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4 books to make sense of the computer industry



4 books to make sense of the computer industry

They are all good 
and worth reading, 
but we’ll focus on 
this one for now



Computing for Humans

Don Norman, trained in Electrical Engineering and cognitive 
psychology, pioneered the idea of “Human centered design” in 
computer system design.

Joined Apple in 1993, he helped solidify the company’s approach 
to design … taking existing technology (e.g. Apple did not invent 
the smart phone) and making it better by designing it around 
user experience.

He summarizes his thinking in the famous book “The Invisible 
Computer” published in 1998.  



How many electric motors have you 
purchased in the last few years?



6Source: S. Edwards, C.S. Columbia Univ. http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf From Donald Norman, The Invisible Computer, 1998.

A page from a Sears and 
Roebuck Catalog: 1918

An example from the book “The Invisible Computer”

How many electric 
motors.  Have you 
purchased recently?

They used to be 
something you thought 
about and bought 
explicitly.

Now they are buried 
inside cars, appliances 
and other products … 
motors are invisible

This motor, as shown above, will operate a sewing 
machine. Easily attached; makes sewing a pleasure.  
The many attachments shown on this age may be 
operated by this motor and help to lighten the 
burden of the home. Operates on usual city current of 
105 to 115 volts. Shipping weight, about 5 pounds.

No 57F764.   Price, complete as shown.     $8.75

Home Motor.

http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf


7Source: S. Edwards, C.S. Columbia Univ. http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf From Donald Norman, The Invisible Computer, 1998.

A page from a Sears and 
Roebuck Catalog: 1918

An example from the book “The Invisible Computer”

The PC is going the way 
electric motors.

Dell Limited 386-16 PC (1987).  16 MHz Intel 
80386 CPU, 1 MB RAM, 1.21 MB Floppy, and 40 
MB hard drive.  $4,799 ($13,574 in 2024 dollars).
https://www.pcmag.com/news/the-golden-age-of-dell-computers

Remember 
these?

http://www1.cs.columbia.edu/~sedwards/presentations/eitc2002.9up.pdf


Invisible computers
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Mercedes-Benz SL roadster
http://www.extremetech.com/extreme/125621-mercedes-benz-over-the-air-car-updates

~50 computers on average in a car.  
High-end cars have ~100

Roku streaming stick 4K, ARM Cortex A55, 1GB RAM
https://developer.roku.com/docs/specs/hardware.md

Nintendo SwitchTM mobile gaming 
console.  Nvidia Tegra X1 with 4 ARM 
Cortex A57 cores each with a NEON 
vector unit, 4 GB DRAM, and an 
Nvidia GM20B GPU (supports CUDA 
and OpenCL 1.2).  64 GB Memory.

Hello BarbieTM, Uses AI in the cloud to 
generate conversation.  Launched and 
terminated in 2015 due to privacy 
concerns over stored dialog by children.  
Marvell 88MW300 ARM Cortex-M4F processor 
plus a 24 bit Nuvoton NAU8810 audio codec.  
16 Mbit Gigadevice GD25Q16 Flash memory. 
https://www.microcontrollertips.com/teardown-electronics-hello-barbie/

Cloud with FaaS

FaaS: Function as a service.  You see 
the function, not the hardware.
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Python is the language of invisible computing

Consider the changes in most popular programming languages…

Log share of popularity score

http://pypl.github.io/PYPL.html

6%

16%

8%

30%

Share of total 
scores

20242016

8%

25%

7%

12%



Invisible computers and scientific computing
• In scientific computing, we are often limited 

by performance or problem-size.

• We must understand what is happening 
inside our computers so we can design 
software that meets our needs.

We must make our computers visible

• And we must use programming languages 
that lets us directly deal with the hardware.  

- C, C++, and Fortran are the key programming 
languages of Scientific Computing. 
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Let’s go back to basics …. 

What is a computer?



What is a computer: 

• The computer as a black-box is not very helpful.   We need a bit more detail. 
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• Computer:
– A machine that transforms input values into output values. 

Input computer Output



Computer models:  Turing Machine
• Alan Turing proposed a general model of a computer and showed that it was universal:

• Read an “infinite” tape of 1’s and 0’s.  Based on the pattern of values, shift the tape, read values 
and write values.  These are controlled by transition rules (i.e. a program)

• This was useful for proving mathematical theorems about computing, but not for actually working 
with computers.

Read/Write head – 
encompasses 

transition rules

0 1 0 0 1 11 1 1 0 0 0 0 01 0 0 1 1 1. .. . ..

