$B \longrightarrow X_{s} \gamma: normalization and parametric uncertainties$

Paolo Gambino Università di Torino INFN Torino

Parameters in the radiative BR

$$BR[B \to X_s \gamma]_{E_{\gamma} > E_0} \sim \alpha \, G_F^2 m_b^5 |V_{ts}^* V_{tb}|^2 |C_7^{eff}(m_b)|^2 \Big]$$

The CKM factor is essentially $|V_{cb}|^2$ $|V_{ts}^*V_{tb}|^2 = |V_{cb}|^2 \left[1 + \lambda^2 (2\bar{\rho} - 1) + O(\lambda^4)\right] = 0.961(2)|V_{cb}|^2$ (UTFit 2011)

Relevant parameters:

$$\alpha \quad (V_{cb}) \quad \alpha_s \quad m_b \quad m_c \quad m_t \quad M_W \quad (\mu_\pi^2 \sim -\lambda_1 \quad \mu_G^2 \sim 3\lambda_2 \quad \rho_D^3 \quad \rho_{LS}^3)$$

in EW corr & subleading terms also $\sin^2 \theta_W \quad M_H \quad M_Z \quad V_{ub} \quad \dots$

$$\frac{\delta V_{cb}}{V_{cb}} \sim 2\% \Rightarrow \frac{\delta BR_{\gamma}}{BR_{\gamma}} \sim 4\% \qquad \qquad \frac{\delta m_b}{m_b} \sim 0.5\% \Rightarrow \frac{\delta BR_{\gamma}}{BR_{\gamma}} \sim 2.5\%$$

Non-pert parameters, b,c masses and V_{cb} from inclusive sl B decays, also important for extrapolation to $E_0=1.6$ GeV

The phase space factor

$$BR_{\gamma}(E_{0}) \equiv BR[B \to X_{s}\gamma]_{E_{\gamma}>E_{0}} = \frac{BR_{c\ell\nu}}{C} \left(\frac{\Gamma[B \to X_{s}\gamma]_{E_{\gamma}>E_{0}}}{|V_{cb}/V_{ub}|^{2} \Gamma[B \to X_{u}e\bar{\nu}]} \right)$$

$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^{2} \frac{\Gamma[B \to X_{c}e\bar{\nu}]}{\Gamma[B \to X_{u}e\bar{\nu}]}$$

$$phase space factor given by OPE$$

$$C = g \left(\frac{m_{c}}{m_{b}} \right) \left[1 + c_{1}\frac{\alpha_{s}}{\pi} + c_{2}(\frac{\alpha_{s}}{\pi})^{2} + c_{\pi}\frac{\mu_{\pi}^{2}}{m_{b}^{2}} + c_{G}\frac{\mu_{G}^{2}}{m_{b}^{2}} + c_{D}\frac{\rho_{D}^{3}}{m_{b}^{3}} + c_{L}\frac{\rho_{LS}^{3}}{m_{b}^{3}} + O(\alpha_{s}^{3}, \frac{\Lambda^{3}}{m_{b}^{3}}) \right]$$

$$reglecting WA which cancel out in F$$

$$N = \frac{1 + \delta_{NP}}{C}$$

$$\left| \frac{V_{ts}^{*}V_{tb}}{V_{cb}} \right|^{2} \frac{6 \alpha_{em}}{\pi} \left[1 + \delta_{NP} \right] P(E_{0})$$

