

GSI2021 analysis without tracking

Riccardo Ridolfi

6 March 2024

Cross section measurement

With available data total integrated and angle differential cross section are achievable (no kinetic energy)

$$\Delta \sigma(Z) = \int_{\beta_{\min}}^{\beta_{\max}} \int_{0}^{\theta_{\max}} \left(\frac{\partial^2 \sigma}{\partial \theta \partial \beta} \right) \mathrm{d}\theta \mathrm{d}\beta = \frac{1}{N_{\mathrm{pri}}}$$

Align FOOT detectors and estimate angular acceptance

Extract fragment yields from TW

Calculate MC efficiencies for fragments

Evaluate the beta range from data and put in MC for efficiency calculations

 $\mathbf{m} \cdot N_{\mathrm{TG}} \cdot \varepsilon(Z)$

Cross section measurement

With available data total integrated and **angle differential** cross section are achievable (no kinetic energy)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(Z) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \Delta\theta \cdot \varepsilon(\boldsymbol{Q})}$$

Align FOOT detectors and estimate **angular acceptance**

Extract fragment yields from TW

Calculate MC efficiencies for fragments

Angle measurement

Why background subtraction?

Angular cross section Z1

Angular cross section Z2

Angular cross section Z3

Angular cross section Z4

Angular cross section Z5

Angular cross section Z6

Some comments...

Purity correction goes always in the "right" direction

Huge contribution in Li (and Be) cross section as expected

<u>Difference in C and N to be understood</u>

<u>Angle unfolding procedure will have an impact</u>

Why these differences?

Angle mixing with this method is not negligible...

10

Why these differences?

Angle mixing with this method is not negligible...

Why these differences?

Angle mixing with this method is not negligible...

Angular unfolding Several unfolding routines implemented (TUnfold, TUnfoldSVD, RooUnfold package)

dσ/**d**θ [°]

New analysis flow

Evaluate efficiencies and purities

Repeat for with and w/o target samples

Apply reconstruction cuts (SC, BM)

Normalize yields and subtract background

Apply efficiency and purity for fragmentation in target

Unfolding

Calculate angular cross sections

Compare with MC

Next steps

Run on data with the same steps of MC analysis

400 MeV/u ¹⁶0 beam on 5mm Carbon target

Run	Trigger type	Target	Events
4305	MB	\mathbf{C}	162102
4306	MB	\mathbf{C}	577096
4307	MB	\mathbf{C}	513370
4308	Frag + MB	\mathbf{C}	510169
4309	Frag + MB	\mathbf{C}	531812
4310	Frag + MB	\mathbf{C}	1012099
4313	${ m MB}$	no	57133

Next update soon!

Thanks for listening!

MC reco

no MC information

reconstructed angle using BM and TW point position

signal - background with normalized yields wrt number of primaries