SuperB Physics Meeting, INFN-LNF, 11-12 December 2011

Time-Dependent CP in Charm: Moving Forward

11/12/2011 Gianluca Inguglia Particle Physics Research Centre Queen Mary University of London g.inguglia@qmul.ac.uk

<u>Time-Dependent CP Violation in</u> <u>Charm</u>

→Time-dependent formalism

- \rightarrow CP eigenstates and flavor tagging
- →Numerical Results

<u>Time-Dependent CP Violation in</u> <u>Charm</u>

→Time-dependent formalism

 \rightarrow CP eigenstates and flavor tagging

→Numerical Results

UCHEP-11-05

Time-dependent CP asymmetries in D and B decays

A. J. Bevan and G. Inguglia

Queen Mary, University of London, Mile End Road, E1 4NS, United Kingdom

B. Meadows University of Cincinnati, Cincinnati, Ohio 45221, USA (Dated: November 7, 2011)

We examine measurements of time-dependent CP asymmetries that could be made in new and future flavour facilities. In charm decays, where they can provide a unique insight into the flavor changing structure of the Standard Model, we examine a number of decays to CP eigenstates and describe a framework that can be used to interpret the measurements. Such measurements can provide a precise determination of the charm mixing phase. as well as constraints on the Standard

Strongly motivated by...

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

ArXiv:1112.0938

LHCb-PAPER-2011-023 CERN-PH-EP-2011-208 December 6, 2011

Evidence for CP violation in time-integrated $D^0 \rightarrow h^- h^+$ decay rates 3

ArXiv:1106.5075 Accepted for publication in *Physical Review D*

Buras parametrization of the CKM matrix up to λ^5

q,'

TAB	1 UTFit	CKM Fitter	
λ	0.22545 ± 0.00065	0.22543 ± 0.00077	
A	0.8095 ± 0.0095	$0.812^{+0.013}_{-0.027}$	
ρ	0.135 ± 0.021		Why do we express the matrix in
η	0.367 ± 0.013		terms of $\overline{p}\overline{\eta}$?
$\overline{\rho}$	0.132 ± 0.020	0.144 ± 0.025	
$\overline{\eta}$	0.358 ± 0.012	0.342 + 0.016	4

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

5

Time-dependent formalism (i)

Neutral meson systems exhibit *mixing* of mass eigenstates |P_{1,2}> where:

$$i\frac{d}{dt}\binom{|P_{1}\rangle}{|P_{2}\rangle} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} & M_{22}^{*} - \frac{i}{2}\Gamma_{22}^{*} \end{pmatrix} \binom{|P^{0}\rangle}{|P^{0}\rangle} = H_{eff}\binom{|P^{0}\rangle}{|P^{0}\rangle}$$

Mixing is often expressed in terms of the two Parameters:

$$x = \frac{\Delta M}{\Gamma}$$
$$y = \frac{\Delta \Gamma}{2\Gamma}$$

 $H_{eff} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22} \leftarrow CPT \text{ INVARIANCE}$ $M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22}, \Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \leftarrow CP \text{ INVARIANCE}$ $\Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \leftarrow T \text{ INVARIANCE}$ $\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = -\langle \Psi(t) | \Gamma | \Psi(t) \rangle$

Time-dependent formalism

The time-dependence of decays of P^0 (P^0) to final state |f > are:

$$\Gamma(P^{0} \rightarrow f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{*}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}h_{*} + e^{|\Delta\Gamma\Delta t/2|} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}\cos\Delta M\Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}}\sin\Delta M\Delta t\right)\right]$$

$$-\overline{\Gamma}(\overline{P^{0}} \rightarrow f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{*}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}h_{*} - e^{|\Delta\Gamma\Delta t/2|} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}\cos\Delta M\Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}}\sin\Delta M\Delta t\right)\right]$$

$$+ where: \quad h_{+-} = 1 \pm e^{\Delta\Gamma\Delta t}, \quad \lambda_{f} = \frac{q}{p}\frac{\overline{A}}{A} \qquad \lambda_{f} \text{ very important!}$$