$$F \equiv \frac{1 + \delta_{NP}}{C}$$

is actually what enters BR_{Y}

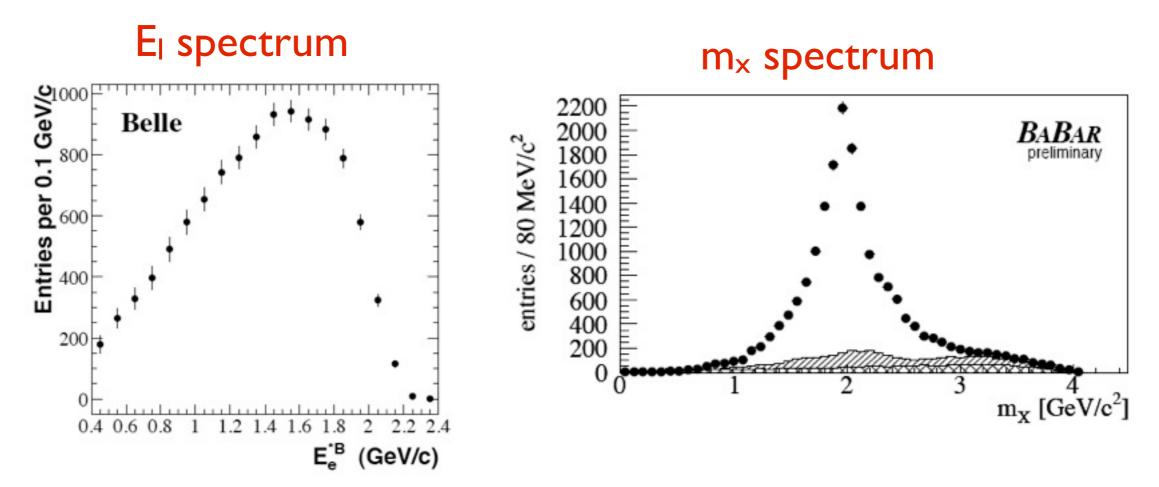
Paolo Gambino SuperB@LNF 12/12/2011 NNLO QCD

its m_c dependence partially cancels that of C

Inclusive B decays

γ,W*	X	BR can all be		δ _{NP} m s.l. B decays ed
B	INCLUSI	SIVE EXCLUSI		LUSIVE
	OPE: non-pert physics described by B matrix elemnts of local operators can be extracted by exp suppressed by 1/m _b ²		Form factors: in general computed by non pert methods (lattice, sum rules,) symmetry can provide normalization	

Fitting OPE parameters to the moments



Total **rate** gives $|V_{cb}|$, global **shape** parameters (moments of the distributions) tell us about B structure, m_b and m_c

OPE parameters describe universal properties of the B meson and of the quarks → useful in many applications

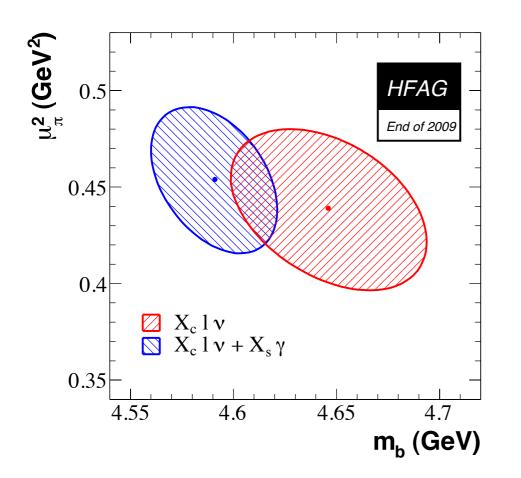
Present implementations include all terms through $O(\alpha_s^2\beta_0, 1/m_b^3)$: $m_{b,c}$, $\mu^2_{\pi,G}$, $\rho^3_{D,LS}$ 6 parameters

Global HFAG fit

Inputs	V _{cb} 10 ³	mbkin	χ^2/ndf	
b→c & b→sγ	41.85(44)(58)	4.590(31)	29.7/59	
b→c only	41.68(48)(58)	4.646(47)	24.2/48	

