B_s (and other important) results from

Martin Heck, for the CDF Collaboration

Tevatron ended running this October

Peak luminosity increased almost until the very end. Integrated Lumi ~10 fb⁻¹

Annus Mirabilis

Bottom to Top, Weak to Strong 25 Years of Stretching the Standard Model

H

CDF 1985 - 2011

Rest In (> 550) Publications Not quite in rest, but more productive than ever, due to long experience with and good understanding of our detector and data!

Outline

- $B_{s} \rightarrow \pi\pi$ Gauge for Penguin Annihilation
- $B_{c} \rightarrow \Phi \Phi Polarization \& Search for CP Violation$
- $B_s \rightarrow D_s^{(*)} D_s^{(*)}$ Estimations of $\Delta \Gamma_s$
- $B_{s} \rightarrow J/\psi$ f0(980) First direct measurement of B_{sH} lifetime
- $B_{s} \rightarrow \mu\mu$ Excellent Sensitivity to New Physics
- Non-B_s topics
 - $B \rightarrow K \mu \mu$
 - CPV in the charm sector

$B_{s} \rightarrow \pi\pi$ – Gauge for Penguin Annihilation

CDF Run II Preliminary $\int L dt = 6.11 \text{ fb}^{-1}$

Size of penguin annihilation is difficult to calculate theoretically. Various tests of CKM dynamics are compromised by this.

Experimental input can help.

- $B_s \rightarrow \pi\pi$ (first evidence)
- B → KK (two sided 90% limit)

 $BR(B_{s} \rightarrow \pi\pi) = (0.57 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (sys)}) \times 10^{-6}$

Systematic uncertainty is dominated by f_s/f_d due to B^0 channel normalization.

 $0.05 < BR(B^0 \rightarrow KK) \times 10^6 < 0.46$ @90% confidence level

arXiv:1111.0485

$\mathbf{B}_{s} \rightarrow \mathbf{\Phi} \mathbf{\Phi} - Polarization \& Search for CP$ Violation

Decay is $\mathbf{P} \rightarrow \mathbf{V} \mathbf{V}$

→ **1** longitudinal and **2** transverse polarizations possible

Due to the V-A nature of weak interaction and helicity conservation in QCD one expects

fraction longitudinal polarized decays (f_1) >> fraction transversal polarized decays (f_{τ})

 $B_s \rightarrow \phi \phi$ is b \rightarrow s penguin transition as well.

$$f_{L} = 0.348 \pm 0.041 \text{ (stat)} \pm 0.021 \text{ (sys)}$$

 $f_{T} = 0.652 \pm 0.041 \text{ (stat)} \pm 0.021 \text{ (sys)}$ arXiv:1107.4999

We see the same behaviour.

Search for **CP violation** is done via measuring asymmetries in the triple products.

One finds one triple product, that is proportional to $u = \cos(\phi)\sin(\phi)$, and one proportional to $v = \sin(\phi)$ for $\cos(\theta_1)\cos(\theta_2) > 0$ $\sin(-\phi)$ for $\cos(\theta_1)\cos(\theta_2) < 0$

The asymmetry is defined as

 $A_{u} = -0.007 \pm 0.064 \text{ (stat) } \pm 0.018 \text{ (syst)}$ $A_{v} = -0.120 \pm 0.064 \text{ (stat) } \pm 0.016 \text{ (syst)}$

consistent with no CPV

$$A_{TP} = \frac{\Gamma(TP > 0) - \Gamma(TP < 0)}{\Gamma(TP > 0) + \Gamma(TP < 0)}$$

Estimations of $\Delta \Gamma_s$

- Measuring the partial decay widths of Bs to CP Eigenstates.

There are theoretical motivations to believe, that $B_s \rightarrow D_s^{(*)} D_s^{(*)}$ covers most of this partial decay widths. \rightarrow Measurement soon to come!

However, this might need completion from three-body final CP Eigenstates.

If the lifetime difference measured by the two methods differs, the assumption of absence of $_8$ CP Violation is wrong, but in the SM this should be very small.

