FACULTY OF WARSAW

Two-neutrino double beta decay in the DFT-rooted No-Core Configuration Interaction model

<u>J. Miśkiewicz</u>¹, M. Konieczka¹, W. Satuła¹

¹University of Warsaw, Faculty of Physics, Department of Complex Systems Modelling

VII Topical Workshop on Modern Aspects in Nuclear Structure, Bormio 2025

Beta decay $\beta^ e^- \bar{\nu}_e$

Quantum-wise: $\hat{\mathcal{H}}_{\beta} = \frac{G_F}{\sqrt{2}} J^{\mu \dagger} j_{\mu} + \text{h.c.}$ Annihilation-creation of a hadron (p,n)

2/13

Nuclear matrix element

$$T_{1/2}^{-1} = G_{2\nu\beta\beta}(Z, E) \cdot |\mathcal{M}_{2\nu\beta\beta}|^{2}$$

$$Ieptonic part$$

$$Ieptonic part$$

$$Iuclear matrix element$$

$$(all nuclear QM)$$

$$\sim G_F^4$$

Extremely rare! (only **11** nuclei)

Fermi golden rule of the 2nd order

NCCI based on Skyrme nuclear density functional

Ref: W. Satuła et al., Phys. Rev. C 94, 024306 – 024319 (2016) 6/13

1) Construction of mean-field configurations with Skyrme SV force:

7/13

2) I^{π} - projection:

3) Partial Gamow-Teller elements:

4) Configuration mixing of the projected states:

5) Calculation of the cumulative $2\nu\beta\beta$ matrix element :

$$\mathcal{M}_{2\nu\beta\beta} = \sum_{m} \frac{\langle \text{NCCI}_{f} | \hat{H}_{\text{GT}} | \text{NCCI}_{m} \rangle \langle \text{NCCI}_{m} | \hat{H}_{\text{GT}} | \text{NCCI}_{i} \rangle}{\Delta E_{j} + \frac{1}{2}Q_{\beta\beta} + \Delta M}$$

taken from experiment

The whole procedure has been performed **numerically** within DFT-based **HFODD** code (open access).

Resulting cumulative $|\mathcal{M}_{2\nu\beta\beta}|$:

10/13

Expectations:

Highest contribution from the strongest partial GTs

Unexpected reality:

- •NCCI mixing of crumble (~0.001) GTs makes up **88%** of the total matrix element!
- Key factor: NCCI mixing in **daughter**

Nuclear widow's mite: many small contributions > few huge

Exclusive for 48Ca, or a rule for heavier?

Status and future plans for 76Ge and 136Xe

Preliminary estimation for **76Ge** nucleus.

- High triaxiality (γ~27-30°) in each nucleus – little control over single-particle occupancy
- Spectrum highly dependent on the spin-orbit magnitude in Skyrme SV

Status and future plans for 76Ge and 136Xe

136Xe – initial stage

- Configuration convergence in progress
- Prolate shape for 136Xe, 136Cs and 136Ba expected as dominant
- Little deformation so far $(\beta \sim 0.03 0.05)$

What next?

- Implementation of **neutrinoless** matrix elements into **DFT-NCCI** framework (HFODD)
- Tests of the model on the (hypothetical) **0νββ** decay.