e Wl = g
4, Y 1
' L}
i
e
o .

(iERN Introduction to par

==

NALS with Intel Threading Ui

parallelism in C++ 11

\
EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

 C++ 11 introduced the building blocks to express parallelism in C++

* threads:
= std::thread
- std::jthread (since C++20)

e critical sections: “mutual exclusion”

std::mutex, ...

and locks:

std: :lock_guard,

- std::scoped_lock (since C++17), ...
* atomic operations:

- std::atomic<T>,

- std::atomic_ref<T> (since C++20)

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/thread/jthread
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic_ref

\
EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

 C++17introduced parallel algorithms and execution policies to express parallelism

std: :execution: :sequenced policy
- may not be parallelized
- serial execution, same as the legacy algorithms (?)
std: :execution::parallel policy
- may be parallelized
- may runin the calling thread or in other threads managed by te library
std: :execution::parallel _unsequenced policy
- may be parallelized, vectorised, or migrated across threads
std: :execution: :unsequenced policy (since C++20)
- may be vectorised, e.g. with SSE, AVX2, AVX512, etc.

if you can express your problem using algorithms,
parallel algorithms give you a simple way to leverage parallelism to speed up your code

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

hands-on exercises = ©= 1 (&

hands-on/tbb/:

WET T Last commit message Last commit date

October 10th, 2024

01_parallel_stl_sort

02_parallel_stl_saxpy

03_tbb_parallel_for_saxpy

04_images

06_tbb_graph

07_tbb_parallel_for_local

08_tbb_hierarchical

-
|
i
|
i
|
|
|
|
D

.clang-format

05_tbb_parallel_for_images

Move solutions to a

Viove solutions to a

Move solutions to a

Apply consistent forn

Apply consistent forn

Jse typedefs, add co

Apply consistent forn

Jse typedefs, add co

\pply consistent forn

separate directory

separate directory

separate directory

1atting

1atting

mments

1atting

mments

1atting

5 minutes agc

5 minutes agc

5 minutes

6 hours

6 hours agc
21 minutes agc
6 hours agc
21 minutes agc

6 hours agc

Introduction to parallelism in C++ with Intel Threading Building Blocks

5/17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/tree/main/hands-on/tbb

EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

hands-on/tbb/01 parallel stl sort/test.cc:
* generate 1°'000'000 random numbers

* measure how long it takes to sort them
- repeatedly

void measure(bool verbose, std::vector<std::uint64_t> v) {
const auto start = :steady_clock: :now();
std::sort(v.begin(), v.end());
const auto finish = std::chrono: :steady_clock::now();
if {verbose) {
std: :cout << std::chrono::duration_cast<std::chrono::milliseconds>(finish - start).count() << "ms“n";

use the parallel STL to speed up the sorting

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks 6/17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/01_parallel_stl_sort/test.cc

hands-on/t

bb/02_parallel _stl saxpy/test.cc:

* generate a random scalar number x
* generate two vectors of 100°'000'000 random numbers A and B
measure how log it takes to apply the “saxpy” kernel to the vectors

- (sin

template <ty

void axpy(
z=a?*

}

template <
void seque
std: :tra
Iz
axpy(a
return
1)
}

use the

October 10th, 2024

gle precision) A x + B

pename T>
T a, Tix T v T&z2)f
X + y;

typename T>
ntial axpy(T a, std::vector<T> const& x, std::vector<T> const& y, std::vector<T>& z) {
nsform(x.begin(), x.end(), y.begin(), z.begin(), [al(T x, Ty) -> T {

G2 sl
Z;

parallel STL to speed up the operations

Introduction to parallelism in C++ with Intel Threading Building Blocks

P
e

) parallel algorithms: user fun tln

\
EFFICIENT

SCIENTIFIC
COMPUTING

SCHOOL

7/17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/02_parallel_stl_saxpy/test.cc

parallelism with Intel TBB

\
EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

* Intel Threading Building Blocks
* now part of the oneAPI branding: oneTBB
* including the official documentation and reference
* migrating from the original TBB to oneTBB requires some small changes

« whyTBB?
« scalability and load balancing
* composability
* multiple levels of parallelism

- task-based parallelism: parallel_invoke, parallel_pipeline, various graph types
- Fork-join parallelism: parallel_for, various parallel algorithms

e access to low level interface

- task_group, task_arena, observers, etc.

