Nuclear structure beyond the proton drip line

Robert Page

- Introduction
- Experimental methods
- Recent results
 - Proton emission
 - Alpha emission
 - Beta emission

How exotic are these nuclei?

Properties of exotic nuclei test models far from stability

How exotic are these nuclei?

How hard are they to study?

Cross sections

Half-lives

Low cross sections => selectivity & efficiency Few events – beware of background!! Short half-lives can help with selection

Mass Analysing Recoil Apparatus

MARA – fusion-evaporation reactions

Efficiency ~40 % Flight time ~0.5 µs

J. Uusitalo, et al., Acta Physica Polonica B50 (2019) 319

J. Sarén et al., NIMB 541 (2023) 33

Maximising sensitivity

JYTube (with APPA)

A = 149 A = 149 A = 149 A = 149 q = +30 q = +29 q = +28 q = +27

MARA Focal Plane Detectors

Double-sided Silicon Strip Detector 128 mm × 48 mm × 300 μ m Strip pitch 0.67 mm = 13824 "pixels" Digitised "traces"

Proton emission from ¹⁴⁹Lu

Proton emission from ¹⁴⁹Lu

PHYSICAL REVIEW LETTERS 128, 112501 (2022)

Editors' Suggestion

Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed ¹⁴⁹Lu

K. Auranen⁰,^{1,*} A. D. Briscoe,¹ L. S. Ferreira,² T. Grahn,¹ P. T. Greenlees,¹ A. Herzáň,³ A. Illana,¹ D. T. Joss,⁴
H. Joukainen,¹ R. Julin,¹ H. Jutila,¹ M. Leino,¹ J. Louko,¹ M. Luoma,¹ E. Maglione,² J. Ojala,¹ R. D. Page,⁴ J. Pakarinen,¹
P. Rahkila,¹ J. Romero,^{1,4} P. Ruotsalainen,¹ M. Sandzelius,¹ J. Sarén,¹ A. Tolosa-Delgado,¹ J. Uusitalo,¹ and G. Zimba¹
¹Accelerator Laboratory, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
²Centro de Física e Engenharia de Materiais Avançados CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon, Portugal
³Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava, Slovakia

Proton emission from ¹⁴⁹Lu

Proton emission from ¹⁴⁹Lu

β

New α emitter ¹⁶⁰Os & β emitter ¹⁵⁶W

Phys. Lett. B 847 (2023) 138310

Contents lists available at ScienceDirect

Physics Letters B

Letter

Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides $^{160}\mathrm{Os}$ and $^{156}\mathrm{W}$

A.D. Briscoe ^{a,b, •}, R.D. Page ^{a, •}, J. Uusitalo ^{b,a}, D.T. Joss ^a, M.A.M. AlAqeel ^{1,a}, B. Alayed ^{m,a}, B. Andel ^c, S. Antalic ^c, K. Auranen ^b, H. Ayatollahzadeh ^d, H. Badran ^b, L. Barber ^e, G. Beeton ^d, M. Birova ^f, V. Bogdanoff ^b, R.M. Clark ^g, J.G. Cubiss ^h, D.M. Cullen ^e, J. Deary ^d, U. Forsberg ^b, T. Grahn ^b, P.T. Greenlees ^b, J.B. Hilton ^{a,b}, A. Illana ^{b,n}, H. Joukainen ^b, D.S. Judson ^a, R. Julin ^b, H. Jutila ^b, J.M. Keatings ^d, M. Labiche ⁱ, M. Leino ^b, M.C. Lewis ^a, J. Louko ^b, M. Luoma ^b, I. Martel ^{a,o}, A. McCarter ^a, P.P. McKee ^d, P. Mosat ^c, S.N. Nathaniel ^a, O. Neuvonen ^b, D. O'Donnell ^d, J. Ojala ^b, C.A.A. Page ^h, A.M. Plaza ^{a,b}, J. Pakarinen ^b, P. Papadakis ⁱ, E. Parr ^a, J. Partanen ^{b,1}, P. Rahkila ^b, P. Ruotsalainen ^b, M. Sandzelius ^b, J. Sarén ^b, B. Saygi ^{j,p}, J. Smallcombe ^a, J.F. Smith ^d, J. Sorri ^k, C.M. Sullivan ^a, S. Szwec ^b, H. Tann ^{a,b}, A. Tolosa-Delgado ^b, E. Uusikylä ^b, M. Venhart ^f, L.J. Waring ^a, G. Zimba ^b

PHYSICAL REVIEW LETTERS 132, 072502 (2024)

Editors' Suggestion

Featured in Physics

Discovery of New Isotopes ¹⁶⁰Os and ¹⁵⁶W: Revealing Enhanced Stability of the N = 82 Shell Closure on the Neutron-Deficient Side