Alan Turing 
(1912-1954)



Von Neumann or a “stored Program” Model 
• A computer consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU), 

(3) registers that hold values close to  the ALU, and (4) memory that holds 
both the data and the sequence of instructions(the program). 

Image Source: Felice Pantaleo, CERN, ESC’23
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Von Neumann computer model

Program Execution



Von Neumann or a “stored Program” Model 
• A computer consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU), 

(3) registers that hold values close to  the ALU, and (4) memory that holds 
both the data and the sequence of instructions(the program). 

Image Source: Felice Pantaleo, CERN, ESC’23
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Modern computers follow the von-Neuman model 

To understand them more deeply, we need to look 
into computer architecture



Computer Architecture: Computer attributes visible to a user

• Computer architecture is composed of 3 topics
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1. Instruction set architecture (ISA): the interface to the 
computer presented to a programmer

3. The hardware: The implementation of the computer 
itself (largely the silicon implementation)

2. The microarchitecture: A design for how the ISA is 
implemented

RISC-V assembly code for the “pi 
program loop” generated by  gcc -O3

Intel 80286 
microarchitecture

Electron microscope image of 
an Intel transistor for the 14 nm 
process technology

Assembly code from the compiler explorer at https://godbolt.org/
80286 image source:  By Appaloosa - https://commons.wikimedia.org/w/index.php?curid=6902962
Transistor image source: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf



Instruction Set Architecture (ISA)
• Instruction set architecture (ISA): the interface to the hardware presented to a programmer  
• Two major classes of ISA
– CISC: Complex instruction set.  Large set of instructions to cover numerous special cases.     Example: Intel® x86 ISA
– RISC: Reduced instruction set.  Smaller set of instructions, easier to work with and implement. Example: ARMv8
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ISA features Intel x86*  (CISC) ARMv8 (RISC)

Class of ISA Register/memory ISA … operations can 
reference registers or memory.

Load-Store… can only access memory through load-store 
operations.

Memory address Bytes addressing Byte addressing, but objects must be aligned
An object (A) of size s bytes is aligned if &A mod s = 0.

Registers exposed in 
architecture definition

16 general purpose and 16 floating point 31 general purpose
32 floating point registers

Encoding an ISA … 
Instruction widths

Variable length, ranging from 1 to 18 bytes. 
Can result smaller executables.

Fixed length, 4 byte
Thumb instructions: 2-byte 

Number of instructions Exact count is difficult … over 3500 Base = 354, SIMD/FP = 404, SVE = 508 … total ~1266

* these numbers are for the Intel® 64 x86 ISA. * SIMD: single instruction multiple data or vector instructions. FP: floating point SVE: Scalable vector instructions

ISA details are challenging to nail down.   The Intel ISA manual is over 5000 pages.  
Hence numbers on this slide convey a general sense of size and miss many details and special cases.



Instruction sets: Complex (CISC) vs Reduced (RISC)
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https://godbolt.org/

• Load double at address [r0] into register d16 
• Load double at address [r1] into register d17 
• Add double in d17 to double in d16, put result in d16
• Store double in d16 to address [r2]
• Branch to return address lr

• Load double at address [rdi] into register xmm0 
• Add double at address [rsi] to xmm0, put result in xmm0 

• Store double in xmm0 to address [rdx]
• Branch to return address on the stack

All ops on registers

Consistency means 
smaller and 

simpler instruction 
set

Ops work on 
registers and 
addresses in 

memory.

Complex but extra 
options for 
aggressive 

optimization

CISC
RISC

Compare assembly code for a simple 
function for CISC (x86-64) and RISC 
(ARM) processors



Computer Architecture: CISC vs RISC
• Intel pioneered processors for mass-market-computing through the IBM PC.

• Intel’s x86 ISA is a CISC instruction set … it played a key role in the history of computing.
- Starting with the Intel 8086 CPU in 1978 and continuing to today, it is  the dominant 

architecture for servers and laptops.

• ARM: the dominant commercial RISC vendor starting with the ARM1.
- ARM1, 1985, 25 thousand transistors compared to Intel’s 1985 CPU (i386) with 275 thousand 

transistors.

• Every new CPU ISA since 1980 has been based on a RISC ISA.
- As we’ll see later, internal to a modern CISC CPU from Intel is a RISC execution engine.  

The “golden handcuffs” of legacy applications will keep CICS/x86 around for many years.  But in 
terms of innovative designs and the future, RISC has “won”.



