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Parameters in the radiative BR
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|V ∗
tsVtb|2 = |Vcb|2

�
1 + λ2(2ρ̄− 1) +O(λ4)

�
= 0.961(2)|Vcb|2

BR[B → Xsγ]Eγ>E0 ∼ αG2
Fm

5
b |V ∗

tsVtb|2|Ceff
7 (mb)|2

The CKM factor is essentially |Vcb|2

α |Vcb| αs mb mc mt MW µ2
π∼−λ1 µ2

G∼3λ2 ρ3D ρ3LS

sin2 θW MH MZ Vub ...in EW corr & subleading terms also

Relevant parameters:

δVcb

Vcb
∼ 2% ⇒ δBRγ

BRγ
∼ 4%

δmb

mb
∼ 0.5% ⇒ δBRγ

BRγ
∼ 2.5%

Non-pert parameters, b,c masses and Vcb from inclusive sl B decays, 
also important for extrapolation to E0=1.6GeV

(UTFit 2011)

2% 0.5%
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The phase space factor
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phase space factor
given by OPE

C = g
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+ cD
ρ3D
m3
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+ cL
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m3
b

+O(α3
s,

Λ3

m3
b
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�

NNLO QCD
its mc dependence partially cancels that of C

is actually what enters BRγ 

~3%neglecting WA which cancel out in F
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Inclusive B decays
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γ,W*

BRclv       C        δNP
can all be extracted from s.l. B decays

are correlated
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Fitting OPE parameters to the moments 
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Total rate gives |Vcb|, global shape parameters (moments of the 
distributions) tell us about B structure, mb and mc 

OPE parameters describe universal properties of the B meson and of the 
quarks → useful in many applications

Present implementations include all terms through 
O(αs2β0,1/mb3): mb,c, µ2π,G,  ρ3D,LS  6 parameters 

mx spectrumEl spectrum
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Global HFAG fit 

A number of different 
assumptions are also important:

which data are included,  
how theory errors are 

computed...

Inputs |Vcb| 103 mbkin χ2/ndf
b→c & 
b→sγ 41.85(44)(58) 4.590(31) 29.7/59

b→c only 41.68(48)(58) 4.646(47) 24.2/48

These results refer to the kinetic 
scheme,  where the contributions

of gluons with energy below µ≈1GeV are 
absorbed in the OPE parameters

Based on PG, Uraltsev, Benson et al

Very close result for |Vcb| in 1S scheme        
Bauer Ligeti Luke Manohar Trott 
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Theoretical errors dominate
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C from inclusive s.l. B decays

• Bauer et al, Manohar (2004-06):    C=0.580(16)       

NNLO BRγ=3.15 10-4               total parametric error 3%

• Giordano, PG (2008,HFAG fit):   C=0.546(17)(16)              

NNLO BRγ=3.28 10-4               total parametric error 3.7%
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Uncomfortable discrepancy:  why?

exp th
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Where the two determinations differ

1. 1S (Bauer et al) vs kinetic scheme (GG)

2. different treatment of higher power corrections in hadronic moments

3. use of additional constraints: MB-MD etc (Bauer et al)

4. slightly different data sets 

5. different treatment of radiative moments & their uncertainties

6. different estimates of theory uncertainties and correlations among them
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_ _

Once mc/mb is fixed, C receives small corrections: look at the masses

Weak Annihilation
cancels out in F!
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A strip in the mb-mc plane
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Constant values
of s.l. width
at fixed Vcb

Semileptonic moments do not measure mb well. They rather identify a strip in 
(mb,mc) plane along which the minimum is shallow.

Constraints from first 3
leptonic central moments

Fitted |Vcb| stable

07

Unknown non-pert O(αs/mb) effects in radiative moments. Possibly irrelevant 
here but must be studied. But role of radiative moments in the fits is equivalent to 
using loose bound mb(mb)=4.20(7)GeV

C=0.529

C=0.563
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How reliable are mass determinations?
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Collaboration with C. Schwanda, in progress
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1.

2.

3.

