible Spatial locality … traverse a linked list (pointer chasing). Generate lots of “cache thrashing”.

while (p != NULL) {
 DoWork(p);
 p = p->next;
}

• Temporal locality: Try to complete “all” work with data while you know its in the cache.

In most modern
CPUs, the

hardware will try
to hide latency
by prefetching

cache lines
before you need

them.

Sparse matrix vector multiplication (SpMV) is a good way to see the impact of
caches across the memory hierarchy

0

5

10

15

20

25

30

35

0 500000000 1E+09 1.5E+09
Number of non-zeros for a range of standard single precision test matrices

Sp
M

V
G

FL
O

PS
2 Intel(R) Xeon(R) CPUs E5-2699 v3 @ 2.30GHz

256 GBytes of DDR-4 Memory

Source: Intel® MKL™ 11.3, “mkl_cspblas_scsrgemv” with KMP_AFFINITY='verbose,granularity=fine,compact,1,0’

Small
problems,

make good use
of L1 caches Medium sized

problems, can still
make good use of
last-level caches

Big problems
constrained by

DRAM bandwidth

I-cache

TLB

CPU D-cache

U
nified C

ache

R
eg File

DRAM

1 ns

1 ns

10 ns 100 ns

1 ns

Memory Hierarchies
• A typical microprocessor memory hierarchy (with a simplified cache hierarchy)

• Consider applications with memory demands larger than the physical memory
allocated to a process.

• We use virtual memory backed-up by the file system … bringing in pages of
physical memory … to handle such problems

• The TLB (Translation Lookaside Buffer) implements virtual memory and caches
the mapping from virtual addresses to physical addresses
- If the entry is in the TLB page table, a small overhead of reading the entry and computed the physical

address is incurred.
- If the entry is not in the page table, a page fault exception will be raised. Requires expensive OS

operations and stalls the CPU.
OS: Operating system

Just a bit of OS theory …

• A process is an instance
of an executing program.

• An OS manages
resources (such as
threads and memory) for
an executing program in
terms of the process

DRAM

ALU

Control

Consider the “simple” Matrix Transpose

for (i=0;i<N; i++) {
 for (j=0;j<N;j++) {
 B[i+N*j] = A[j+N*i];
 }
 }

• Copy the transpose of A into a second matrix B.

• Consider this operation and how it interacts with the TLB (Translation Lookaside Buffer).

RNxNBRNxNA

For large N, as you
march across

addresses of A and
B, you span multiple
pages in memory …

causes multiple
page faultsI-cache

TLB

CPU D-cache
U

nified C
ache

R
eg File

DRAM

1 ns

1 ns

10 ns 100 ns

1 ns

ALU

Control

Optimizing Matrix Transpose for the TLB
• Solution … break the loops into blocks so we reduce the number of page faults

for (i=0; i<N; i+=tile_size) {
 for (it=i; it<MIN(N,i+tile_size); it++){
 for (j=0; j<N; j+=tile_size) {
 for (jt=j; jt<MIN(N,j+tile_size);jt++){
 B[it+N*jt] = A[jt+N*it];
 }
 }
 }
}

Step 1: split the “i” and “j”
loops into two … loop over
tiles of a fixed size

Optimizing Matrix Transpose for the TLB
• Solution … break the loops into blocks so we reduce the number of page faults

for (i=0; i<N; i+=tile_size) {
 for (j=0; j<N; j+=tile_size) {
 for (it=i; it<MIN(N,i+tile_size); it++){
 for (jt=j; jt<MIN(N,j+tile_size);jt++){
 B[it+N*jt] = A[jt+N*it];
 }
 }
 }
}

Step 2: rearrange the
loops. Move the loops
over the tiles to the
innermost loop-nest

The result … you grab a tile, transpose that tile, then go to the next tile

Do you need to worry about the TLB?

Transpose: 2 threads on a Dual core Intel® Xeon® CPU

Ti
m

e
(s

ec
on

ds
)

Matrix Order

Tiled to optimize
use of TLB

Ignore TLB issues (no
tiling)

Source: M Frumkin, R. van de Wijngaart, T. G. Mattson, Intel

Lower is
better

At last we get to the “final” topic in our discussion
of computer architecture … hardware

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.

“Cramming more components onto integrated circuits”, G.E. Moore, Electronics, 38(8), April 1965

We’ve come a long way since Gordon
Moore proposed his famous law

50

We put billions of these
transistors on a single chip

How small is a nm (nanometer)? One nm is 10-9 meters. Light travels about one foot in 10-9 seconds.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process

We’ve come a long way since Gordon
Moore proposed his famous law

We put billions of these
transistors on a single chip

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process

An influenza virus is around 100 nm across!
http://www.cdc.gov/flu/images/h1n1/3D_Influenza/3D_Influenza_transparent_no_key_full_med2.gif

51

How did those itty-bitty transistors impact performance?
The Linpack benchmark over time

Cray 1, 1977, first real supercomputer,
110 MFLOPS (Linpack 1000)

Apple iPhone 6S,
2016, 1274 MFLOPS
“in my pocket”

VAX 11/780, ~1980,
0.14 the computer I
used in my Ph.D.
research

An MFLOPS is one million floating point
operations per second (i.e. one millions
adds or multiplies).