RISC across the computer industry
• ARM licenses CPU designs for others to implement.  
– Used extensively in cell-phones, tablets, Apple laptops, embedded

processors, and other devices.  The number one CPU by volume. 
– ARM is moving into Servers and HPC … For example, Nvidia is 

shipping chips for HPC using ARM (Nvidia® HopperTM)
– ARM charges a royalty for each unit sold and vigorously 

protects it’s monopoly over the ISA. 

• Just as Open Source Software changed the nature of the 
software industry, an Open Source ISA will change the 
hardware industry.  

• RISC-V (pronounced RISK-Five) is an open source ISA.
– 2010: research project in the Computer Science Department at the University of 

California, Berkeley. 
– 2011: The first RISC-V specifications were released.
– 2015: RISC-V International was established to promote adoption and 

standardization of the RISC-V ISA. Now has over 200 members.  
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• Load-store ISA
• 32 bit instruction format
• RISC-V base ISA has only 50 

instructions compared to 354 for 
ARM8 base ISA

Big companies like Apple and Google will tire of paying royalties per unit to ARM.  The future is RISC-V

RISC-V block diagram



Microarchitecture … the details for how an 
architecture is implemented 



23Image Source:  Victor Eijkhout, processor architecture lecture, 2023

A modern CPU

Intel® X86 
architecture

Sandy Bridge 
Microarchitecture

By the time we are done, most 
of this will make sense to you.



Structure of a 
Sandy Bridge 

CPU core

24Source: Eijkhout – Processor Architecture – Fall’2023

Block Diagram of an Intel Sandy Bridge Core (used in Core i7, i5, i3 CPUs)

By the time we are done, much 
of this will make sense to you.

Launched 2011 and the core microarchitecture at Intel until 2013

• A microarchitecture supports 
the architecture with 
aggressive optimization to 
achieve high performance.

• A modern microarchitecture 
can be extremely complex … 
both for CISC and RISC chips 



The key to performance inside a CPU:  Instruction level parallelism (ILP)

• The fundamental equation of quantitative architecture analysis:
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• An architecture that lets multiple instructions make forward progress each cycle reduces the Cycles per Instruction 
(CPI) … if all goes well, we can design architectures where CPI < 1.  

• We do this with Instruction Level Parallelism (ILP)

• Main ways to implement ILP in a design:
- Pipelined execution: overlap execution across multiple stages  
- Superscalar execution: multiple-issue of independent instructions 
- branch prediction, speculative execution, prefetching 
- out-of-order execution

𝑇𝑖𝑚𝑒!"# = 𝑁$%&'()*'$+%& ∗
*,*-.&

/%&'()*'$+%
∗ &.*+%0&

*,*-.
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𝑁$%&'()*'$+%&≡ Number of instructions in an executable



Let’s look at evolution of Instruction level parallelism 
through the lens of the history of   x86 CPUs 

“X86 … an architecture that is difficult to explain and impossible to love”
Hennessy and Patterson, 2nd ed, page D-2

While we focus on x86 chips, all 
the techniques we’ll discuss are 

used in RISC chips as well



Pipelining
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• Intel added pipelined instructions to i486 in 1989

• More than doubled the performance compared to a i386 at the same clock rate.

• The five stage i4586 pipeline, one cycle per stage

- Fetch an instruction from the instruction cache. 
- Decode the instruction. 
- Translate memory addresses and displacements for the instruction
- Execute the instruction. 
- Retire the instruction, write results back to registers and/or memory.

Five 
instructions 
going through 
the pipeline

Cycles (each stage takes one cycle)
1 2 3 4 5 6 7 8 9

Note: after five cycles, the pipeline is full and we get a result per cycle. 

Cache

Fetch Buffer

Decoder

Scheduler

Execution 
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989



Pipelining 
Performance
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Five 
instructions 
going through 
the pipeline

Cycles (assuming each stage takes one cycle)
1 2 3 4 6 7 8 9 10

Note: after five cycles, the pipeline is full and we get a result per cycle. 

ℓ = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑡𝑎𝑔𝑒𝑠
𝜏 = 𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑠𝑡𝑎𝑔𝑒

• Given the following definitions:

• Runtime without pipelining:	 𝐭(𝒏) = 𝒏𝓵𝝉

• With pipelining you need to setup the pipeline (costs 𝑠 cycles) and fill the pipeline 
(costs ℓ cycles) at which point you have completed one instruction.  Then for the 
next (𝑛 - 1 ) cycles you get one result per cycle.  The runtime with pipelining is:

𝑡 𝑛 = (𝑠 + ℓ + 𝑛-1) 𝜏 

• For n much greater than (𝑠 + 	ℓ − 1),
	

Cache

Fetch Buffer

Decoder

Scheduler

Execution 
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989

𝒕 𝒏 ≈ 𝒏 𝝉 , so	the	code	runs	ℓ	times	faster. 



