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Abstract 
 
As accelerator technology advances, the requirements on accelerator beam quality become 
increasingly demanding. Facing these new demands, the topic of phase space gymnastics is 
becoming a newly-focused and critical area of R&D. In a phase space gymnastic, the beam’s 
phase space distribution is manipulated and precision tailored to meet the required beam 
quality. On the other hand, all realization of such gymnastics will have to obey accelerator 
physics principles as well as technological limitations. Recent examples of phase space 
gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, 
Seeded FELs and Microbunched radiators. In this talk, we will review the emittance related 
topics. The accelerator physics basis, the lattice designs that provide these phase space 
manipulations, and the possible applications of these gymnastics, will be discussed. This 
fascinating field promises to be a focused attention towards the future.  
 

 

 
  



As we demand more and more from accelerators, beam technology gets more 
advanced, phase space gymnastics becomes very acrobatic and a topic both critical 
and beautiful.  
 

      
 
Ability to manipulate 6D phase space offers many precision-oriented operations of 
the beam, and opens up many applications in beam manipulations and diagnostics, 
e.g. for linear colliders and FELs. This is a new and fertile R&D field. 
 
  



Examples of phase space gymnastics: 
 Various RF gymnastics in the past 
 Adapters 
 Emittance exchanges 
 Phase space exchanges 
 Emittance partitioning 
 Various seeded FEL microbunching schemes 

We will discuss only the few emittance related topics (underlined). 
 
Phase space gymnastics permit precision manipulations because phase space is 
conserved. Liouville theorem is the root cause of these phase space effects. Once 
something is done to the phase space, no matter how minute, it will be remembered. 
 
  



This report follows the footstep of many pioneers: 
A. Bogacz R. Brinkmann 
A. Burov Y. Cai 
B. Carlsten M. Cornacchia 
V. Danilov Y. Derbenev  
A. Dragt D. Edwards  
P. Emma K. Floettmann 
Y. Jiao K.J. Kim 
V. Lebedev S. Nagaitsev 
J. Peterson G. Stupakov  
R. Talman L. Teng 
D. Xiang N. Yampolsky 
A. Zholents M. Zolotorev 
etc. 

 
  



I.  Flat-to-round and round-to-flat adapters 
 
 

           
 
 
Consider the 4D canonical phase space Xcan=(x, px, y, py). We have two 
representations to describe particle motion in phase space: 
 
  



(1)  For an uncoupled lattice, use the Courant-Snyder basis of planar modes (x and y 
modes):  X = Va, where 

 
and 

  

for a planar beam with x- and y-emittances = Jx, Jy. 
 
Lattice parameters = x, x, x, y, y, y      We are familiar with this representation. 
 
  



(2)  For a fully coupled, rotational symmetric lattice, one uses the basis of circular 
modes (left-handed and right handed modes):   X = Ua   where   U = 

   
and 

  

This beam has right-handed and left-handed emittances J+, J-. 
[Lebedev, Bogacz, 1999] 

 
Lattice parameters = , , +, -     There is only one -function but two phases. 
  



Once we have the planar basis V (of a decoupled lattice) and the circular basis U (of 
a rotational symmetric lattice)  ---  both are symplectic  --- one can consider 
“adapters” to go from one to the other. 
 
Flat-to-flat adapter from s1 to s2 is well known. The job is to design a transport 
lattice that provides the map from V(s1) to V(s2), i.e. the lattice matching one set of 
lattice parameters into another is given by the map V(s2)V(s1)-1  =   
 

 
 
which is a well known result.  



Round-to-round adapter from s1 to s2, i.e. one set of circular lattice parameters to 
another. The map is U(s2)U(s1)-1 , and it can be shown that it has the general form 
 

   
 
There are two ways to realize this: 

(a) a quadrupole channel, followed by rotating the entire subsequent beamline 
elements by –. 