We now obtain the time-dependent CP asymmetry

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma^{Phys}}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\Gamma^{Phys}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta\omega + \frac{(D + \Delta\omega)e^{\Delta\Gamma\Delta t/2}(|\lambda_{f}|^{2} - 1)\cos\Delta M\Delta t + 2\Im(\lambda_{f})\sin\Delta M\Delta t}{(1 + |\lambda_{f}|^{2})h_{*}/2 + h_{*}\Re(\lambda_{f})}$$

Where we included mistag probability effects

<u>Time-Dependent CP Violation in</u> <u>Charm</u>

\rightarrow Time-dependent formalism

\rightarrow CP eigenstates and flavor tagging

→Numerical Results

Analysis of CP eigenstates (i)

When exploring CP violation, ignoring long distance effects, the parameter λ may be written as:

$$\lambda_{f} = \left| \frac{q}{p} \right| e^{i\phi_{MIX}} \left| \frac{\overline{A}}{A} \right| e^{i\phi_{CP}} \qquad \phi_{MIX} : phase of \ D^{0} D^{0} mixing \\ \phi_{CP} : overall \ phase of \ D^{0} \rightarrow f_{CP}(eigenstate)$$

$$A = |T| e^{i(\phi_T + \delta_T)} + |CS| e^{i(\phi_{CS} + \delta_{CS})} + |W| e^{i(\phi_W + \delta_W)} + \sum_{q=d,s,b} |P_q| e^{(i\phi_q + \delta_q)}$$

The following processes, as we will see, are tree dominated

$$D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, K^{+}K^{-}K^{0}, K^{0}\pi^{+}\pi^{-}$$

Assuming negligible the contribution due to P/CS/W amplitudes, then:

$$\lambda_f = \left| \frac{q}{p} \right| e^{i \phi_{MIX}} e^{-2i \phi_T^W}$$

$D^0 \rightarrow K^+ K^- vs D^0 \rightarrow \pi^+ \pi^-$

At time t_{TAG} the decays $D \to K^{-(+)} l^{+(-)} v_l$ account for 11% of all D decays and unambiguously assigns the flavour : D^0 is associated to a l^+ , $\overline{D^0}$ is associated to a l^-

One may consider $D^0 \rightarrow K^-X$ (X=anything) to flavor-tag a D^0 meson with a mistag probability ~3% and a total BR~54%

Uncorrelated D⁰ mesons

$$A(t) = \frac{\overline{\Gamma}(t) - \Gamma(t)}{\overline{\Gamma}(t) + \Gamma(t)} = 2e^{\Delta \Gamma t/2} \frac{(|\lambda_f|^2 - 1)\cos\Delta M t + 2\Im(\lambda_f)\sin\Delta M t}{(1 + |\lambda_f|^2)(1 + e^{\Delta \Gamma t}) + 2\Re(\lambda_f)(1 - e^{\Delta \Gamma t})}$$

Mistag probability and dilution become important

 $A^{Phys}(t) = \frac{\overline{\Gamma^{Phys}}(t) - \Gamma^{Phys}(t)}{\overline{\Gamma^{Phys}}(t) + \Gamma^{Phys}(t)} = +\Delta\omega + \frac{(D - \Delta\omega)e^{\Delta\Gamma t/2}(|\lambda_f|^2 - 1)\cos\Delta M t + 2\Im(\lambda_f)\sin\Delta M t}{(1 + |\lambda_f|^2)h_{+}/2 + h_{-}\Re(\lambda_f)}$

The flavour tagging is accomplished by identifying a "slow" pion in the $D^{*+} \rightarrow D^0 \pi_s^+$ processes (CP and CP conjugated): $D^{*-} \rightarrow \overline{D^0} \pi_s^-$

e⁺e⁻ machines at Υ (4S) and hadron machines

D^{*} from $e^+e^- \rightarrow c \overline{c}$ can be separated from those coming from B's by applying a momentum cut. Clean environment. More easier to separate prompt D* 12 from B cascade than LHCb D^{*} mesons are produced both promptly or as secondary particles from primary decay of a B meson. High background level to keep under control. Trigger efficiency.

<u>Time-Dependent CP Violation in</u> <u>Charm</u>

\rightarrow Time-dependent formalism

\rightarrow CP eigenstates and flavor tagging

→Numerical Results

Expected number of (tagged) events

LHC <i>b</i>	7.8×10^{6} 2.2×10^{7}	$D^{0} \to \pi^{+} \pi^{-}$ $D^{0} \to K^{+} K^{-} \pi^{-} \pi^{-} \pi^{-}$	π
Belle II	7.8×10^{6} 2.2×10^{7}	$D^{0} \rightarrow \pi^{+} \pi^{-} \mathbf{\pi} \mathbf{T}$ $D^{0} \rightarrow K^{+} K^{-} \mathbf{\pi} \mathbf{T}$	cł as (L
Super B $\Psi(3770)$	9.8×10^{5} 4.8×10^{6} 2.8×10^{6} 1.2×10^{7}	$D^{0} \rightarrow \pi^{+}\pi^{-} \text{ SL-T}$ $D^{0} \rightarrow \pi^{+}\pi^{-} \text{ K-T}$ $D^{0} \rightarrow K^{+}K^{-} \text{ SL-T}$ $D^{0} \rightarrow K^{+}K^{-} \text{ K-T}$	S le th th th
Super <i>B</i> Y(4S)	6.6×10^{6} 1.9×10^{7}	$D^{0} \rightarrow \pi^{+} \pi^{-}$ $D^{0} \rightarrow K^{+} K^{-} \mathbf{\pi} \mathbf{T}$	OI

\pi-T indicates that the D^o mesons are tagged using the electrical charge of the associated short pion (LHC*b*/Belle/Super*B*)

SL-T refers to semileptonic tag at charm threshold and **K-T** to the Kaon tag at charm thereshold (Super*B* only)

TDCPV in charm: numerical analysis

$$A_{D^{0} \to \pi^{+}\pi^{-}}^{Phys}(\Delta t) = \frac{\overline{\Gamma^{Phys}}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\overline{\Gamma^{Phys}}(\Delta t) + \Gamma^{Phys}(\Delta t)}$$

Precision I

Parameter	$\Psi(3770)$	$\Psi(3770)$	$\Upsilon(4S)$	LHCb	Belle II
r arameter	SL	SL+K	π_s^{\pm}	π_s^{\pm}	π_s^{\pm}
$\delta_{\phi_{\pi\pi}} = \delta_{arg(\lambda_{\pi\pi})}$	5.7°	2.4°	2.2°	2.3°	2.8°
$\delta_{\phi_{KK}} = \delta_{arg(\lambda_{KK})}$	3.5°	1.4°	1.3°	1.4°	1.7°
$\delta_{\phi_{CP}} = \delta_{\phi_{KK} - \phi_{\pi\pi}}$	6.6°	2.8°	2.6°	2.7°	3.2°
$\delta_{eta_{c,eff}}$	3.3°	1.4°	1.3°	1.4°	1.6°