Superscaler + branch prediction
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L2 
Unified 
Cache

L1 Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Registers

Execution 
Pipeline

Execution 
Pipeline

Branch 
Prediction

• The Pentium CPU was introduced in 1993 with major innovations
- Superscalar execution: Added a second execution pipeline so it could 

keep two pipelined instruction streams in flight at the same time.

- Branch prediction: Speculate on branches a program might take to load 
next instructions and get a head start should the branch be taken.

- Separate L1 caches for data and instructions: A unified second level 
cache that holds data and instructions but separate L1 caches for data 
and instructions to reduce conflicts.

PentiumTM 3.1 Million transistors, 66 
Mhz, 5 stage pipeline

… plus an integrated floating point unit 
shared between pipelines

1993

Branch prediction is important.  With two execution 
pipelines, its challenging to keep enough work in the 

execution units so they are fully occupied.



Out of Order (OOO) + speculation
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• The Pentium Pro CPU was a major performance upgrade and 
made Intel CPUs suitable for demanding technical computing 
workloads (and was used inside the computer ranked as the 
fastest computer in the world from 1996 to 2000).

• It added the following microarchitectural innovations:
- Input CISC instructions were decoded into fixed-length, load/store 

micro-ops (µop).   This made the internal execution engine inside 
the Intel CPU a RISC chip.

- Micro-ops were reordered and executed based on availability of 
data … hence compared to input CISC instructions, they execute 
Out of Order (OOO)

- Micro-ops complete in-order … i.e., they are retired in an order 
consistent with the input program

- Register usage efficiency greatly enhanced by renaming them to 
avoid spurious conflicts due to register naming in code.

- Dynamic speculative execution to generate enough work to fully 
occupy the execution units ... a powerful capability but branch 
misprediction is very expensive as all involved pipelines must be 
flushed.

1995

Combined 
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch 
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

In-order

Out-of-order

Pentium Pro CPU, 5.5 Million transistors, 200 MHz, 
14 stage pipeline 

Port 4 (store data)



Simultaneous Multithreading … or the Intel Marketing term, hyperthreading
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• Out of order execution of pipelined execution units creates 
so much opportunity for instruction level parallelism that it 
can be challenging to keep the resources fully occupied.

• Solution … replicate the in-order front end of the processor 
so two front-ends feed a single out-of-order backend.

• These two in-order front ends are managed as distinct 
threads by the OS typically with single cycle context 
switching overhead between them.  We call these 
hardware threads.

• They are usually exposed to the operating system as an 
additional core … so the case hyperthreading case on this 
slide results in the OS treating the system  having two 
cores.

2002

Combined 
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch 
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comps)

Port 2 (load)

Port 3 (store address)

In-order

Out-of-order

Port 4 (store data)

Register Alias Table

L1 Instruction Cache

Fetch Buffer

Decoder

Branch 
Prediction

Decoder Decoder

µop queue µop cache

Register Alias Table

Pentium 4 CPU, 125 Million transistors, 3.06 GHz, 20 stage pipeline 

Be careful with hyperthreading.   If your work load can saturate 
the functional units on a CPU with a single thread, 
hyperthreading adds overhead and can slow down your code.   

HPC programmers working highly optimized, compute bound 
codes often turn it off by default.



ILP is great, but we can get carried away



Normalized Power vs. scalar performance for Intel CPUs

33

Assume multiple generations of 
Intel CPUs using the same 
process technology as for i486.

Any changes are due to 
microarchitectural 
enhancements

This shows the unsustainable 
power demands of every 
deepening pipelines.

Energy per instruction Trends in Intel® Microprocessors, 
Ed Grochowski Murali Annavaram, 2006

31 stage 
pipeline

20 stage 
pipeline

12 stage 
pipeline

5 stage 
pipelinePower and Performance 

scaled to the i486 … e.g., 
Petium 4 is 6 times faster 
than an i486 but uses 22 
times more power. 1989

2000



Normalized Power vs. scalar performance for Intel CPUs
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Assume multiple generations of 
Intel CPUs using the same 
process technology as for i486.

Any changes are due to 
microarchitectural 
enhancements

This shows the unsustainable 
power demands of every 
deepening pipelines.

This plot ended around 2006.  
More modern CPUs have 
pipeline depths of 14 to 20

Energy per instruction Trends in Intel® Microprocessors, 
Ed Grochowski Murali Annavaram, 2006

31 stage 
pipeline

20 stage 
pipeline

12 stage 
pipeline

5 stage 
pipeline

<20 Pipeline 
stages

1989

2003

2000



Branch prediction
• Percentage of instructions wasted for SPEC integer benchmarks running on an Intel core i7.  These are wasted 

due to incorrect branch predictions.