52

Moore's Law: A personal perspective

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
9000 CPUs

 one megawatt of electricity.

1600 square feet of floor space.

First TeraScale* computer: 1997

Intel’s 80 core teraScale Chip

1 CPU

97 watt

275 mm2

First TeraScale% chip: 2007

%Single Precision TFLOPS running stencil

10 years
later

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing
Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

Programming Intel's 80 core terascale processor
SC08, Austin Texas, Nov. 2008, Tim Mattson,
Rob van der Wijngaart, Michael Frumkin

CPU Frequency (GHz) over time (years)

54Source: James Reinders (from the book “structured parallel programming”)

What happened to
performance around 2004?

Dennard Scaling
• Process technology (translates to Transistors per chip) and power per mm2

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Dennard scaling: Assume voltage drops as
transistors shrink: power/mm2 is flat.

~2005: threshold voltage limits
voltage drops. Plus static power

effects began to dominate.
Dennard scaling ends

Process technology nodes defined by the smallest feature on a chip (i.e. gate length in nm).
After 22 nm, it’s become a marketing term that doesn’t map to a specific feature’s length.

Consider power in a chip …
C = capacitance … it measures the ability of a circuit to
store energy:

C = q/V à q = CV

Work is pushing something (charge or q) across a
“distance” … in electrostatic terms pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

 W = CV2

power is work over time … or how many times per second
we oscillate the circuit

 Power = W* F à Power = CV2f

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source: Vishwani Agrawal

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor

f/2

Processor

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time

Manycore processors: three hardware options

GPU

CPU

Vector

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Let’s quickly survey the key “on-node”
parallel hardware approaches

By the term “on-node” I mean we are not going to discuss parallelism that comes from networking together
large numbers of independent computer systems (as is done for cluster and cloud computing).

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

CPU parallelism: Multicore CPUs
• A modern CPU optimized for performance will have multiple cores

sharing a single memory hierarchy.

• The memory appears as a single address space.

• An instance of a program is a process.

• The process has a region of memory, system resources, and one or
more threads.

• Parallelism is managed by the programmer as multiple threads mapped
to the various cores.

• When every core is treated the same by the operating system (OS) and
has an equal cost function to any location in memory, we call this a
symmetric multiprocessor or SMP.

A four core CPU
running a process

with 8 threads
mapped as 2 threads

per core

Memory

CPU and Memory: a harsh does of reality
● Most systems today are Non-Uniform Memory Access (NUMA)
● Accessing memory in remote NUMA is slower than accessing memory in local NUMA
● Accessing High Bandwidth Memory is faster than DDR

Diagram courtesy Ruud van der Pas

Also possible on-package
high bandwidth memory
on the node

Each core may have
multiple hyperthreads

LLC: Last level cache

CPU and Memory: a harsh does of reality
2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0

As configured for Cori at NERSC: CPUs at 2.3 GHz, 2 16 GB DIMMs per DDR memory
controller, 16 cores per CPU. 2 CPUs connected by a high-speed interconnect (QPI)

2 Hardware threads (HT) per core
Intel® AVX2 (256 bit Vector unit)
L1$ instruction and data: 32 KB
Unified L2$ 256 KB

40 MB
shared L3$

DDR: Double Data Rate
memory controller

PCIe is the connection from
the CPU to other devices in a
node.

QPI: Quick Path Interconnect.
A coherent interconnect
between CPUs. Makes it
easy to build multiple CPU
nodes.

4 blocks of 8 core units connected by an on-chip-
network with a DDR memory controller.

This constitutes a NUMA domain since memory access
from a core to its “own” DDR is less expensive.

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

66

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b[i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

67

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N)
{
 int i = blockIdx.x * blockDim.x +
threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c,
N);
}

1. Turn source code into a
scalar work-item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

spaceThis is CUDA code … the sort of code
the OpenMP compiler generates on

your behalf

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

Look out for dishonest GPU/CPU
benchmarking

NVIDIA Performance claims
An Nvidia slide from CLSAC’18 talk

71

“CPU Node” = 1 AWS
Broadwell Intel® Xeon® E5

hardware thread.

Their “100 CPU nodes” is
equivalent to three Intel®

Xeon® E5 processors.

DGX-1:
• 2 CPUs (20 core Intel Xeon® E5)
• 4 Tesla® v100 GPUs

DGx-2:
• 2 CPUs(24 core Xeon® platinum8168)
• 16 Tesla® v100 GPUs

This is the most
dishonest marketing I

have EVER seen.

Plus they are comparing unoptimized, generic Python to highly optimized, custom CUDA code!

Sparse matrix vector product: GPU vs. CPU

72

Source: Victor Lee et. al. “Debunking the
100X GPU vs. CPU Myth”, ISCA 2010

• [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core 2 Duo E8400 CPU …
but they used an old CPU with unoptimized code

0

1

2

3

4

5

6

7

8

9
Si

ng
le

 P
re

ci
si

on
 S

pM
VM

FE
M

/c
an

t
(G

FL
O

PS
)

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU
Baseline

8 threads
on 4
cores

Vectorize Register
tiling +

Pipelining

Cache
Blocking

• Heavily optimized both the GPU kernels and the CPU code.
• We did not include memory movement onto the GPU … even

though that would make the CPU look better!