(b) A uniform solenoid (including its two ends) with strength ks and length z will 
produce this map with =  = ksz/2,  = 2 = 2/ks,  = 2 =0. 

  



Round-to-flat adapter 
[Derbenev 1998, Edwards 2001, Kim 2003] 

 
This adapter is given by U(s2)V(s1)-1, which can be shown to have a general form 
(flat-to-flat) x (UV-1) x (round-to-round), where 
 

UV-1 =        
 
which is a regular quadrupole channel (3 quadrupoles minimum) rotated 45o. 
Design of the adapter therefore reduces to a regular lattice matching problem. 
 
Inserting an adapter from a round optics with (, , +, -) to a flat optics with (x, x, 
x, y, y, y)  
 
A round beam with left-handed- and right-handed-emittances = (J+, J-) is 
transformed to a planar beam with x- and y-emittances = (J+, J-). 



 
 
Flat-to-round adapter 
 
Reversing the round-to-flat adapter 
   
A flat beam with x- and y-emittances = (Jx, Jy) is transformed to a round beam with 
left-handed- and right-handed-emittances = (Jx, Jy). 
  



Applications of flat-to-round and round-to-flat adapters 
 
The idea of adapters was first introduced by Derbenev 1993 to control the beam-
beam effect in storage ring colliders. But it has been much extended for other 
applications: 
 
(1)  Storage ring colliders: 

planar beam in regular arc cells  
(flat-to-round adapter)--->   

circular beam in collision region with solenoid 
(round-to-flat adapter)--->   

planar beam in arc cells. 
This possibly reduces the beam-beam effect due to much fewer number of nonlinear resonances. 
 
 (2)  Linear colliders: 

[Brinkmann, Derbenev, Floettmann, 1999, Edwards et al, 2000] 
With round beam produced at magnetized cathode, a round-to-flat adapter avoids the need of damping ring.  
 
(3)  Relativistic electron beam cooling: 

Apply a flat-to-round adapter to a very flat beam (Jx >> Jy) 
 A round beam is produced with J+ >> J-. 
Immersing the beam in a matched solenoid with appropriate Bs  
   Particles all move straight ahead with no Larmor precession and therefore no temperature! 



II.  Emittance and Phase space exchangers 
 
There are more adapter types. For example, one may stay with flat-to-flat, but wish 
to exchange the x and y coordinates. This means we want an adapter that 
transforms the base vectors from 

V  =   
to 

V’ =   
The adapter needs to provide the map V’V-1. Obviously, when x2=y, y2=x, 

x2=y, y2=y, x2=y and y2=x, we have V’V-1 = . One way to produce the 

map  is a solenoid with ksz =  When inserted, this adapter will cause x- and y-
phase spaces and emittances to be exchanged. 



 
One can also exchange x and z instead of x and y.  Consider a planar lattice in X = 
(x,x’,z,) coordinates. Let the transformation map be 

 
An emittance exchanger (EEX) requires A=D=0: 

(x,x’)    (z,)   switching two blocks 
A phase space exchanger requires A=D=0 and B and C = diagonal. 

x  z,   x’  switching four coordinates 
 

 
  



Cornacchia-Emma EEX 
 

 
 

      =   
where k = 1 has been chosen. 
However, the exchange is incomplete. 
  



Kim EEX 

 
 

The transform map is  if k = -1. The exchange is 
complete. 
 
  



Xiang-Chao EEX 
 
The Kim exchanger requires replacing a chicane by two dog-legs. Chicane can be 
recovered by inserting a –I map to the (x.x’) lattice. 

 
 

Map =  when k = 1. 



 
Furthermore, by inserting telescopic sections, 

 
the condition for complete exchange can be relaxed to k = 1/M. 
 
  



x-z Phase Space Exchanger 

A clean x-z phase space exchanger can be obtained by adding  

upstream and inserting  downstream the Xiang-Chao EEX. 

Then the map becomes  , i.e.  we then get a clean phase space exchanger. 
 