H. B. Yang (杨华彬)⁶,¹ Z. G. Gan (甘再国)⁶,^{1,2,3,*} Y. J. Li (李英健),⁴ M. L. Liu (刘梦兰),⁵ S. Y. Xu (徐苏扬)⁶,^{1,2}
C. Liu (刘晨),⁴ M. M. Zhang (张明明),¹ Z. Y. Zhang (张志远)⁶,^{1,2} M. H. Huang (黄明辉)⁶,^{1,2,3} C. X. Yuan (袁岑溪)⁶,^{5,†}
S. Y. Wang (王守宇)⁶,^{4,‡} L. Ma (马龙),¹ J. G. Wang (王建国),¹ X. C. Han (韩星池),⁴ A. Rohilla,⁴ S. Q. Zuo (左思琪),⁴
X. Xiao (肖骁),⁴ X. B. Zhang (张鑫博),⁴ L. Zhu (祝霖),⁴ Z. F. Yue (岳志芳),⁴ Y. L. Tian (田玉林),^{1,2,3}
Y. S. Wang (王永生),^{1,3} C. L. Yang (杨春莉),^{1,2} Z. Zhao (赵圳),^{1,2} X. Y. Huang (黄鑫源),^{1,2} Z. C. Li (李宗池),^{1,2}
L. C. Sun (孙路冲),⁶ J. Y. Wang (王均英),^{1,3} H. R. Yang (杨贺润),^{1,2} Z. W. Lu (卢子伟),¹ W. Q. Yang (杨维青),¹
X. H. Zhou (周小红),^{1,2} W. X. Huang (黄文学)⁶,^{1,2,3} N. Wang (王宁),⁶ S. G. Zhou (周善贵)⁶,^{7,2}
Z. Z. Ren (任中洲),⁸ and H. S. Xu (徐瑚珊)^{1,2,3}

MARA

SHANS

Letter

Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides $^{160}\mathrm{Os}$ and $^{156}\mathrm{W}$

A.D. Briscoe ^{a,b,O}, R.D. Page ^{a,O}, J. Uusitalo ^{b,a}, D.T. Joss ^a, M.A.M. AlAqeel ^{I,a}, B. Alayed ^{m,a}, B. Andel ^c, S. Antalic ^c, K. Auranen ^b, H. Ayatollahzadeh ^d, H. Badran ^b, L. Barber ^e, G. Beeton ^d, M. Birova ^f, V. Bogdanoff ^b, R.M. Clark ^e, J.G. Cubiss ^h, D.M. Cullen ^c, J. Deary ^d, U. Forsberg ^b, T. Grahn ^b, P.T. Greenlees ^b, J.B. Hilton ^{a,b}, A. Illana ^{b,n}, H. Joukainen ^b, D.S. Judson ^a, R. Julin ^b, H. Jutila ^b, J.M. Keatings ^d, M. Labiche ⁱ, M. Leino ^b, M.C. Lewis ^a, J. Louko ^b, M. Luoma ^b, I. Martel ^{a,o}, A. McCarter ^a, P.P. McKee ^d, P. Mosat ^c, S.N. Nathaniel ^a, O. Neuvonen ^b, D. O'Donnell ^d, J. Ojala ^b, C.A.A. Page ^h, A.M. Plaza ^{a,b}, J. Pakarinen ^b, P. Papadakis ⁱ, E. Parr ^a, J. Bartanen ^{b,1}, P. Rahkila ^b, P. Ruotsalainen ^b, M. Sandzelius ^b, J. Saref ^b, B. Saygi ^{i,p}, J. Smilt ^d, J. Sorri ^k, C.M. Sullivan ^a, S. Szwec ^b, H. Tann ^{a,b},

Letter

Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides $^{160}\mathrm{Os}$ and $^{156}\mathrm{W}$

A.D. Briscoe ^{a,b,O}, R.D. Page ^{a,O}, J. Uusitalo ^{b,a}, D.T. Joss ^a, M.A.M. AlAqeel ^{l,a}, B. Alayed ^{m,a},
B. Andel ^c, S. Antalic ^c, K. Auranen ^b, H. Ayatollahzadeh ^d, H. Badran ^b, L. Barber ^e, G. Beeton ^d,
M. Birova ^f, V. Bogdanoff ^b, R.M. Clark ^g, J.G. Cubiss ^h, D.M. Cullen ^e, J. Deary ^d, U. Forsberg ^b,
T. Grahn ^b, P.T. Greenlees ^b, J.B. Hilton ^{a,b}, A. Illana ^{b,a}, H. Joukainen ^b, D.S. Judson ^a, R. Julin ^b,
H. Jutila ^b, J.M. Keatings ^d, M. Labiche ⁱ, M. Leino ^b, M.C. Lewis ^a, J. Louko ^b, M. Luoma ^b,
I. Martel ^{a,o}, A. McCarter ^a, P.P. McKee ^d, P. Mosat ^e, S.N. Nathaniel ^a, O. Neuvonen ^b,
D. O'Donnell ^d, J. Ojala ^b, C.A.A. Page ^b, A.M. Plaza ^{a,b}, J. Pakarinen ^b, P. Papadakis ⁱ, E. Parr ^a,
J. Partanen ^{b,1}, P. Rahkila ^b, P. Ruotsalainen ^b, M. Sandzelius ^b, J. Sarén ^b, B. Saygi ^{j,p},
J. Smallcombe ^a, J.F. Smith ^d, J. Sorri ^k, C.M. Sullivan ^a, S. Szwec ^b, H. Tann ^{a,b},