Result: a 2.1 speedup … which makes sense given
better bandwidth of GDDR5

[Vazquez09]: F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.Fernandez. The sparse matrix vector product on GPUs. Technical report, University of Almeria, June 2009.

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Vector (SIMD) Programming

• Architects love vector units, since
they permit space- and energy-
efficient parallel implementations.

• However, standard SIMD instructions
on CPUs are inflexible, and can be
difficult to use.

• Options:
– Let the compiler do the job
– Assist the compiler with language level

constructs for explicit vectorization.
– Use intrinsics … an assembly level

approach.

4 way SIMD (SSE) 16 way SIMD
(Xeon™ PHI)

Example Problem: Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Dx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

76

Serial PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Normally, I’d use double types throughout to minimize roundoff errors especially on the accumulation
into sum. But to maximize impact of vectorization for these exercise, we’ll use float types.

Literals as double (no-vec), 0.012 secs
Literals as Float (no-vec), 0.0042 secs

77

Explicit vectorization of our Pi Program: Step 1 ... Unroll the loop

float pi_unroll(int num_steps)
{
 float step, x0, x1, x2, x3, pi, sum = 0.0;

 step = 1.0f/(float) num_steps;

 for (int i=1;i<= num_steps; i=i+4){ //unroll by 4, assume num_steps%4 = 0
 x0 = (i-0.5f)*step;
 x1 = (i+0.5f)*step;
 x2 = (i+1.5f)*step;
 x3 = (i+2.5f)*step;
 sum += 4.0f*(1.0f/(1.0f+x0*x0) + 1.0f/(1.0f+x1*x1) + 1.0f/(1.0f+x2*x2) + 1.0f/(1.0f+x3*x3));
 }

 pi = step * sum;
 return pi;
}

• We need one interation to fit in the vector unit

• What is the width of your vector unit?
• We’ll use SSE which is 128 bits wide.
• A float in C is 32 bits wide … 4 floats fits in 128 bits

So unroll our loop by four

78

Explicit vectorization of our Pi Program: Step 2 ... Add SSE intrinsics

#include <immintrin.h>
float pi_sse(int num_steps)
 {
 float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];

step = 1.0/(float) num_steps;

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);

__m128 vstep = _mm_load1_ps(&step);
__m128 sum = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom; __m128 eye;

 for (int i=0;i< num_steps; i=i+4){ // unroll loop 4 times
ival = (float)i; // and assume num_steps%4 = 0
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

return pi;
}

The vast majority of
programmers never
write explicitly
vectorized code.

It is important to
understand explicit
vectorization so you
appreciate what the
compiler does to
vectorize code for you

79

PI program Results:
Times in Seconds (50 runs, min time reported)

4194304 steps

– Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
– Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Base case:
float –no-vec

autovec:
float

Explicit SSE:
float

Float, autovec, 0.0023 secs
Float, SSE, 0.0016 secs

M
in

 ru
nt

im
e

in
 s

ec
on

ds

OK, let’s wrap up and conclude all this
architecture stuff

The key to high performance

Occupancy: keep the back-end busy

81

Memory optimization is the number one priority in maximizing performance

Regular and predictable flows of instructions

• Have enough work to keep all the functional units fully
engaged … order dozens per core

• Have enough work to keep all the functional units fully
engaged … order thousand per GPU

• Use inline-functions and short loop-bodies to keep the
Micro-op cache full.

• Avoid complex branching. Reduce iCache and iTLB misses. • Branches lead to diverged execution and wastes
resources. Aggressively structure algorithms to avoid
them. The goal … converged execution flow

• Algorithms optimized for throughput computing … Data
parallelism replicating blocks of code (kernels)as
work-items (CUDA-threads) per GPU

• Organize computation around the cache hierarchy • Organize computation around the cache hierarchy … block
work so work-items exploit private memory and work-groups
exploit local memory (CUDA shared-memory).

• Bring data into a cache, and do as much work as you can
before it is evicted.

• Memory coalescence: if SIMD-lane j works on a[j] then
SIMD-lane (j+1) should work on a[j+1].

• Minimize expensive ops (such as divide and square root)
Write code the compiler can vectorize (see next slide).

• Make branches predictable ... Misprediction is expensive.

• Avoid indirect addressing (such as tmp=x[a[j+k]])

CPU GPU

We didn’t say much about GPUs, but I want to include these comments
here to highllight similarities in optimization for GPUs and CPUs.

82
Source: Introduction to Architecture and Performance, Felice Pantaleo, ESC’23

Parallelism: we’ve covered the “on-node” cases

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We’ll discuss these later … after you understand
how to write software for the “on-node” cases

Summary
• We’ve covered more material in this one lecture than you can possibly absorb. Sorry. Use these slides as reference

material and talk to me during our time together. Working together, you can master what you need.

• I’ll give the closing statement to Sverre Jarp … an old friend of ESC

84