Based on PG, Uraltsev, Benson et al

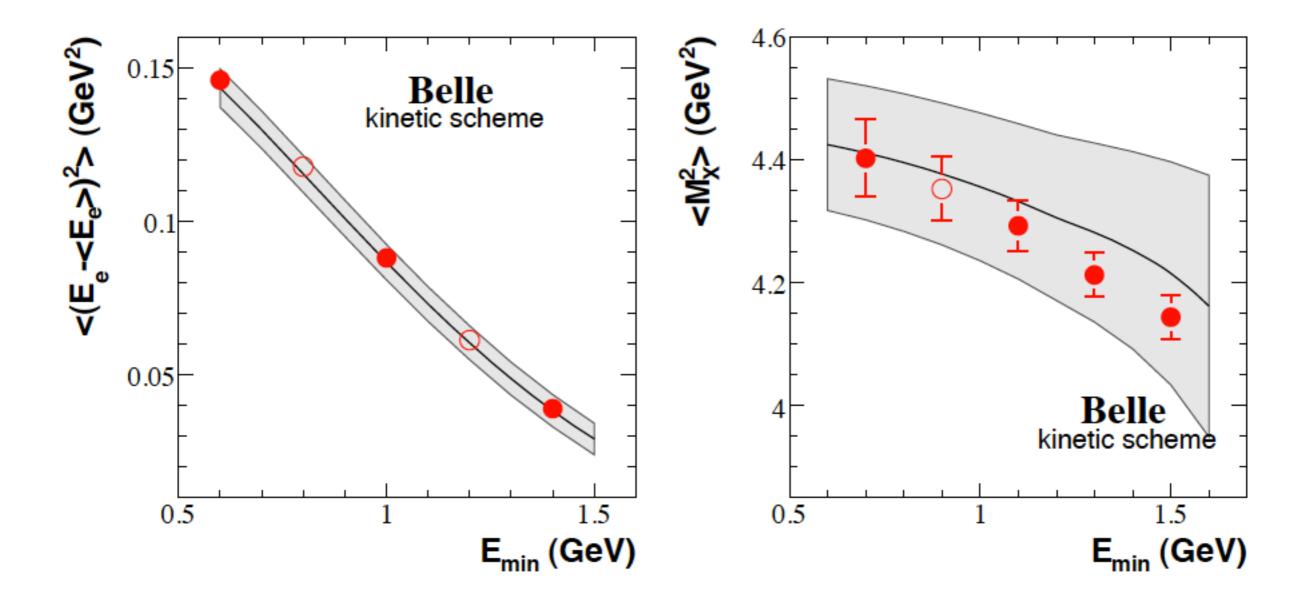
These results refer to the kinetic scheme, where the contributions of gluons with energy below $\mu \approx I \text{ GeV}$ are absorbed in the OPE parameters



A number of different assumptions are also important: which data are included, how theory errors are computed...

Very close result for $|V_{cb}|$ in 1S scheme Bauer Ligeti Luke Manohar Trott

Theoretical errors dominate



C from inclusive s.l. B decays

Bauer et al, Manohar (2004-06): C=0.580(16)

NNLO $BR_{\gamma}=3.15\ 10^{-4}$ total parametric error 3%

• Giordano, PG (2008, HFAG fit): **C=0.546(17)(16)**

NNLO BR_Y= $3.28 \ 10^{-4}$ total parametric error 3.7%

Uncomfortable discrepancy: why?

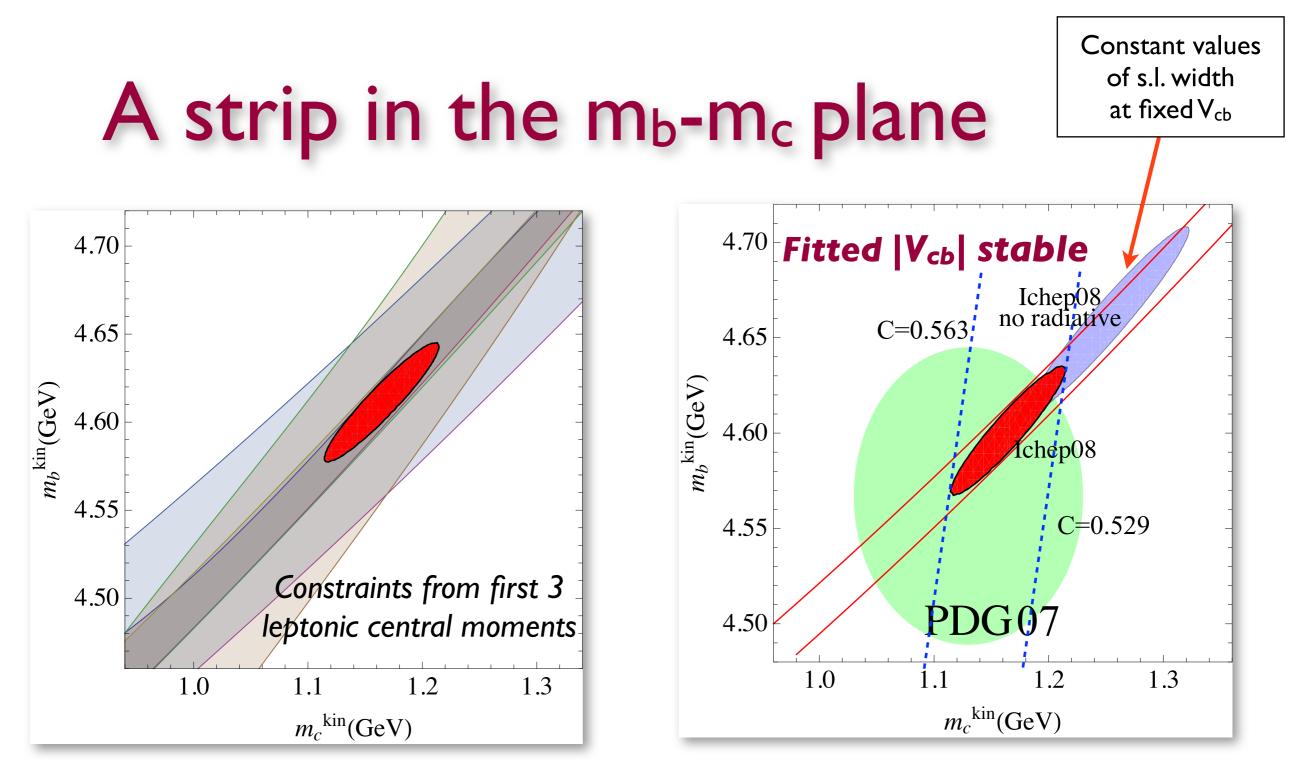
Where the two determinations differ

- I. IS (Bauer et al) vs kinetic scheme (GG)
- 2. different treatment of higher power corrections in hadronic moments
- 3. use of additional constraints: \overline{M}_{B} - \overline{M}_{D} etc (Bauer et al)
- 4. slightly different data sets
- 5. different treatment of radiative moments & their uncertainties
- 6. different estimates of theory uncertainties and correlations among them

Once m_c/m_b is fixed, C receives small corrections: look at the masses

$$C = 0.625 - 0.028_{\alpha_s} - 0.022_{\alpha_s^2} - 0.004_{\mu_G^2}$$
$$- 0.025_{\rho_D^3} - 0.001_{\rho_{LS}^3} - 2.0 B_{\text{WA}}(m_b/2)$$

Weak Annihilation cancels out in F!