• On average, 19% of the instructions are wasted for these benchmarks on an Intel Core i7. The amount of 
wasted energy is greater, however, since the processor must use additional energy to restore the state when 
it speculates incorrectly. 

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019



Enough about the processors, what about the 
memory hierarchy
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the Memory Hierarchy

Random Access Memory

We like to draw pictures like this

But reality is much more complex

CPU core
L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Clusters of DRAM chips

DRAM: Dynamic Random Access Memory L1, L2, L3 pronounced Level 1, Level 2, Level 3.  Also written sometimes as $L1, $L2, $L3



Latencies across the Memory Hierarchy

38Source: Victor Eijkhout – Processor Architecture – Fall’2023
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Latencies across the Memory Hierarchy



Memory access occurs as Cache Lines
• Load/Store a data element to/from memory as a block of bytes in the level 1 cache ($L1).  This is called  a Cache line.

• The size of an L1 cache line is a property of the architecture, but it is generally 64 bytes aligned in memory at 64 Bytes.

• Example, load element 17 of an array of doubles.  You get the following cache line in the L1 data cache

requested
A 32 KB $L1 
holds 512 

cache lines

Recall the Latencies across the memory hierarchy

Fetching a cache line all the way from memory costs 
hundreds of cycles.

Therefore, make sure you do as much as you can 
with any cache line you access



Use as much of a cache line as you can per access
• If you only use the one item you requested, you waste a huge amount of bandwidth to memory.  

requested

• Spatial locality: use all the elements in a line before fetching the next line. 
– Good Spatial locality … C/C++ use a row-major layout for multidimensional arrays, make the last index change the fastest.
– Its easier to see what’s happening if we represent the array through pointers (which is the most common case in C anyway).

float matrix[Nrows][Ncols];
for (int i = 0; i<Nrows; i++)
     for (int j= 0; j<Ncols; j++)
           matrix[i][j] += increment; 

float *matrix;
matrix = (float*) malloc( Nrows*Ncols*sizeof(float));
for (int i = 0; i<Nrows; i++)
     for (int j= 0; j<Ncols; j++)
           *matrix(i*Nrows+j) += increment; 

–  Terrible Spatial locality … traverse a linked list (pointer chasing).  Generate lots of “cache thrashing”.

while (p != NULL) {
        DoWork(p);
        p = p->next;
}

• Temporal locality: Try to complete “all” work with data while you know its in the cache.

In most modern 
CPUs, the 

hardware will try 
to hide latency 
by prefetching 

cache lines 
before you need 

them.



Sparse matrix vector multiplication (SpMV) is a good way to see the impact of 
caches across the memory hierarchy 
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Number of non-zeros for a range of standard single precision test matrices
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Memory Hierarchies
• A typical microprocessor memory hierarchy (with a simplified cache hierarchy)

• Consider applications with memory demands larger than the physical memory 
allocated to a process.

• We use virtual memory backed-up by the file system … bringing in pages of 
physical memory … to handle such problems

• The TLB (Translation Lookaside Buffer) implements virtual memory and caches 
the mapping from virtual addresses to physical addresses
- If the entry is in the TLB page table, a small overhead of reading the entry and computed the physical 

address is incurred.
- If the entry is not in the page table, a page fault exception will be raised.  Requires expensive OS 

operations and stalls the CPU.
OS: Operating system

Just a bit of OS theory …

• A process is an instance 
of an executing program.

• An OS manages 
resources (such as 
threads and memory) for 
an executing program in 
terms of the process

DRAM

ALU

Control



Consider the “simple” Matrix Transpose

for (i=0;i<N; i++) {
     for (j=0;j<N;j++) {
         B[i+N*j] = A[j+N*i];
     }
   } 

• Copy the transpose of A into a second matrix B.

• Consider this operation and how it interacts with the TLB (Translation Lookaside Buffer).