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/nested-index.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-parallel-invoke
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Working_on_the_Assembly_Line_pipeline.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Flow_Graph.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-task-group
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html#task-arena

)

SCHOOL

n2 EFFICIENT
r ‘ . SCIENTIFIC
! COMPUTING

* ProTBB (2019)
* Voss, Asenjo, Reinders
* https://doi.org/10.1007/978-1-4842-4398-5

* open access book

Pro TB B allexamplesin the book are on GitHub

* https://github.com/Apress/pro-TBB

C++ Parallel Programming with
Threading Building Blocks

T * the book describes the old TBB API

Rafael Asenj . . X
James Reinders » prior to the migration to oneTBB
 usetheoneTBB branch!

October 10th, 2024

Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-1-4842-4398-5
https://github.com/Apress/pro-TBB/tree/oneTBB
https://github.com/Apress/pro-TBB/tree/oneTBB

8 \ il 'r;\ '.ﬂ_ a.__ N e \
° : N : 2
B e, ! EFFICIENT
L = SCIENTIFIC
TN RN W o COMPUTING
o Y SN J 2 | SCHooL
¥or AN & j

hands-on/tbb/03_tbb_parallel for_saxpy/test.cc:
generate a random scalar number x
generate two vectors of 100'000'000 random numbers A and B

measure how log it takes to apply the “saxpy” kernel to the vectors

- (single precision) A x + B

template <typename T>

void axpy(T a, T x, Ty, T& z) {
zZ=a*x+y;

}

template <typename T>
void sequential axpy(T a, std::vector<T> const& x, std::vector<T> const& y, std::vector<T>& z) {
std::size t size = x.size();
for (std::size t 1 = 0; i < size; ++i) {
axpy(a, x[1], y[i], z[i]);
}
}

use tbb: :parallel_for to speed up the operations

October 10, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks 11 /17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc

At @ESC24! sofiiE . ()

COMPUTING
SCHOOL

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/

3 el /7 AT R Y \\
[S e e RIS T EFFICIENT
| = T80 N i N i SCIENTIFIC
e\ ,‘ = COMPUTING
; “% — ¥ | SCHOOL
2 . AN
B * c N]

stb image.h and stb _image write.h reading and writing image files

e {Ffmt} for formatted output
* gcc12doesnotinclude c++20 std: : format
 {fmt}includes a lot more!

* both libraries can be used in header-only mode

* increases compilation times

* easier tosetup

test.cc Makefile stb fmt

October 10, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks 13 /17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image_write.h
https://github.com/fmtlib/fmt

)

SCHOOL

our task list =

* hands-on/tbb/04_images/test.cc:
* read one image from a file

» display the image on the terminal

* make a 0.5x0.5 smaller copy of the image
» convert the image to gray scale

* make tinted copies

» combine the gray scale and tinted images into
a single image with the same size as the original

» display the image on the terminal
* write the image to a file

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/04_images/test.cc

\
EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

* with TBB we can easily (?) express multiple levels of parallelism

* algorithmic parallelism: parallelise the inner loops in the various algorithms
— scaling
— grayscaling
~ tinting
— very dependent on the algorithms
* task-based parallelism: parallelise the different tasks working on the same data
— apply the different tints can be done in parallel

* note:thisis not an efficient approach... why ?
— writing to disk in parallel in parallel to displaying on the terminal

— very dependent on the workflow

* data parallelism: process multiple images in parallel
- weak scaling
— often the most efficient approach For large datasets

* composability: you can also apply all of them to the same problem!

October 10t, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/

hands-on exercises = ©= 1 (&

hands-on/tbb/:

Name Last commit message Last commit date

01_parallel_stl_sort Move solutions to a separate directory 5 minutes agc
02_parallel_stl_saxpy \Viove solutions to a separate directory 5 minutes agc

03_tbb_parallel_for_saxpy Move solutions to a separate directory 5 minutes agc

05_tbb_parallel_for_images Apply consistent formatting 6 hours agc
06_tbb_graph Jse typedefs, add comments 21 minutes agc
07_tbb_parallel_for_local Apply consistent formatting 6 hours agc

08_tbb_hierarchical Jse typedefs, add comments 21 minutes agc

..
.
|
.
BB 04_images Apply consistent formatting 6 hours agc
.
-
.
-
B

.clang-format Apply consistent formatting 6 hours agc

October 10th, 2024 Introduction to parallelism in C++ with Intel Threading Building Blocks 16 /17

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/tree/main/hands-on/tbb

questions ?