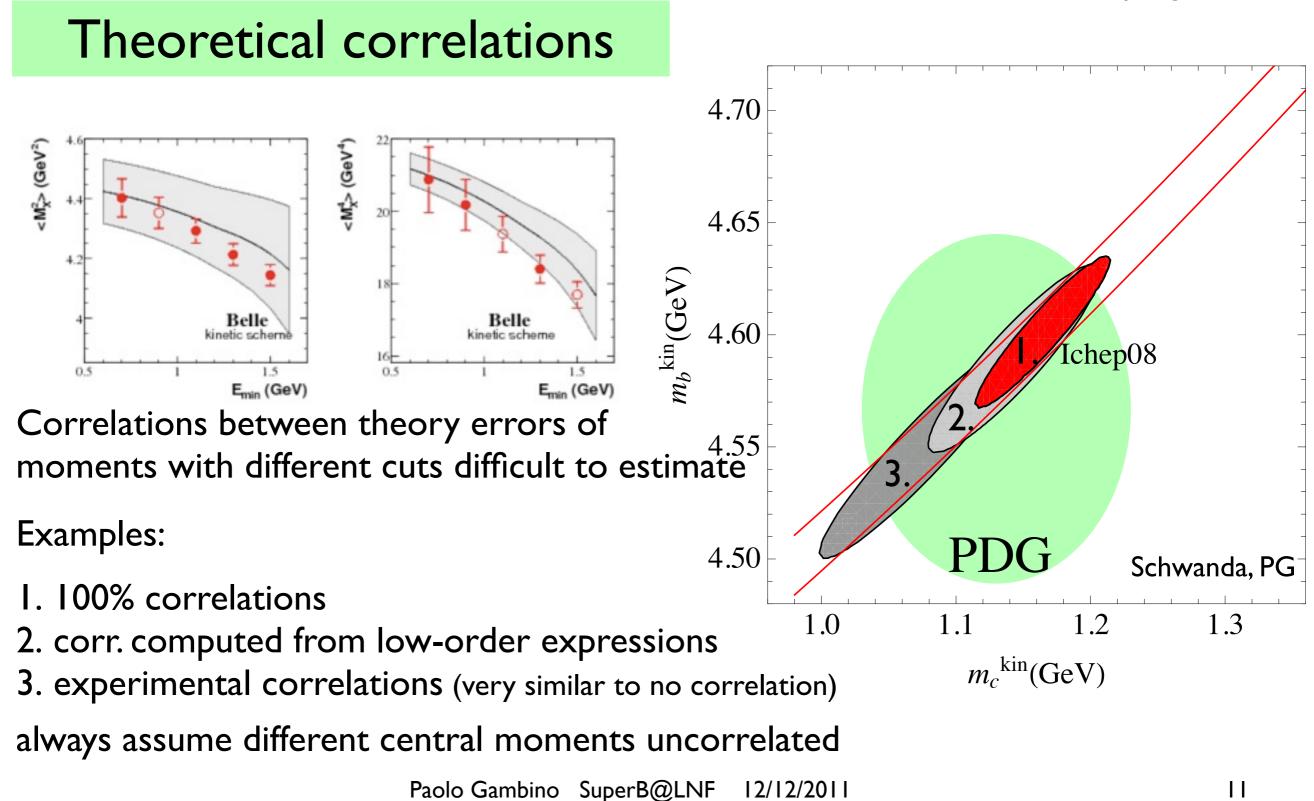


Semileptonic moments do not measure m_b well. They rather identify a strip in (m_b, m_c) plane along which the minimum is shallow.

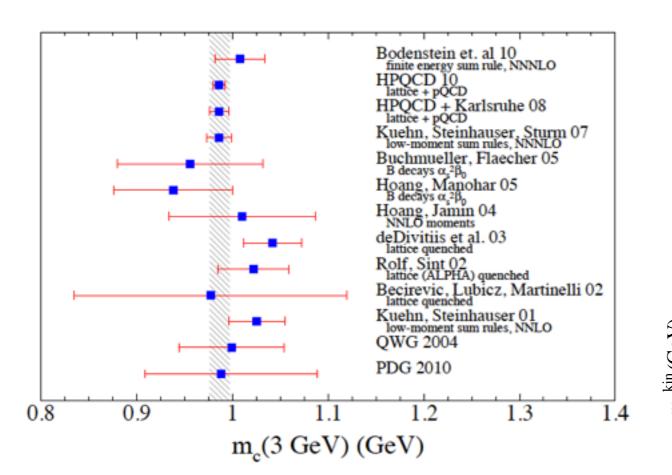
Unknown non-pert $O(\alpha_s/m_b)$ effects in radiative moments. Possibly irrelevant here but must be studied. But role of radiative moments in the fits is equivalent to using loose bound $m_b(m_b)=4.20(7)GeV$

How reliable are mass determinations?