RNxNBRNxNA

For large N, as you 
march across 

addresses of A and 
B, you span multiple 
pages in memory … 

causes multiple 
page faultsI-cache

TLB

CPU D-cache
U

nified C
ache

R
eg File

DRAM
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1 ns

10 ns 100 ns

1 ns

ALU

Control



Optimizing Matrix Transpose for the TLB
• Solution … break the loops into blocks so we reduce the number of page faults 

for (i=0; i<N; i+=tile_size) { 
     for (it=i; it<MIN(N,i+tile_size); it++){ 
  for (j=0; j<N; j+=tile_size) { 
     for (jt=j; jt<MIN(N,j+tile_size);jt++){ 
              B[it+N*jt] = A[jt+N*it]; 
          } 
       } 
   } 
} 
 

Step 1: split the “i” and “j” 
loops into two … loop over 
tiles of a fixed size



Optimizing Matrix Transpose for the TLB
• Solution … break the loops into blocks so we reduce the number of page faults 

for (i=0; i<N; i+=tile_size) { 
  for (j=0; j<N; j+=tile_size) { 
      for (it=i; it<MIN(N,i+tile_size); it++){ 
          for (jt=j; jt<MIN(N,j+tile_size);jt++){ 
              B[it+N*jt] = A[jt+N*it]; 
          } 
       } 
   } 
} 
 

Step 2: rearrange the 
loops. Move the loops 
over the tiles to the 
innermost loop-nest

The result … you grab a tile, transpose that tile, then go to the next tile



Do you need to worry about the TLB?

Transpose: 2 threads on a Dual core Intel® Xeon® CPU

Ti
m

e 
(s

ec
on

ds
)

Matrix Order

Tiled to optimize 
use of TLB

Ignore TLB issues (no 
tiling) 

Source: M Frumkin, R. van de Wijngaart, T. G. Mattson, Intel

Lower is 
better



At last we get to the “final” topic in our discussion 
of computer architecture … hardware



Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor 
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.

“Cramming more components onto integrated circuits”, G.E. Moore, Electronics, 38(8), April 1965



We’ve come a long way since Gordon 
Moore proposed his famous law

50

We put billions of these 
transistors on a single chip

How small is a nm (nanometer)?  One nm is 10-9 meters.  Light travels about one foot in 10-9 seconds.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process 



We’ve come a long way since Gordon 
Moore proposed his famous law

We put billions of these 
transistors on a single chip

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process 

An influenza virus is around 100 nm across!
http://www.cdc.gov/flu/images/h1n1/3D_Influenza/3D_Influenza_transparent_no_key_full_med2.gif
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How did those itty-bitty transistors impact performance?  
The Linpack benchmark over time

Cray 1, 1977, first real supercomputer, 
110 MFLOPS (Linpack 1000) 

Apple iPhone 6S,  
2016, 1274 MFLOPS 
“in my pocket”

VAX 11/780, ~1980, 
0.14 the computer I 
used in my Ph.D. 
research

An MFLOPS is one million floating point 
operations per second  (i.e. one millions 
adds or multiplies). 

52



Moore's Law: A personal perspective

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
9000 CPUs 

 one megawatt of electricity.  

1600 square feet of floor space.

First TeraScale* computer: 1997

Intel’s 80 core teraScale Chip 

1 CPU

97 watt

275 mm2

First TeraScale% chip: 2007

%Single Precision TFLOPS running stencil

10 years 
later

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing 
Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

Programming Intel's 80 core terascale processor
SC08, Austin Texas, Nov. 2008,  Tim Mattson, 
Rob van der Wijngaart, Michael Frumkin



CPU Frequency (GHz) over time (years)

54Source: James Reinders (from the book “structured parallel programming”)

What happened to 
performance around 2004?



Dennard Scaling
• Process technology (translates to Transistors per chip) and power per mm2

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Dennard scaling: Assume voltage drops as 
transistors shrink: power/mm2 is flat.  

~2005: threshold voltage limits 
voltage drops.  Plus static power 

effects began to dominate.  
Dennard scaling ends

Process technology nodes defined by the smallest feature on a chip (i.e. gate length in nm).  
After 22 nm, it’s become a marketing term that doesn’t map to a specific feature’s length.



Consider power in a chip … 
C = capacitance  … it measures the ability of a circuit to 
store energy:

C = q/V à    q = CV

Work is pushing something (charge or q) across a 
“distance” … in electrostatic terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 
    

 W = CV2     

power is work over time … or how many times per second 
we oscillate the circuit 

      Power = W* F   à      Power = CV2f

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time



... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source:  Vishwani Agrawal

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor 

f/2

Processor 

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time



Manycore processors: three hardware options

GPU

CPU

Vector



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



Let’s quickly survey the key “on-node” 
parallel hardware approaches

By the term “on-node” I mean we are not going to discuss parallelism that comes from networking together 
large numbers of independent computer systems (as is done for cluster and cloud computing). 



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



CPU parallelism:  Multicore CPUs
• A modern CPU optimized for performance will have multiple cores 

sharing a single memory hierarchy.