Theoretical correlations

Schwanda, PG

Correlations between theory errors of 
moments with different cuts difficult to estimate 

Examples:

1. 100% correlations
2. corr. computed from low-order expressions
3. experimental correlations (very similar to no correlation) 

always assume different central moments uncorrelated
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Using mass determinations
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Recent sum rules determinations
converted to kin scheme
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1.00 1.05 1.10 1.15 1.20 1.25

4.50

4.55

4.60

4.65

mc
kin�GeV�

m
bk
in
�GeV�

new SL fit 

Kuhn et al 2009
Hoang et al 2010

Hoang (mb)

PRELIM
IN

A
RY

Comparisons and combinations for mb,c 
penalized by changes of scheme.
Better to avoid mc(mc).
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Preliminary C, F determination

• Direct fit to mc(3GeV) with Karlsruhe constraint on mc leads to 

        mb
kin=4.535(21)GeV   ➨  mb(mb)=4.165(36)GeV (MSbar)

 
       consistent with Karlsruhe’s group mb determination

• changing th correlations results vary widely:                
C= 0.569(26)    0.553(22)   0.548(17) ...

• including mc(3GeV)=0.986(13)GeV (Kuhn et al) in the fit                                                   

C=0.571(7)           F=1.794(23)                         

where only the experimental uncertainty is shown

13

Schwanda, PG



Paolo Gambino   SuperB@LNF    12/12/2011

Fits at NNLO 
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contrast to [6], where it was defined at µ = 0. Most of these changes have already been
included in the version of the Fortran code employed by HFAG [3] in the last few years.

The O(α2
s) corrections that are not enhanced by β0, which we will call non-BLM correc-

tions, are known to be subdominant when αs is normalized at mb. They have been recently
computed in [13, 15, 14]. While Refs. [13, 15] adopt numerical methods and can take into
account arbitrary cuts on the lepton energy, the authors of [14] expand the moments in
powers of mc/mb and provide only results without cuts. The two calculations are in good
agreement and their implementation in our codes is in principle straightforward. However,
the strong cancellations occurring in the calculation of normalized central moments require
a high level of numerical precision. Indeed, radiative corrections to the El spectrum tend
to renormalize the tree level spectrum in a nearly constant way, i.e. hard gluon emission is
comparatively suppressed. This implies that the perturbative corrections tend to drop out
of normalized moments. Let us consider for instance the first leptonic moment in the kinetic
scheme with µ = 1GeV, using r = 0.25, mb = 4.6GeV and Ecut = 1GeV:

�El�El>1GeV = 1.54GeV

�
1 + (0.96den − 0.93)

αs

π
+ (0.48den − 0.46) β0

�αs

π

�2
(5)

+ [1.69(7)− 1.75(9)den]
�αs

π

�2
+O(1/m2

b ,α
3
s)

�

It is interesting to note that such kinematic cancellations between numerator and denomina-
tor affect the O(αs), O(α2

sβ0), and two-loop non-BLM corrections in a similar way. We have
indicated in brackets the numerical uncertainty of the non-BLM correction [13]: the resulting
coefficient in that case is −0.06± 0.12. Similar conclusions can be drawn at different values
of the cut and for higher linear moments. As discussed in [15], these cancellations are not
accidental. In the limit ξ → ξmax = 1− r2 the cancellations between numerator and denom-
inator are complete at any perturbative order: therefore the higher the cut, the stronger the
cancellation. Moreover the peak of the lepton energy distribution is relatively narrow and
close to the endpoint, which further protects the moments from radiative corrections.

In the case of the higher central moments, additional cancellations occur at each pertur-
bative order between normalized moments. In �2, for instance, �E2

l � and �El�2 tend to cancel
each other: for the same inputs as in Eq.(6) we have

�2 = �E2
� � − �E��2 = (2.479− 2.393)GeV2 = 0.087GeV2

.

Such cancellations are quite general and are further enhanced by higher Ecut. They are
simply a consequence of the fact that, as we have just seen, at each perturbative order the
spectrum follows approximately the tree-level spectrum, which is peaked at ξ ≈ 0.7− 0.8.

One obvious consequence of the cancellations we have just discussed is that the numerical
accuracy with which the non-BLM corrections are known becomes a serious issue. While
we have explained the origin of the cancellations, we need a precise calculation to know
their exact extent, and the result will have some impact on the estimate of the remaining
theoretical uncertainty.

4

✴ Complete 2loop corrections to 
width and moments with cuts are 
now known, either in expansion 
mc/mb or numerically     Biswas-Melnikov 

Pak-Czarnecki, PG  

✴ Non-BLM minor corrections to BLM, residual th error on Vcb O(0.5%).

✴ Strong cancellations between different contributions make NNLO to moments: 
non-accidental, numerical accuracy crucial

contrast to [6], where it was defined at µ = 0. Most of these changes have already been
included in the version of the Fortran code employed by HFAG [3] in the last few years.

