
Introduction to parallelism in C++
with Intel Threading Building Blocks

Andrea Bocci
CERN

parallelism in C++ 11

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 3 / 17

parallelism in C++ 11

● C++ 11 introduced the building blocks to express parallelism in C++
● threads:

– std::thread

– std::jthread (since C++20)

● critical sections: “mutual exclusion”
– std::mutex, …

and locks:
– std::lock_guard,
– std::scoped_lock (since C++17), …

● atomic operations:
– std::atomic<T>,

– std::atomic_ref<T> (since C++20)

https://creativecommons.org/licenses/by-sa/4.0/
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic_ref

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 4 / 17

parallelism in C++ 17

● C++ 17 introduced parallel algorithms and execution policies to express parallelism
● std::execution::sequenced_policy

– may not be parallelized

– serial execution, same as the legacy algorithms (?)

● std::execution::parallel_policy
– may be parallelized

– may run in the calling thread or in other threads managed by te library

● std::execution::parallel_unsequenced_policy
– may be parallelized, vectorised, or migrated across threads

● std::execution::unsequenced_policy (since C++20)
– may be vectorised, e.g. with SSE, AVX2, AVX512, etc.

● if you can express your problem using algorithms,
parallel algorithms give you a simple way to leverage parallelism to speed up your code

https://creativecommons.org/licenses/by-sa/4.0/
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 5 / 17

hands-on exercises

● hands-on/tbb/:

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/tree/main/hands-on/tbb

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 6 / 17

parallel algorithms: sorting

● hands-on/tbb/01_parallel_stl_sort/test.cc:
● generate 1’000’000 random numbers
● measure how long it takes to sort them

– repeatedly

● use the parallel STL to speed up the sorting

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/01_parallel_stl_sort/test.cc

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 7 / 17

parallel algorithms: user functions

● hands-on/tbb/02_parallel_stl_saxpy/test.cc:
● generate a random scalar number x
● generate two vectors of 100’000’000 random numbers A and B
● measure how log it takes to apply the “saxpy” kernel to the vectors

– (single precision) A x + B

● use the parallel STL to speed up the operations

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/02_parallel_stl_saxpy/test.cc

parallelism with Intel TBB

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 9 / 17

parallelism with Intel TBB

● Intel Threading Building Blocks
● now part of the oneAPI branding: oneTBB
● including the official documentation and reference
● migrating from the original TBB to oneTBB requires some small changes

● why TBB ?
● scalability and load balancing
● composability
● multiple levels of parallelism

– task-based parallelism: parallel_invoke, parallel_pipeline, various graph types

– fork-join parallelism: parallel_for, various parallel algorithms

● access to low level interface
– task_group, task_arena, observers, etc.

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/nested-index.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-parallel-invoke
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Working_on_the_Assembly_Line_pipeline.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Flow_Graph.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-task-group
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html#task-arena

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 10 / 17

Pro TBB

● Pro TBB (2019)
● Voss, Asenjo, Reinders
● https://doi.org/10.1007/978-1-4842-4398-5
● open access book

● all examples in the book are on GitHub
● https://github.com/Apress/pro-TBB

● the book describes the old TBB API
● prior to the migration to oneTBB
● use the oneTBB branch !

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-1-4842-4398-5
https://github.com/Apress/pro-TBB/tree/oneTBB
https://github.com/Apress/pro-TBB/tree/oneTBB

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 11 / 17

saxpy with TBB

● hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc:
● generate a random scalar number x
● generate two vectors of 100’000’000 random numbers A and B
● measure how log it takes to apply the “saxpy” kernel to the vectors

– (single precision) A x + B

● use tbb::parallel_for to speed up the operations

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 12 / 17

Art @ ESC24 !

https://creativecommons.org/licenses/by-sa/4.0/

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 13 / 17

dependencies

● stb_image.h and stb_image_write.h reading and writing image files

● {fmt} for formatted output
● gcc 12 does not include c++20 std::format
● {fmt} includes a lot more !

● both libraries can be used in header-only mode
● increases compilation times
● easier to set up

all: test

stb:
 git clone https://github.com/nothings/stb.git

fmt:
 git clone https://github.com/fmtlib/fmt.git

test: test.cc Makefile stb fmt
 g++ -std=c++20 -O3 -g -Istb -Ifmt/include -Wall -march=native -ltbb $< -o $@

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image_write.h
https://github.com/fmtlib/fmt

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 14 / 17

● hands-on/tbb/04_images/test.cc:
● read one image from a file
● display the image on the terminal
● make a 0.5×0.5 smaller copy of the image
● convert the image to gray scale
● make tinted copies
● combine the gray scale and tinted images into

a single image with the same size as the original
● display the image on the terminal
● write the image to a file

our task list

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/04_images/test.cc

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 15 / 17

multiple levels of parallelism

● with TBB we can easily (?) express multiple levels of parallelism
● algorithmic parallelism: parallelise the inner loops in the various algorithms

– scaling
– gray scaling
– tinting
– very dependent on the algorithms

● task-based parallelism: parallelise the different tasks working on the same data
– apply the different tints can be done in parallel

● note: this is not an efficient approach… why ?
– writing to disk in parallel in parallel to displaying on the terminal
– very dependent on the workflow

● data parallelism: process multiple images in parallel
– weak scaling
– often the most efficient approach for large datasets

● composability: you can also apply all of them to the same problem !

https://creativecommons.org/licenses/by-sa/4.0/

October 10 , 2024ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 16 / 17

hands-on exercises

● hands-on/tbb/:

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/tree/main/hands-on/tbb

questions ?