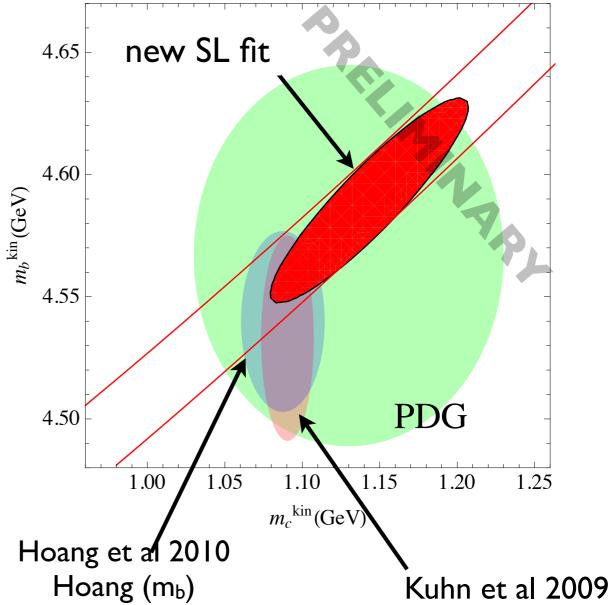
Collaboration with C. Schwanda, in progress



Using mass determinations



Comparisons and combinations for $m_{b,c}$ penalized by changes of scheme. Better to avoid $m_c(m_c)$. Recent sum rules determinations converted to kin scheme



Preliminary C, F determination Schwanda, PG

• Direct fit to $m_c(3GeV)$ with Karlsruhe constraint on m_c leads to

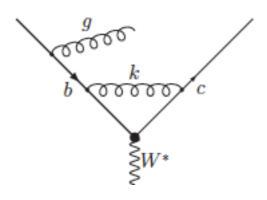
 $m_b^{kin} = 4.535(21) \text{GeV} \implies m_b(m_b) = 4.165(36) \text{GeV} (MSbar)$

consistent with Karlsruhe's group mb determination

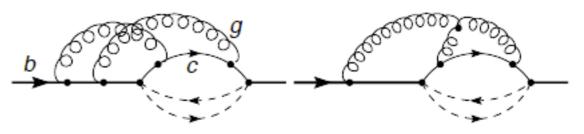
- changing th correlations results vary widely: C= 0.569(26) 0.553(22) 0.548(17) ...
- including $m_{c(3GeV)}=0.986(13)GeV$ (Kuhn et al) in the fit **C=0.571(7) F=1.794(23)**

where only the experimental uncertainty is shown

Fits at NNLO



* Complete 2loop corrections to width and moments with cuts are now known, either in expansion m_c/m_b or numerically Biswas-Melnikov Pak-Czarnecki, PG



$$d\Gamma = \Gamma_0 \left[dF_0 + \frac{\alpha_s(m_b)}{\pi} dF_1 + (\frac{\alpha_s}{\pi})^2 (\beta_0 \, dF_{\rm BLM} + dF_2) + \dots \right]$$

- * Non-BLM minor corrections to BLM, residual th error on V_{cb} O(0.5%).
- * Strong cancellations between different contributions make NNLO to moments: non-accidental, numerical accuracy crucial

$$\langle E_l \rangle_{E_l > 1 \text{GeV}} = 1.54 \,\text{GeV} \left[1 + (0.96_{den} - 0.93) \frac{\alpha_s}{\pi} + (0.48_{den} - 0.46) \,\beta_0 \left(\frac{\alpha_s}{\pi}\right)^2 \right. \\ \left. + \left[1.69(7) - 1.75(9)_{den} \right] \left(\frac{\alpha_s}{\pi}\right)^2 + O(1/m_b^2, \alpha_s^3) \right]$$

$$\ell_2 = \langle E_\ell^2 \rangle - \langle E_\ell \rangle^2 = (2.479 - 2.393) \,\text{GeV}^2 = 0.087 \,\text{GeV}^2.$$