 $B_s \rightarrow J/\psi f_0(980) -$ First direct measurement of $\mathbf{B}_{_{\mathrm{S},\mathrm{H}}}$ lifetime

 $J/\psi f_{0}(980)$ is a purely CP odd final state.

In the absence of CP Violation, only the CP odd B_s Eigenstate can decay this way.

Therefore we can directly measure its lifetime.

We measure

τ ($B_s \rightarrow J/\psi f_0(980)$)= 1.70_{-0.11}^{+0.12} (stat) ± 0.03 (sys) ps

Statistically dominated.

Phys. Rev. D 84 052012 (2011)

Strongly suppressed in the SM due to FCNC and Helicity suppression.

Observation with our sensitivity would mean New Physics.

General Analysis Procedure:

- Find two muons
- Enrich Signal
- Look for bump
- Normalize to $B \rightarrow J/\psi K$

Background Estimation:

- Combinatorial Background
- from Sidebands in B_s Mass
- Only Peaking background is $B \rightarrow hh$, with misidentification of h
- Estimated from MC and D* tagged D decays (for estimating misidentification)

Key improvements over last CDF Analysis:

~50% more data (analysis of full data set is on the way)

 \cdot ~20% increase of acceptance, by taking muons, that point more in forward or backward direction

- New dE/dx calibration for better μ ID
- Improved fake rates for peaking background estimation
- New NN with 2x better background rejection

95% CL Limit: BR($B_d \rightarrow \mu\mu$) < 6 x 10⁻⁹

p-vlaue (background only) = 23.3%

Data and background expectation agree very well.

> 90% CL region: 4.6 x 10⁻⁹ < BR(B_{s}^{0} → $\mu^{+}\mu^{-}$) < 3.9 x 10⁻⁸

Using Loglikelihood Technique

- Central value:
 - → BR(B⁰_s → $\mu^{+}\mu^{-}$) = 1.8 ^{+1.1}_{-0.9} × 10⁻⁸
- p-value for background-only hypothesis: 0.27%
- p-value for background+SM hypothesis: 1.9%

⁷ 7 fb⁻¹ **CDF II** 90% Bound 68% Bound 5 10 15 20 25 30 35 40 45 50 BR($B_{\chi} \rightarrow \mu^{+} \mu^{-}$) First two sided limit for $B_{e} \rightarrow \mu\mu$ Phys. Rev. Lett. 107, 191801 (2011)

Non-B_s topics

Forward/Backward assymmetry in B \rightarrow K μ μ was for some time hot topic due to hints for non-SM like behaviour from B factories.

Phys. Rev. Lett. 107, 201802 (2011) covers as well the similar Λ_{h} decay.

CP Violation in Charm

Using 215K D*-tagged $D^0 \rightarrow \pi^-\pi^+$ decays, 476K D*-tagged $D^0 \rightarrow K^-K^+$ decays, 5M D*-tagged $D^0 \rightarrow K^-\pi^+$ decays and 29M $D^0 \rightarrow K^-\pi^+$ decays where no D* tag was required, we obtain:

 $A_{CP} (D^{0} \rightarrow \pi^{-}\pi^{+}) = [0.22 \pm 0.24 \text{ (stat)} \pm 0.11 \text{ (sys)}]\%$ $A_{CP} (D^{0} \rightarrow K^{-}K^{+}) = [-0.24 \pm 0.22 \text{ (stat)} \pm 0.10 \text{ (sys)}]\%$

Assuming no direct CP violation and no large weak phases in the decay amplitude, we get for the indirect CPV averaging the results:

16

Summary

- CDF has pioneered B_s physics in the last 10 years and added much in the last 12 months, including:
 - even more detailed studies of the mixing phenomenology
 - charmless penguin annihilation
 - first hint for decay into two muons
- But CDF has competitive or world best results in the B and D sector as well, e.g.
 - $b \rightarrow s \mu \mu$
 - CP Violation in D^o mixing

Visit www-cdf.fnal.gov/physics/new/bottom/bottom.html to learn more about the various physics topics, we are working on.