Note that these added sections are straightforward, each consisting of two 
quadrupoles, and staying outside of the EEX.  
  



x-y Phase Space Exchanger 
 
A clean phase space exchanger between x and y was discussed before, i.e. a solenoid 
with ksz = : 

 
i.e.  x  y’,   x’  y 
 
 
 
 



Applications of x-z exchangers 
[list from D. Xiang 2010] 

(1) When z << x, EEX allows small ex for FEL 
(2) When z >> x, EEX allows bunch compression 
(3) Observing z-distribution by an x-profile monitor 
(4) Tailoring z-distribution by an x-scraper 
(5) Measuring slice energy spread by an x-profile monitor 
(6) Cleaning the z- and -tails by x-scraper 
(7) Observing beam microbunching in z by an x-profile monitor 
(8) Generate z-microbunching by modulating the x-profile of a beam 
(9) Generating z-double bunches by x-wire scraper 
(10) Longitudinal phase space linearizer by a sextupole 
(11) Study CSR effect by converting CSR-induced z- correlation to x-x’ correlation 
(12) Suppressing CSR by z > x and exchange afterwards 
(13) Observing curvature of z(y) by an x-y profile monitor 
(14) Bunch compression without energy chirp 
(15) etc. 

 
  



Example (8) 
[Experiment Y-E Sun et al 2010, Xiang 2011] 

An x-z phase space exchanger with magnification factor of 1: 

 
x-mask with 0.8 m slits   beam with 0.8 m microbunches in z. 
 
Simulation (ELEGANT) with thick lenses and nonlinear optics but no CSR: 

     
Note:  Shorter microbunches can be obtained by a demagnification factor. 



Example (13) 
 
A curvature in z(y) in the microbunches hurts the FEL mechanism and needs to be 
cured by beam conditioning. A x-z phase space exchanger will allow observation of 
z(y) curvature on an x-y profile. 

[Xiang 2010] 
 
ELEGANT simulation: 

 
A magnification factor of 20 has been applied. 
 
  



Example (14) 
[Zholents/Zolotorev 2010] 

With two back-to-back x-z phase space exchangers: 
 

 
 
  bunch compressor is replaced by a telescope in between the two exhchangers. 
No large energy chirp needed, and avoiding rf nonlinearities. No net emittance 
exchange. 

         =    

  



III.  Emittance partitioning 
 
So far, we have been talking about exchanging the emittances. How about changing 
the emittances? The EEX and phase space exchangers are adapters. Adapters are 
symplectic. They diagonalize the phase spaces, but do not alter eigen-emittances. 
They can exchange emittances, but not change them. 
 
Theorem: Eigenemittance are invariant under symplectic transformations.  
 
Since all beamline elements are symplectic, the beam’s eigen-emittances cannot be 
changed once the beam was born at the cathode. Once the beam was born at the 
cathode, Dragt: “the game is over”. 

 

 Transformations are symplectic only if we use Xcan = (x, px, y, py). 
 Xcan = X if (and only if) in field-free regions! 
 To affect the eigen-emittances, there are only two ways: 

a) Try to affect the way the beam is born at the cathode 
b) If it has to be done after the beam is born, then try to implement non-

symplectic beamline elements. 
  



Magnetized cathode 

 
Consider a photocathode immersed in solenoid Bs. Consider the case when incident 
laser is normal to the cathode and is rotational symmetric. The 4 x 4 beam second-
moment matrix at the cathode is round, with 
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where we have used X = (x,x’,y,y’) coordinates because that is how the beam gets 
produced at the cathode, even if magnetized. 
 
As soon as the beam is born at the cathode, its eigen-emittances are determined. The 
eigen-emittances however are not x0x0’. To find the eigen-emittances, one must 
not use the X coordinates but has to use 
     Xcan = (x,  px=x’–ksy/2,  y,  py=y’+ksx/2)  
or 

Xcan = MX 



where M =    
 
In terms of Xcan, the beam matrix is 
     = M0MT   
The new-born beam always has the same 0 distribution in the X coordinates 
regardless of Bs. However, when projected to Xcan, it changes according to Bs. 
Magnetizing the cathode is therefore one way to control the eigen-emittances. 
 