Precision II

 $x(\%) = x + \delta_x$

no CPV assumption

Experiment/HFAG	$\delta_x(\phi = \pm 10^o)$	$\delta_x(\phi = \pm 20^o)$
Super $B[\Upsilon(4S)]$		
$D^0 \to \pi^+ \pi^-$	0.12%	0.06%
$D^0 \to K^+ K^-$	0.07%	0.04%
SuperB [$\Psi(3770)$]		
$D^0 \to \pi^+ \pi^- (SL)$	0.30%	0.15%
$D^0 \to \pi^+ \pi^- (SL + K)$	0.13%	0.06%
$D^0 \to K^+ K^- (SL)$	0.19%	0.10%
$D^0 \to K^+ K^- (SL + K)$	0.08%	0.04%
LHCb		
$D^0 \to \pi^+ \pi^- (1.1 \text{ fb}^{-1})$	0.26%	0.13%
$D^0 \to K^+ K^- (1.1 \text{ fb}^{-1})$	0.15%	0.08%
$D^0 \to \pi^+ \pi^- (5.0 \text{ fb}^{-1})$	0.12%	0.06%
$D^0 \to K^+ K^- (5.0 \text{ fb}^{-1})$	0.07%	0.04%
Belle II		
$D^0 \to \pi^+ \pi^-$	0.14%	0.07%
$D^0 \to K^+ K^-$	0.09%	0.04%
HFAG	0.2	0%

HFAG x(%)= <mark>0.59</mark> ± 0.20

Systematic uncertainties

HFAG $y(\%) = 0.79 \pm 0.13 \rightarrow \text{no CPV}$ $y(\%) = 0.81 \pm 0.13 \rightarrow \text{no direct CPV}$

May the limited knowledge on the parameter y affect our time-dependent measurement?

$$y = \frac{\Delta \Gamma}{2\Gamma} \rightarrow \Delta \Gamma = 2\Gamma y$$

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma}^{Phys}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\overline{\Gamma}^{Phys}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma \Delta t/2}(|\lambda_f|^2 - 1)\cos\Delta M \Delta t + 2\Im(\lambda_f)\sin\Delta M \Delta t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)}$$

Deremotor	$\Psi(3770) \ \Psi(3770) \ \Upsilon(4S)$		
rarameter	SL	SL+K	π_s^{\pm}
$\delta_{\phi_{\pi\pi}}(sys.)$	0.5°	0.2°	0.05°
$\delta_{\phi_{KK}}(sys.)$	0.2°	0.1°	0.02°
$\delta_{\phi_{CP}}(sys.)$	0.54°	0.22°	0.05°
$\delta_{\beta_{c,eff}}(sys.)$	0.27°	0.11°	0.03°

SuperB: Combined results

Since we are also interested in the sensitivity achievable with the full Super*B* program, we have combined the results obtained for the different center-of-mass energy.

$$\sigma_{tot} = \sqrt{\frac{\sigma_{\Psi(3770)} \times \sigma_{Y(4S)}}{\sigma_{\Psi(3770)} + \sigma_{Y(4S)}}}$$

Paramotor	Statistical	Systematic
	sensitivity	sensitivity
$\delta_x \ (D^0 \to \pi^+ \pi^-)$	0.09%	-
$\delta_x \ (D^0 \to K^+ K^-)$	0.05%	-
$\delta_{\phi_{\pi\pi}}$	1.62^{o}	0.14^{o}
$\delta_{\phi_{KK}}$	0.95^{o}	0.02^{o}
$\delta_{\phi_{CP}}$	1.91^{o}	0.05^{o}
$\delta_{eta_{c,eff}}$	0.95^{o}	0.03^{o}

Super*B* will be able to perform a measurement of the mixing phase and of the β_c angle with a precision of ~1° and systematic uncertainties coming from the error on the parameter y will not be very relevant.

Conclusions

- We propose the time-dependent formalism to search for $\not C \not P$ in the charm sector.
- Our method is general and may be considered for the analysis in different experimental environments, especially after the latest results from LHC*b*.
- We have shown that with the time-dependent analysis a first measurement of the β_c angle in the charm triangle may be performed and that SuperB may reach a precision of ~1° (including systematic from y).
- With this same analysis, if one express the asymmetry in terms of the parameters x and y which define the mixing, one may improve the precision on the determination of x with respect to the most recent HFAG value by a factor \sim 3-5.
- Super*B* will be very competitive with all the other facilities when looking for *P* and related issues in charm: **Super***D*?

...Many Thanks...