The O(α2
s) corrections that are not enhanced by β0, which we will call non-BLM correc-

tions, are known to be subdominant when αs is normalized at mb. They have been recently
computed in [13, 15, 14]. While Refs. [13, 15] adopt numerical methods and can take into
account arbitrary cuts on the lepton energy, the authors of [14] expand the moments in
powers of mc/mb and provide only results without cuts. The two calculations are in good
agreement and their implementation in our codes is in principle straightforward. However,
the strong cancellations occurring in the calculation of normalized central moments require
a high level of numerical precision. Indeed, radiative corrections to the El spectrum tend
to renormalize the tree level spectrum in a nearly constant way, i.e. hard gluon emission is
comparatively suppressed. This implies that the perturbative corrections tend to drop out
of normalized moments. Let us consider for instance the first leptonic moment in the kinetic
scheme with µ = 1GeV, using r = 0.25, mb = 4.6GeV and Ecut = 1GeV:
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It is interesting to note that such kinematic cancellations between numerator and denomina-
tor affect the O(αs), O(α2

sβ0), and two-loop non-BLM corrections in a similar way. We have
indicated in brackets the numerical uncertainty of the non-BLM correction [13]: the resulting
coefficient in that case is −0.06± 0.12. Similar conclusions can be drawn at different values
of the cut and for higher linear moments. As discussed in [15], these cancellations are not
accidental. In the limit ξ → ξmax = 1− r2 the cancellations between numerator and denom-
inator are complete at any perturbative order: therefore the higher the cut, the stronger the
cancellation. Moreover the peak of the lepton energy distribution is relatively narrow and
close to the endpoint, which further protects the moments from radiative corrections.

In the case of the higher central moments, additional cancellations occur at each pertur-
bative order between normalized moments. In �2, for instance, �E2

l � and �El�2 tend to cancel
each other: for the same inputs as in Eq.(6) we have

�2 = �E2
� � − �E��2 = (2.479− 2.393)GeV2 = 0.087GeV2

.

Such cancellations are quite general and are further enhanced by higher Ecut. They are
simply a consequence of the fact that, as we have just seen, at each perturbative order the
spectrum follows approximately the tree-level spectrum, which is peaked at ξ ≈ 0.7− 0.8.

One obvious consequence of the cancellations we have just discussed is that the numerical
accuracy with which the non-BLM corrections are known becomes a serious issue. While
we have explained the origin of the cancellations, we need a precise calculation to know
their exact extent, and the result will have some impact on the estimate of the remaining
theoretical uncertainty.
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dΓ = Γ0

�
dF0 +

αs(mb)

π
dF1 + (

αs

π
)2(β0 dFBLM + dF2) + ...

�
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NNLO code is ready
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Ecut=1GeV,   mc/mb=0.25

Small corrections. Cancellations
may be partially spoiled by choice 

of scheme

µ = 0 µ = 1GeV
�1 �2 �3 �1 �2 �3

tree 1.4131 0.1825 -0.0408 1.4131 0.1825 -0.0408
1/m3

b 1.3807 0.1808 -0.0354 1.3807 0.1808 -0.0354
O(αs) 1.3790 0.1786 -0.0354 1.3853 0.1811 -0.0349
O(β0α2

s) 1.3731 0.1766(1) -0.0350(3) 1.3869 0.1820(1) -0.0341(3)
O(α2

s) 1.3746(1) 0.1767(2) -0.0349(6) 1.3865(1) 0.1816(2) -0.0340(6)
tot error [6] 0.0125 0.0055 0.0026

Table 1: The first three leptonic moments for the reference values of the input parameters and
Ecut = 0, in the on-shell and kinetic schemes. In parentheses the numerical uncertainty of the
BLM and non-BLM contributions (see text).

�1 �2 �3 R∗

µ = 0
tree 1.5674 0.0864 -0.0027 0.8148
1/m3

b 1.5426 0.0848 -0.0010 0.8003
O(αs) 1.5398 0.0835 -0.0010 0.8009
O(β0α2

s) 1.5343 0.0818 -0.0009 0.7992
O(α2

s) 1.5357(2) 0.0821(6) -0.0011(16) 0.7992(1)
µ = 1GeV

O(αs) 1.5455 0.0858 -0.0003 0.8029
O(β0α2

s) 1.5468 0.0868 0.0005 0.8035
O(α2

s) 1.5466(2) 0.0866(6) 0.0002(16) 0.8028(1)
O(α2

s)
∗ – 0.0865 0.0004 –

tot error [6] 0.0113 0.0051 0.0022

Table 2: The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the on-shell and kinetic schemes. Error from BLM correction ????????

8

µ = 1GeV, mMS
c (2GeV)

�1 �2 �3 R∗

tree 1.5792 0.0890 -0.0032 0.8200
1/m3

b 1.5536 0.0873 -0.0013 0.8058
O(αs) 1.5502 0.0869 -0.0003 0.8056
O(β0α2

s) 1.5540 0.0884 0.0004 0.8073
O(α2

s) 1.5523(3) 0.0879(6) -0.0002(16) 0.8061(1)
O(α2

s)
∗ – 0.0878 0.0004 –

µ = 1GeV, mMS
c (3GeV)

�1 �2 �3 R∗

tree 1.6021 0.0940 -0.0043 0.8296
1/m3

b 1.5748 0.0922 -0.0020 0.8159
O(αs) 1.5613 0.0894 -0.0004 0.8118
O(β0α2

s) 1.5629 0.0904 0.0004 0.8125
O(α2

s) 1.5571(4) 0.0890(9) -0.0008(25) 0.8090(2)
O(α2

s)
∗ – 0.0889 0.0006 –

Table 3: The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with
mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(α2

s) is larger in the
second case because the mc/mb value is closer to the edge of the range considered in [15].
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µ = 0 µ = 1GeV

h1 h2 h3 h1 h2 h3

LO 4.345 0.198 -0.02 4.345 0.198 -0.02

1/m3
b 4.452 0.515 4.90 4.452 0.515 4.90

O(αs) 4.563 0.814 5.96 4.426 0.723 4.50

O(β0α2
s) 4.701 1.105 6.85 4.404 0.894 4.08

O(α2
s) 4.682(1) 1.066(3) 6.69(4) 4.411(1) 0.832(4) 4.08(4)

tot error [6] 0.149 0.501 1.20

Table 7: The first three hadronic moments for the reference values of the input parameters and

Ecut = 1GeV, in the on-shell and kinetic schemes.

µ = 1GeV, mMS
c (2GeV) µ = 1GeV, mMS

c (3GeV)

h1 h2 h3 h1 h2 h3

1/m3
b 4.301 0.551 4.94 4.020 0.618 5.02

O(αs) 4.355 0.758 4.60 4.192 0.830 4.79

O(β0α2
s) 4.304 0.936 4.21 4.169 1.015 4.49

O(α2
s) 4.328 0.865(4) 4.18(4) 4.245(1) 0.922(5) 4.38(4)

Table 8: The first three hadronic moments for the reference values of the input parameters and

Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with

mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(α2
s) is larger in the

second case because the mc/mb value is closer to the edge of the range considered in [15].
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Figure 6: Ecut dependence of leptonic (left) and hadronic (right) at NNLO in the kinetic scheme

with µ = µc = 1GeV. The black, red, blue lines refer to �1, 10×�2,−10×�3 and to h1, 8×h2, h3,

respectively, each expressed in GeV to the appropriate power. The dotted lines (indistinguishable

for the leptonic moments) represent the predictions at O(α2
sβ0).
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PG, JHEP 9(2011)055
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Higher power corrections
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Proliferation of non-pert parameters:  for ex at 1/mb4

can be estimated by Ground State Saturation

δΓ1/m4 + δΓ1/m5

Γ
≈ 0.013

after inclusion of the corrections in the moments. While this 
might set the scale of effect, not yet clear how much

 it depends on assumptions on expectation values.

δVcb

Vcb
≈ +0.4%

Mannel,Turczyk,Uraltsev 1009.4622
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O(αs/mb2) effects in B→Xsγ
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Ewerth,Nandi,PG arXiv:0911.2175

=

One-loop matching onto local operators with HQET fields in dim reg

The NLO effect 10-20% in coefficients of first few moments, 
leading to δmb∼10MeV,  δμπ2 ∼ 0.04GeV2    

Extension to semileptonic case almost complete:  these corrections 
likely more important than non-BLM ones.  

O(αsµ2π/mb2) to moments known numerically Becher,Boos,Lunghi  

λ1,2 are HQET 
analogues of μ2π,G
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Summary
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• Dominant parametric uncertainties in BRγ due to b,c masses, 
Vcb  and local OPE power corrections. Strong correlations, 
semileptonic moments provide crucial information.

•  Global fits including precise constraints on mc and possibly 
mb are the way to go. Preliminary results for C, F have  >50% 
smaller experimental uncertainty.

• Inclusion of higher order effects in the fits under way, 
improvements in parametric uncertainty look possible.