How to compute the eigen-emittances? Answer: They are given by the eigen-values 

of iJ, where J =  . 
 
Explicit calculation gives  

2
2 2 2

1,2 0 0 0 0
4 2

s s
x x x x

k k
      

 
  



The parameter = ksx0/x0’ controls the eigen-emittances: 
 

 

 
To produce a very flat beam (from a round laser cathode!), one takes a large value of 
. The aspect ratio 1/2=1/250 if =8. 
(If x0/x0’=1 m, Bs=0.3 T, E= 100 keV, then =8)  



By choosing , we control the eigen-emittances after exiting the solenoid. However, 
at the solenoid exit, phase space is entangled. We insert a round-to-flat adapter so 
that the eigen-planes align with x and y. 
 
As mentioned before, by inserting after the solenoid a 45o-rotated channel of normal 
quadrupoles that produces the map 

 
with 

1/2  =  1/y
2  = ks

2/4 + x0’2/x0
2 

  the beam distribution matrix becomes diagonal, 
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and one of the dimensions will have a very small emittance! 



 
Example design [Jiao 2011]: 
 

 



 
 
Partitioning by tilt laser 
 
Magnetized cathode is a way to control x and y emittances, leaving z emittance 
intact. But how to control x and z emittances (leaving y emittance intact)? One way 
is to tilt the laser pulse-front. 

[Carlsten 2010, Yampolsky 2010, Jiao 2011] 
 

                               

     Tilt  pulse   Original pulse 

x 




With tilt laser,  

0

0 0 tan

x x

z z x 



   

This coordinate correlation is non-symplectic! (The tilt is applied to the laser, not 
the electrons.)  
 
The laser tilt modifies the eigen-emittances of the electron beam at its birth. Assume 
the beam distribution (in x-z plane) produced by the laser without tilt is  
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With tilt, the beam matrix becomes 
2 2
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where  = tan. 
  
The eigen-emittances are readily obtained,
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The emittance aspect ratio is given by 
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f as a function of  f0 = z0/x0 and kx00 /’x0z0 : 
 

 
 
Take normalized x0 = 1.3 mm, x0‘ = 0.3 mrad, x0 = 0.4 mz0 = 0.8 mm,  
0 = 5x10-3, z0 = 4 m     f0 =10, k=27   f ranges up to 30.
  



We still need to diagonalize the coordinates after the tilt laser gun. That can be done 
by an appropriate adapter. 
 
Example design [Jiao 2011]: 
 

 
  



 
Combining magnetized cathode with tilt laser 
 
Consider the beam emittances at the LCLS photo cathode gun: 
  x0, y0, z0)  = (0.4 m, 0.4 m, 4 m)  
We want to change to (0.1 m, 0.1 m, 64 m) for the FEL. This involves both x-y 
and x-z exchanges, so how about applying tilt laser to a magnetized photocathode?  
 
We need 3D analysis. The 3D beam distribution in Xcan coordinates is found to be 
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Eigen-emittances are determined by 
 

E3 – (2+f0
2+g2+h2) E2 + (1+2f0

2+g2+f0
2h2) E – f0

2 =0 
 

where 
E = (/x0x0’)2, g = 0/x0’, f0 = z00/x0x0’, h = ksx0/x0’. 

 
 

        
 

f0=5, g=0     f0=5, h=0     f0=5, g=5  

 
  



Naively we might think to achieve the desired FEL emittances in two steps: 
(1)  Tilt laser:     

(0.4 m, 0.4 m, 4 m)    (0.025 m, 0.4 m, 64 m) 
(2)  then with immersed solenoid:   

(0.025 m, 0.4 m, 64 m)    (0.1 m, 0.1 m, 64 m) 
 
But this does not work. Both immersed solenoid and the tilt laser are applied at the 
cathode, not applied in sequence. Combined laser tilt and immersed solenoid can 
not produce (0.1 m, 0.1 m, 64 m) ! 
 