NNLO code is ready

PG, JHEP 9(2011)055

	ℓ_1	ℓ_2	ℓ_3	R^*	
	$\mu = 0$				
tree	1.5674	0.0864	-0.0027	0.8148	
$1/m_b^3$	1.5426	0.0848	-0.0010	0.8003	
$O(\alpha_s)$	1.5398	0.0835	-0.0010	0.8009	
$O(\beta_0 \alpha_s^2)$	1.5343	0.0818	-0.0009	0.7992	
$O(\alpha_s^2)$	1.5357(2)	0.0821(6)	-0.0011(16)	0.7992(1)	
	$\mu = 1 { m GeV}$				
$O(\alpha_s)$	1.5455	0.0858	-0.0003	0.8029	
$O(\beta_0 \alpha_s^2)$	1.5468	0.0868	0.0005	0.8035	
$O(\alpha_s^2)$	1.5466(2)	0.0866(6)	0.0002(16)	0.8028(1)	
$O(\alpha_s^2)^*$	_	0.0865	0.0004		
tot error [6]	0.0113	0.0051	0.0022		

\ 3/					
	$\mu = 1 \text{GeV}, m_c^{\overline{\text{MS}}}(3 \text{GeV})$				
	ℓ_1	ℓ_2	ℓ_3	R^*	
tree	1.6021	0.0940	-0.0043	0.8296	
$1/m_b^3$	1.5748	0.0922	-0.0020	0.8159	
$O(\alpha_s)$	1.5613	0.0894	-0.0004	0.8118	
$O(\beta_0 \alpha_s^2)$	1.5629	0.0904	0.0004	0.8125	
$O(\alpha_s^2)$	1.5571(4)	0.0890(9)	-0.0008(25)	0.8090(2)	
$O(\alpha_s^2)^*$		0.0889	0.0006	_	

 E_{cut} =IGeV, m_c/m_b =0.25

Small corrections. Cancellations may be partially spoiled by choice of scheme

	$\mu = 0$			$\mu = 1 \text{GeV}$		
	h_1	h_2	h_3	h_1	h_2	h_3
LO	4.345	0.198	-0.02	4.345	0.198	-0.02
$1/m_b^3$	4.452	0.515	4.90	4.452	0.515	4.90
$O(\alpha_s)$	4.563	0.814	5.96	4.426	0.723	4.50
$O(\beta_0 \alpha_s^2)$	4.701	1.105	6.85	4.404	0.894	4.08
$O(\alpha_s^2)$	4.682(1)	1.066(3)	6.69(4)	4.411(1)	0.832(4)	4.08(4)
tot error [6]				0.149	0.501	1.20

Higher power corrections

Mannel, Turczyk, Uraltsev 1009.4622

Proliferation of non-pert parameters: for ex at $1/m_b^4$

 $2M_B m_1 = \langle ((\vec{p})^2)^2 \rangle$ $2M_B m_2 = g^2 \langle \vec{E}^2 \rangle$ $2M_B m_3 = g^2 \langle \vec{B}^2 \rangle$ $2M_B m_4 = g \langle \vec{p} \cdot \operatorname{rot} \vec{B} \rangle$ $2M_Bm_5 = g^2 \langle \vec{S} \cdot (\vec{E} \times \vec{E})
angle$ $2M_Bm_6 = g^2 \langle \vec{S} \cdot (\vec{B} \times \vec{B})
angle$ $2M_Bm_7 = g \langle (\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B})
angle$ $2M_Bm_8 = g \langle (\vec{S} \cdot \vec{B})(\vec{p})^2
angle$ $2M_Bm_9 = g \langle \Delta(\vec{\sigma} \cdot \vec{B})
angle$