• The memory appears as a single address space.

• An instance of a program is a process.

• The process has a region of memory, system resources, and one or 
more threads.

• Parallelism is managed by the programmer as multiple threads mapped 
to the various cores.

• When every core is treated the same by the operating system (OS) and 
has an equal cost function to any location in memory, we call this a 
symmetric multiprocessor or SMP.

A four core CPU 
running a process 

with 8 threads 
mapped as 2 threads 

per core

Memory



CPU and Memory: a harsh does of reality
● Most systems today are Non-Uniform Memory Access (NUMA)
● Accessing memory in remote NUMA is slower than accessing memory in local NUMA
● Accessing High Bandwidth Memory is faster than DDR

Diagram courtesy Ruud van der Pas

Also possible on-package 
high bandwidth memory 
on the node

Each core may have 
multiple hyperthreads

LLC: Last level cache



CPU and Memory: a harsh does of reality
2 Intel® Xeon™ E5-2698 v3 CPUs (Haswell) per node (launched Q3’14)

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0

As configured for Cori at NERSC: CPUs at 2.3 GHz,  2 16 GB  DIMMs per DDR memory 
controller,  16 cores per CPU.  2 CPUs connected by a high-speed interconnect (QPI) 

2 Hardware threads (HT) per core
Intel® AVX2 (256 bit Vector unit)
L1$ instruction and data: 32 KB
Unified L2$ 256 KB 

40 MB 
shared L3$

DDR: Double Data Rate 
memory controller

PCIe is the connection from 
the CPU to other devices in a 
node.

QPI: Quick Path Interconnect.  
A coherent interconnect 
between CPUs.  Makes it 
easy to build multiple CPU 
nodes.

4 blocks of 8 core units connected by an on-chip-
network with a DDR memory controller.

This constitutes a NUMA domain since memory access 
from a core to its “own” DDR is less expensive.



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

66

Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b[i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

67

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) 
{
    int i = blockIdx.x * blockDim.x + 
threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, 
N);
}

1. Turn source code into a 
scalar work-item

2. Map work-items onto an 
N dim index space. 

4. Run on hardware 
designed around the 

same SIMT 
execution model

3. Map data structures 
onto the same index 

spaceThis is CUDA code … the sort of code 
the OpenMP compiler generates on 

your behalf
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A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD 
processor
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A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local  Memory (work-group)

Global  Memory (kernel)

Logical Memory Hierarchy



Look out for dishonest GPU/CPU 
benchmarking



NVIDIA Performance claims
An Nvidia slide from CLSAC’18 talk
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“CPU Node”  = 1 AWS 
Broadwell  Intel® Xeon® E5 

hardware thread.

Their “100 CPU nodes” is 
equivalent to three Intel® 

Xeon® E5 processors.

DGX-1: 
• 2 CPUs ( 20 core Intel Xeon® E5)
• 4 Tesla® v100 GPUs

DGx-2:
• 2 CPUs(24 core Xeon® platinum8168)
• 16 Tesla® v100 GPUs

This is the most 
dishonest marketing I 

have EVER seen.  

Plus they are comparing unoptimized, generic Python to highly optimized, custom CUDA code!



Sparse matrix vector product: GPU vs. CPU
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Source: Victor Lee et. al. “Debunking the 
100X GPU vs. CPU Myth”, ISCA 2010 

• [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core 2 Duo E8400 CPU … 
but they used an old CPU with unoptimized code

0

1

2

3

4

5

6

7

8

9
Si

ng
le

 P
re

ci
si

on
 S

pM
VM

FE
M

/c
an

t  
(G

FL
O

PS
)

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU 
Baseline

8 threads 
on 4 
cores

Vectorize Register 
tiling + 

Pipelining

Cache 
Blocking

• Heavily optimized both the GPU kernels and the CPU code.
• We did not include memory movement onto the GPU … even 

though that would make the CPU look better!

Result: a 2.1 speedup … which makes sense given 
better bandwidth of GDDR5

[Vazquez09]: F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.Fernandez. The sparse matrix vector product on GPUs. Technical report, University of Almeria, June 2009.



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



Vector (SIMD) Programming

• Architects love vector units, since 
they permit space- and energy- 
efficient parallel implementations.

• However, standard SIMD instructions 
on CPUs are inflexible, and can be 
difficult to use.

• Options:
– Let the compiler do the job
– Assist the compiler with language level 

constructs for explicit vectorization.
– Use intrinsics … an assembly level 

approach.