What are available so far: 

a) Start with x0, y0, z0) = (X, Y, 0.1). Apply magnetized cathode to obtain (10*XY, 
0.1, 0.1). Then go through x-z emittance exchanger to get (0.1, 0.1, 10*XY). 

b) Start with x0, y0, z0) = (X, 0.1, Z). Apply tilt laser cathode to obtain (0.1, 0.1, 
10*XZ).  

c) Start with x0, y0, z0) = (X, Y, 0.1). Apply tilt laser cathode to obtain (0.1, 0.1, 
10*XY).  

In all cases, at least one of the initial emittances has to be 0.1 m. 
  



Partitioning by foil  
 
So we cannot combine partitioning steps. Steps must be clearly separated. The 
second step, necessarily applied after the beam is born, will have to be non-
symplectic. One idea, first introduced by Peterson 1983, is to insert a tapered foil. 

[J. Peterson 1983, Carlsten 2010, Jiao 2011] 
 

 (cathode with tilt laser) 
 (an adapter to diagnalize) 
 (tapered foil) 
 (another adapter to diagonalize again) 

  



Tapered foil: 

 

induces a nonsymplectic map  in the coordinates X = (x, x’, z, ). 
 
The beam distribution 
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is transformed to  

 

x

z2x

2x



where x’2 is added to the <x’2> and 
2 added to <2> to model the effects of 

Coulomb scattering by the foil. The foil introduces three quantities: S (desired), x’2 
(undesired) and 

2 (undesired). 
 
The x eigen-emittance is found to be 

       
 

  
          

where  
A = (x’2 + x’2)x

2 +(
2+

2)z
2 + S2 2 z

2  
B2 = 4 2 z

2 (x’2 + x’2) (
2+

2) 
 
Assume carbon foil, let df = Lfoil/Lrad, and cut 4% of the tail particles, then for df < 10-3, 

Sx = (41.5 df/)
x’2  =  157.4 df/2 


2  =  (35.5 df/)2  
 



    
 
This beam has initial x0, y0, z0) = (0.7 m, 0.7m, 1.4m) and we wish to reduce 
x as much as possible. 
 
We found that when foil scattering is included, it is difficult to have x <0.5 m 
unless much more tail particles are cut. Root cause is that is too large for the 
needed foil thickness. 
 
It can be shown analytically that the best one can achieve by a tapered foil is x,eig  = 
63% x0 [Jiao 2011].  

Take  
z = 0.5 mm,  
 = 2.8 mrad/, 
x =0.083 mm/1/2, 
x‘ = 8.3 mrad /1/2 
       
x eigen-emittance 
contours 0.5 - 0.8 m 



3D simulations with foil: 
[Jiao 2011, G4Beamline, Muons Inc.] 

For this simulated case, analytic model gives final x eigen-emittance = 0.5 m. 
Simulation after the beam is diagonalized (adapter 15 m, 4 dipoles + 4 crab 
cavities): 

  
 
Final x emittance ~0.47 m. Usefulness of tapered foil for emittance partitioning 
seems rather limited. More work is needed. 



IV.  Summary 
 

1. Phase space gymnastics is a powerful technique: 
- Adapters 
- Emittance exchangers 
- Phase space exchangers 
- Emittance partitioning  

a) by magnetizing the cathode 
b) by tilting the photocathode laser 
c) by tapered foil 

 
2. This is still on-going R&D. This talk wishes to generate more interest: 

- applications 
- more ideas 
- design optimization 
- space charge and IBS effects 
- nonlinearities in lattice optics 
- emittance preservation 
- tolerance simulations 
- experimental demonstration of large aspect ratios 


