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Introduction

At the last Physics Meeting, V. Boccia attempted the fit of background in the distribution
of angular separation of Z=2 tracks using a function ~ x exp(-bx?), which was determined
empirically as a reasonable behaviour.
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It was requested to give a motivation of the
choice for this function.

Here we shall give a demonstration why this

choice is the best one (in case of absence of
correlations)



Let us first consider the spatial separation of points in a plane

(in the FOOT experiment, the TW)
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Helium tracks at the TW have a lateral spread which can be roughly
approximated by a gaussian
Z=2 Y vs X at TW crossings

_ twXYcrossZ2_px
B Entries 27677
u Mean 11.56
250(— Std Dev 9.397 : -
- 21 nf 441.9 /217 Under the g§u55|an hypothesis, in absence
- Constant 217.5+1.8 of correlations, X,, Y1, X, Y, are all
200— 5. | Mean 11.91 £0.07 . S
- \| Sigma 10,57 £0.07 mdepgndeptly distributed by the same
5 i gaussian with rms o:
150+—
: x>
: 1 ==
100— f(x) = —@ 20
- | V2TTOo
50 — k 'J'l'-
- LA ]
N 1 1 1 1 [ Both (x;- x,) and (y;-y,) are again
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 . . .
-20 -10 0 10 20 30 40 normally distributed with ¢’ = /2.

X (cm)



As a first step we shall first look for the probability distribution of Ax? and
Ay?, i.e. the distribution of the square of a gaussian random number.
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Now we can find the distribution for the variable z = \/sz + Ay?= Ju+v

where u and v are square of gaussian random numbers. It can be shown, (“after a few
simple passages left to the reader”) that the resulting p.d.f. for z is:
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We can now move to the angular separation AB.
If the separation between 2 points is d and the TW is at a distance L>>d from

the event vertex (target) then Tan(AG) ~% or AG ~ ArcTan(%)
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By applying a change of variable for the p.d.f.:
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For AO small, we can introduce the further approximation Tan(A8)~0:
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At first order, the term 1+A0? in the denominator can be neglected, so the function
can be further simplified to:
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gaussian distribution with o0=10 cm) L=200 cm.



Warning: deviations from this behaviour must appear when correlations exist:
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Conclusions

* The choice of f(x) = x exp(-bx?), which was initally chosen on an empirical basis, is
actually the correct function to be used to fit angular- or space-separation, if
correlation are not present, when the lateral distribution of He tracks can be
approximated by a gaussian. This seems the case at FOOT energies.

* Actually, correlations even beyond the peak at very small angles, due to 2Be
ground state, should exist, manifesting themselves as less visibile structures at
higher angular separation.

* In the case of emulsion data, statistical fluctuations are probably masking these
correlation structures

* Data from electronic setup should put more in evidence such structures
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