can be estimated by Ground State Saturation

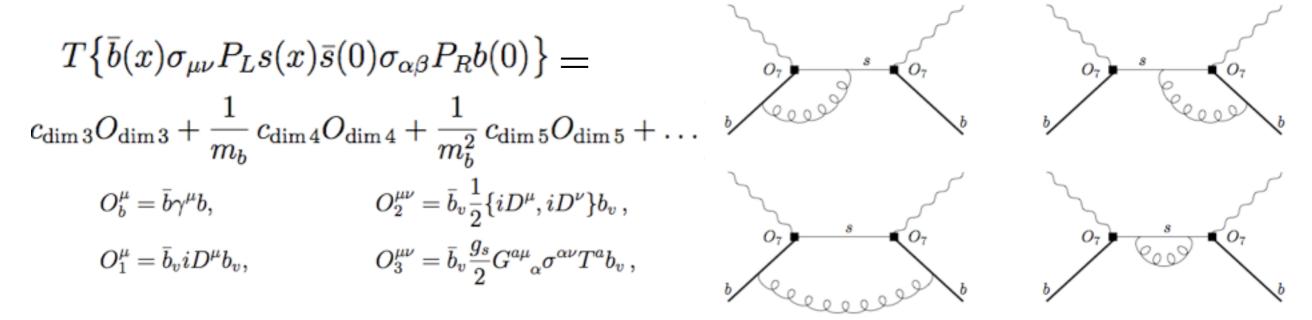
 $\left<\Omega_0|\bar{Q}\,iD_jiD_kiD_liD_m\,Q|\Omega_0\right> = \left<\Omega_0|\bar{Q}iD_jiD_kQ|\Omega_0\right> \left<\Omega_0|\bar{Q}\,iD_liD_mQ|\Omega_0\right>$

$$\frac{\delta\Gamma_{1/m^4} + \delta\Gamma_{1/m^5}}{\Gamma} \approx 0.013 \qquad \frac{\delta V_{cb}}{V_{cb}} \approx +0.4\%$$

after inclusion of the corrections in the moments. While this might set the scale of effect, not yet clear how much it depends on assumptions on expectation values.

$O(\alpha_s/m_b^2)$ effects in $B \rightarrow X_s \gamma$

Ewerth, Nandi, PG arXiv:0911.2175



One-loop matching onto local operators with HQET fields in dim reg

$$\frac{d\Gamma_{77}}{dz} = \Gamma_{77}^{(0)} \left[c_0^{(0)} + c_{\lambda_1}^{(0)} \frac{\lambda_1}{2m_b^2} + c_{\lambda_2}^{(0)} \frac{\lambda_2(\mu)}{2m_b^2} + \frac{\alpha_s(\mu)}{4\pi} \left(c_0^{(1)} + c_{\lambda_1}^{(1)} \frac{\lambda_1}{2m_b^2} + c_{\lambda_2}^{(1)} \frac{\lambda_2(\mu)}{2m_b^2} \right) \right] \quad \begin{array}{l} \lambda_{1,2} \text{ are HQET} \\ \text{analogues of } \mu^2_{\pi,G} \end{array}$$

The NLO effect 10-20% in coefficients of first few moments, leading to $\delta m_{b} \sim 10 \text{MeV}$, $\delta \mu_{\pi}^2 \sim 0.04 \text{GeV}^2$ Extension to semileptonic case almost complete: these corrections likely more important than non-BLM ones. $O(\alpha_s \mu^2_{\pi}/m_b^2)$ to moments known numerically Becher,Boos,Lunghi

- Dominant parametric uncertainties in BR_Y due to b,c masses, V_{cb} and local OPE power corrections. Strong correlations, semileptonic moments provide crucial information.
- Global fits including precise constraints on m_c and possibly m_b are the way to go. Preliminary results for C, F have >50% smaller experimental uncertainty.
- Inclusion of higher order effects in the fits under way, improvements in parametric uncertainty look possible.