A. Tolosa-Delgado^b, E. Uusikylä^b, M. Venhart^f, L.J. Waring^a, G. Zimba^b

Cleanly correlated decay chains

	Chain #	E ₁ (keV)	t ₁ (μs)	E ₂ (keV)	t ₂ (ms)	E ₃ (keV)	t ₃ (ms)	E ₄ (keV)	t ₄ (ms)	E ₅ (keV)	t ₅ (ms)	JYTube Fold
ĺ	1	8911	27	5886ª	1285	-	-	-	-	-	-	0
	2	8894	31	472^{h}	43	165^{i}	1498	5883 ^a	55	4820 ^e	1139	0
	3	8868	31	180 ⁱ	1605	7801 ^b	1	-	-	-	-	0
	4	8878	205	1016 ^c	256	-	-	-	-	-	-	1
	5	8850	15	341 ^{<i>h</i>}	256	5904 ^a	1285	-	-	-	-	0
	6	8888	28	156^{h}	28	7741 ^b	923	-	-	-	-	0
	7	8891	166	867 ^h	314	7716 ^b	48	-	-	-	-	0
	8	8852	14	218^{h}	108	7811 ^b	662	-	-	-	-	0
	9	8847	102	5839 ^a	864	-	-	-	-	-	-	0
	10	8888	181	204^{h}	712	7791 ^b	307	1345	314	-	-	0
	11	8929	27	245^{h}	48	7765 ^b	578	-	-	-	-	0
	12	8851	52	425 ^g	312	974 ^c	226	215	840	-	-	0
	13	8871	57	5864 ^a	800	-	-	-	-	-	-	0
	14	8856	13	1131^{d}	916	5577 ^f	1096	-	-	-	-	1
	15	7108	112	878 ^h	88	7812^{b}	70	-	-	-		0
	16	7069	105	5879 ^a	489	-	-	-	-	-	-	0
	17	7144	13	7756 ^b	82	1871	1414	4815 ^e	4721	-	-	0
١.	18	7049	364	7767 ^b	481	-	-	-	-	-	-	1

 E_{α} $t_{1/2}$ 7092 keV 8890 keV 97 + 97 +15 - 9 μS ιS

N = 84 energy level systematics

Editors' Suggestion Featured in Physics

Discovery of New Isotopes ¹⁶⁰Os and ¹⁵⁶W: Revealing Enhanced Stability of the N=82 Shell Closure on the Neutron-Deficient Side

Background in spectrum (c)

Summary

Proton emitter ¹⁴⁹Lu New α emitter ¹⁶⁰Os New β emitter ¹⁵⁶W

More new results to come!

Robert Page

Extra acknowledgements

A. D. Briscoe,^{1,2} R. D. Page,¹ J. Uusitalo,^{2,1} D. T. Joss,¹ K. Auranen,² A. McCarter,¹ M. A. M. AlAgeel,^{9,1} B. Alayed,^{10,1} B. Andel,³ S. Antalic,³ H. Ayatollahzadeh,⁴ V. Bogdanoff,² R. M. Clark,⁵ J. G. Cubiss,⁶ T. Grahn,² P. T. Greenlees,² A. Illana,^{2,11} H. Joukainen,² D. S. Judson,¹ R. Julin,² H. Jutila,² J. M. Keatings,⁴ M. Leino,² J. Louko,² P. Mosat,³ J. Ojala,² C. A. A. Page,⁶ A. M. Plaza,^{2,1} J. Pakarinen,² P. Papadakis,⁷ E. Parr,¹ P. Ruotsalainen,² J. Sarén,² J. Smallcombe,¹ J. Sorri,⁸ C. M. Sullivan,¹ S. Szwec,² and G. Zimba^{2,12} ¹Department of Physics. Oliver Lodge Laboratory. University of Liverpool, Liverpool, L69 7ZE, United Kingdom ²Accelerator Laboratory, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland ³Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ⁴School of Computing, Engineering, and Physics Sciences, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom ⁵Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ⁶School of Physics. Engineering and Technology, The University of York, York, YO10 5DD, United Kingdom ⁷Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom ⁸Sodankylä Geophysical Observatory, University of Oulu, FIN-99600 Sodankylä, Finland Physics Department, Imam Mohammad Ibn Saud Islamic University (IMISU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia ¹⁰Department of Physics, College of Science and Art at Rass-Qassim University, 53-51921, Saudi Arabia ¹¹Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, E-28040 Madrid, Spain ¹²Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA