Fitting the distribution of angular separation of He tracks in absence of correlations

G.B.

INFN Milano

Introduction

At the last Physics Meeting, V. Boccia attempted the fit of background in the distribution of angular separation of Z=2 tracks using a function $\sim x \exp(-bx^2)$, which was determined empirically as a reasonable behaviour.

It was requested to give a motivation of the choice for this function.

Here we shall give a demonstration why this choice is the best one (in case of absence of correlations) Let us first consider the spatial separation of points in a plane (in the FOOT experiment, the TW)

$$Distance_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Helium tracks at the TW have a lateral spread which can be roughly approximated by a gaussian

Under the gaussian hypothesis, *in absence* of correlations, x_1 , y_1 , x_2 , y_2 are all independently distributed by the same gaussian with rms σ :

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

Both $(x_1 - x_2)$ and $(y_1 - y_2)$ are again normally distributed with $\sigma' = \sqrt{2}\sigma$. As a first step we shall first look for the probability distribution of Δx^2 and Δy^2 , i.e. the distribution of the square of a gaussian random number.

It can be shown that the square of a gaussian random number is distributed according to the following distribution:

$$p(y) = \frac{1}{\sqrt{2\pi}\sigma'\sqrt{y}}e^{-\frac{y}{2\sigma'^2}}$$

Example of the distribution of the square of a gaussian random coordinate with σ =10 cm

Now we can find the distribution for the variable $z = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{u + v}$

where u and v are square of gaussian random numbers. It can be shown, ("after a few simple passages left to the reader") that the resulting p.d.f. for z is:

Example of the distribution of the distance between 2 points in a plane (unlimited) sampled from a gaussian lateral distribution with σ =10 cm

We can now move to the angular separation $\Delta \theta$. If the separation between 2 points is d and the TW is at a distance L>>d from the event vertex (target) then $Tan(\Delta \theta) \sim \frac{d}{L}$ or $\Delta \theta \sim ArcTan(\frac{d}{L})$ ToF Wall $\Delta \theta$ $\Delta \theta$ $\Delta \theta$

By applying a change of variable for the p.d.f.:

Target

$$p[Tan(\Delta\theta)] = \frac{Tan(\Delta\theta)}{\sigma_{\Delta\theta}^2 [1 + Tan(\Delta\theta)^2]} e^{-\frac{Tan(\Delta\theta)^2}{2\sigma_{\Delta\theta}^2}} \qquad \text{where } \sigma_{\Delta\theta} = \frac{\sigma}{L}$$

x₃, **y**₃

For $\Delta \theta$ small, we can introduce the further approximation $Tan(\Delta \theta) \sim \theta$:

$$p(\Delta\theta) \sim \frac{\Delta\theta}{\sigma_{\Delta\theta}^2(1+\Delta\theta^2)} e^{-\frac{\Delta\theta^2}{2\sigma_{\Delta\theta}^2}}$$

At first order, the term $1+\Delta\theta^2$ in the denominator can be neglected, so the function can be further simplified to:

 $p(\Delta\theta) \sim \frac{\Delta\theta}{\sigma_{\Delta\theta}^2} e^{-\frac{\Delta\theta^2}{2\sigma_{\Delta\theta}^2}}$

Example of the distribution of the angular distance between 2 points in the TW plane (x,y sampled from a gaussian distribution with σ =10 cm) L=200 cm.

Warning: deviations from this behaviour <u>must</u> appear when correlations exist:

(A. Caglioni's talk at Trento General Meeting)

Conclusions

- The choice of f(x) = x exp(-bx²), which was initially chosen on an empirical basis, is actually the correct function to be used to fit angular- or space-separation, if correlation are not present, when the lateral distribution of He tracks can be approximated by a gaussian. This seems the case at FOOT energies.
- Actually, correlations even beyond the peak at very small angles, due to ⁸Be ground state, should exist, manifesting themselves as less visibile structures at higher angular separation.
- In the case of emulsion data, statistical fluctuations are probably masking these correlation structures
- Data from electronic setup should put more in evidence such structures

Acknowledments: Very useful advices provided by F. Battistoni (**Dip. di Matematica per le Scienze Economiche, Finanziarie ed** Attuariali, Univ. Cattolica, Milano)