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 C++ 11 introduced the building blocks to express parallelism in C++

* threads:
= std::thread
- std::jthread (since C++20)

e critical sections: “mutual exclusion”

std::mutex, ...

and locks:

std: :lock_guard,

- std::scoped_lock (since C++17), ...
* atomic operations:

- std::atomic<T>,

-  std::atomic_ref<T> (since C++20)
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 C++17introduced parallel algorithms and execution policies to express parallelism

std: :execution: :sequenced policy
- may not be parallelized
- serial execution, same as the legacy algorithms (?)
std: :execution::parallel policy
- may be parallelized
- may runin the calling thread or in other threads managed by te library
std: :execution::parallel _unsequenced policy
- may be parallelized, vectorised, or migrated across threads
std: :execution: :unsequenced policy (since C++20)
- may be vectorised, e.g. with SSE, AVX2, AVX512, etc.

if you can express your problem using algorithms,
parallel algorithms give you a simple way to leverage parallelism to speed up your code
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hands-on/tbb/01 parallel stl sort/test.cc:
* generate 1°'000'000 random numbers

* measure how long it takes to sort them
- repeatedly

void measure(bool verbose, std::vector<std::uint64_t> v) {
const auto start = :steady_clock: :now();
std::sort(v.begin(), v.end());
const auto finish = std::chrono: :steady_clock::now();
if {verbose) {
std: :cout << std::chrono::duration_cast<std::chrono::milliseconds>(finish - start).count() << "ms“n";

use the parallel STL to speed up the sorting
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hands-on/t

bb/02_parallel _stl saxpy/test.cc:

* generate a random scalar number x
* generate two vectors of 100°'000'000 random numbers A and B
measure how log it takes to apply the “saxpy” kernel to the vectors

- (sin

template <ty

void axpy(
z=a?*

}

template <
void seque
std: :tra
Iz
axpy(a
return
1)
}

use the

October 10th, 2024

gle precision) A x + B

pename T>
T a, Tix T v T&z2)f
X + y;

typename T>
ntial axpy(T a, std::vector<T> const& x, std::vector<T> const& y, std::vector<T>& z) {
nsform(x.begin(), x.end(), y.begin(), z.begin(), [al(T x, Ty) -> T {

G2 sl
Z;

parallel STL to speed up the operations
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* Intel Threading Building Blocks
* now part of the oneAPI branding: oneTBB
* including the official documentation and reference
* migrating from the original TBB to oneTBB requires some small changes

« whyTBB?
« scalability and load balancing
* composability
* multiple levels of parallelism

-  task-based parallelism: parallel_invoke, parallel_pipeline, various graph types
- Fork-join parallelism: parallel_for, various parallel algorithms

e access to low level interface

- task_group, task_arena, observers, etc.
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* ProTBB (2019)
* Voss, Asenjo, Reinders
* https://doi.org/10.1007/978-1-4842-4398-5

* open access book

Pro TB B  allexamplesin the book are on GitHub

* https://github.com/Apress/pro-TBB

C++ Parallel Programming with
Threading Building Blocks

T * the book describes the old TBB API

Rafael Asenj . . X
James Reinders » prior to the migration to oneTBB
 usetheoneTBB branch!
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hands-on/tbb/03_tbb_parallel for_saxpy/test.cc:
generate a random scalar number x
generate two vectors of 100'000'000 random numbers A and B

measure how log it takes to apply the “saxpy” kernel to the vectors

- (single precision) A x + B

template <typename T>

void axpy(T a, T x, Ty, T& z) {
zZ=a*x+y;

}

template <typename T>
void sequential axpy(T a, std::vector<T> const& x, std::vector<T> const& y, std::vector<T>& z) {
std::size t size = x.size();
for (std::size t 1 = 0; i < size; ++i) {
axpy(a, x[1], y[i], z[i]);
}
}

use tbb: :parallel_for to speed up the operations
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stb image.h and stb _image write.h reading and writing image files

e {Ffmt} for formatted output
* gcc12doesnotinclude c++20 std: : format
 {fmt}includes a lot more!

* both libraries can be used in header-only mode

* increases compilation times

* easier tosetup

test.cc Makefile stb fmt
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* hands-on/tbb/04_images/test.cc:
* read one image from a file

» display the image on the terminal

* make a 0.5x0.5 smaller copy of the image
» convert the image to gray scale

* make tinted copies

» combine the gray scale and tinted images into
a single image with the same size as the original

» display the image on the terminal
* write the image to a file
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* with TBB we can easily (?) express multiple levels of parallelism

* algorithmic parallelism: parallelise the inner loops in the various algorithms
— scaling
— grayscaling
~ tinting
— very dependent on the algorithms
* task-based parallelism: parallelise the different tasks working on the same data
— apply the different tints can be done in parallel

* note:thisis not an efficient approach... why ?
— writing to disk in parallel in parallel to displaying on the terminal

— very dependent on the workflow

* data parallelism: process multiple images in parallel
- weak scaling
— often the most efficient approach For large datasets

* composability: you can also apply all of them to the same problem!
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hands-on/tbb/:

Name Last commit message Last commit date

01_parallel_stl_sort Move solutions to a separate directory 5 minutes agc
02_parallel_stl_saxpy \Viove solutions to a separate directory 5 minutes agc

03_tbb_parallel_for_saxpy Move solutions to a separate directory 5 minutes agc

05_tbb_parallel_for_images Apply consistent formatting 6 hours agc
06_tbb_graph Jse typedefs, add comments 21 minutes agc
07_tbb_parallel_for_local Apply consistent formatting 6 hours agc

08_tbb_hierarchical Jse typedefs, add comments 21 minutes agc

..
.
|
.
BB 04_images Apply consistent formatting 6 hours agc
.
-
.
-
B

.clang-format Apply consistent formatting 6 hours agc
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