4 way SIMD (SSE) 16 way SIMD 
(Xeon™ PHI)



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a 
sum of rectangles:

Where each rectangle has width Dx and 
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0
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Serial PI program

static long num_steps = 100000;
float step;
int main ()
{   int i;   float x, pi, sum = 0.0;

   step = 1.0/(float) num_steps;

   for (i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
}

Normally, I’d use double types throughout to minimize roundoff errors especially on the accumulation 
into sum.  But to maximize impact of vectorization for these exercise, we’ll use float types.    

Literals as double (no-vec), 0.012 secs
Literals as Float (no-vec),    0.0042 secs
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Explicit vectorization of our Pi Program: Step 1 ... Unroll the loop

float pi_unroll(int  num_steps)
{
    float step, x0, x1, x2, x3, pi, sum = 0.0;

    step = 1.0f/(float) num_steps;

    for (int i=1;i<= num_steps; i=i+4){      //unroll by 4, assume num_steps%4 = 0
       x0 = (i-0.5f)*step;
       x1 = (i+0.5f)*step;
       x2 = (i+1.5f)*step;
       x3 = (i+2.5f)*step;
       sum += 4.0f*(1.0f/(1.0f+x0*x0) + 1.0f/(1.0f+x1*x1)  + 1.0f/(1.0f+x2*x2)  + 1.0f/(1.0f+x3*x3));
    }

      pi = step * sum;
      return pi;
}

• We need one interation to fit in the vector unit

• What is the width of your vector unit?  
• We’ll use SSE which is 128 bits wide.
• A float in C is 32 bits wide … 4 floats fits in 128 bits

So unroll our loop by four
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Explicit vectorization of our Pi Program: Step 2 ... Add SSE intrinsics

#include <immintrin.h>
float pi_sse(int  num_steps) 
 {
   float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4];

step = 1.0/(float) num_steps;

__m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
   __m128 one     = _mm_load1_ps(&scalar_one);
   __m128 four    = _mm_load1_ps(&scalar_four);

__m128 vstep  = _mm_load1_ps(&step);
__m128 sum    = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom;  __m128 eye;

  for (int i=0;i< num_steps; i=i+4){          // unroll loop 4 times
ival       = (float)i;                             // and assume num_steps%4 = 0
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

return pi;
}

The vast majority of 
programmers never 
write explicitly 
vectorized code.

It is important to 
understand explicit 
vectorization so you 
appreciate what the 
compiler does to 
vectorize code for you
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PI program Results:
Times in Seconds (50 runs, min time reported)

4194304 steps

– Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
– Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Base case:
float –no-vec

autovec:
float

Explicit SSE:
float

Float, autovec,     0.0023 secs
Float, SSE,           0.0016 secs
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OK, let’s wrap up and conclude all this 
architecture stuff



The key to high performance

Occupancy:  keep the back-end busy
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Memory optimization is the number one priority in maximizing performance 

Regular and predictable flows of instructions

• Have enough work to keep all the functional units fully 
engaged … order dozens per core

• Have enough work to keep all the functional units fully 
engaged … order thousand per GPU

• Use inline-functions and short loop-bodies to keep the  
Micro-op cache full.

• Avoid complex branching. Reduce iCache and iTLB misses.  • Branches lead to diverged execution and wastes 
resources.   Aggressively structure algorithms to avoid 
them. The goal … converged execution flow

• Algorithms optimized for throughput computing … Data 
parallelism replicating blocks of code (kernels)as 
work-items (CUDA-threads) per GPU 

• Organize computation around the cache hierarchy • Organize computation around the cache hierarchy … block 
work so work-items exploit private memory and work-groups 
exploit local memory (CUDA shared-memory).

• Bring data into a cache, and do as much work as you can 
before it is evicted. 

• Memory coalescence: if SIMD-lane j works on a[j] then 
SIMD-lane (j+1) should work on a[j+1].

• Minimize expensive ops (such as divide and square root) 
Write code the compiler can vectorize (see next slide).

• Make branches predictable ... Misprediction is expensive.

• Avoid indirect addressing (such as tmp=x[a[j+k]])

CPU GPU

We didn’t say much about GPUs, but I want to include these comments 
here to highllight similarities in optimization for GPUs and CPUs. 
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Source: Introduction to Architecture and Performance, Felice Pantaleo, ESC’23



Parallelism: we’ve covered the “on-node” cases

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We’ll discuss these later … after you understand 
how to write software for the “on-node” cases



Summary
• We’ve covered more material in this one lecture than you can possibly absorb.  Sorry.  Use these slides as reference 

material and talk to me during our time together.   Working together, you can master what you need.

• I’ll give the closing statement to Sverre Jarp … an old friend of ESC
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