

UNIVERSITÀ DEGLI STUDI DI MILANO

VIIth Topical Workshop on Modern Aspects in Nuclear Structure

The Many Facets of Nuclear Structure

BORMIO 3-8 February 2025

Re-investigating ¹⁰⁷Te

Guangxin Zhang, Andrés Illana, José Javier Valiente Dobón, Daniele Mengoni

Overview

- Introduction
- Experimental setup
- Identification of ¹⁰⁷Te via Recoil Decay tagging
- Results and discussion ¹⁰⁷Te
- Conclusions and perspectives

Introduction – Collectivity vs SP dof

- Octupole deformation : Te, Xe, Ba
- Quadrupole vibrations
- Seniority
 - πv interactions

B. Hadinia et al., *PRC* **72** (2005) 041303 (R) D.S.Delion, et al., PRC 82 (2010) 024307 A.Illian Sison et al., PLB 848 (2024) 138371

Introduction – SPE ¹⁰⁰Sn

SPE $d_{5/2}$, $g_{7/2}$:

Alpha decay chain:¹¹¹Xe \rightarrow ¹⁰⁷Te \rightarrow ¹⁰³Sn.

Introduction – existing data

Decay data:

D.Shardt et al., NPA 326 (1979) D.Shardt et al., NPA 368 (1981), R.Cartegni et al., PRC 85 (2012) L.Capponi et al., PRC 101 (2020)

 $(39/2^{-})$

 $(35/2^{-})$

 $(31/2^{-})$

 $(27/2^{-})$

 $(23/2^{-})$

 $(19/2^{-})$

 $(15/2^{-})$

 $(11/2^{-})$

1324

750

Experimental Setup

The experiment @ JYFL

Xe 110

93 ms

 $I(\alpha) = 64 \%$

α 3.717

Jurogam3 + MARA + MARA focal plane

⁵⁴Fe(⁵⁸Ni,2n)¹¹⁰Xe @ 255 MeV
I = 3.8 pnA
12 days of beamtime
¹¹²Xe compound → 2n evaporation
Recoil decay tagging (RDT)

β+ 3.2, 3.5...

γ 320, 94, 69 1063...

RDT: detection of prompt γ ray at the reaction site followed by detection of evaporation residue implantation and decay at the focal plane of the recoil separator

The experimental setup @ JYFL

D.Mengoni

The Recoil-Decay Tagging (RDT) technique

E. Paul et al., Phys. Rev. C 51 78-87(1995).

Identification of ¹¹⁰Xe via RDT

Phys. Lett. B 848 (2024) 138371

2+

0+ 0+

(4752) (13⁻)

- Theroy: BE3 31 W.u and BE2 56 W.u..
- Theoretical energy levels are stretched wrt theory
- Some correlations still missing

Results

Results – ¹⁰⁷Te

Jurogam-MARA FP: delayed time coinc
 Residues vs α-decay tag (15 ms > 3τ)
 γγ time coincidence (~us)
 Coincidence spectra gated on "strong" transitions were possible.

Results – ¹⁰⁷Te level scheme

 $(31/2^{-})$

5285.1

Discussion – ¹⁰⁷Te: comparison with theory

SM: GCN50:82, valence gds+h_{11/2}
..Not so bad agreement with exp
Indications of collectivity (BE2 strength in black arrows)
(5/2⁺) proposed for the gs band.

[..] 5/2+ level contains ~30% neutron d5 coupled to 0+ proton, same for the 7/2+ but with a neutron in g7 (~30%). Overall occupation is 4 particles and the odd neutron occupies the higher/lower orbital

... d_{5/2} and g_{7/2} orbitals are closely spaced (but position very much dependent on the shell model, ie PM. Jodidar PRC111,2025)

Discussion – decay to ¹⁰⁷Ie

10⁻⁵

200

10-3

10M

Counts

 $(7/2^{+})$

¹¹¹Xe

 E_{α} =3463(50) I_{α} =37(20)%

Discussion – ¹⁰⁹⁻¹¹¹Te systematics: 5/2⁺ and 7/2⁺

Zs. Dombrádi et al., PRC 51 (1995) G.De Angelis et al, PLB 437 (1998)

- Tentative J^{π} assigned given DCO ratio, (ΔI difference based on a normalized ratio of γ -ray angular intensity)
- In ¹⁰⁹Te (5/2+) proposed base on theory and systematics
- Ambiguity in Dombrádi et al., 98 keV DCO compatible with mixed M1/E2 or stretched E2, unclear the choice in the paper. No plots shown.
- While in G.de Angelis et al., the lowest lying transition given of E2 character. But no isomer?

Discussion – ¹⁰⁹⁻¹¹¹Te systematics: $5/2^+$ and $7/2^+$

Band 3 Band 4 Band 2 Band 6 Band 1 Band 5

K. Starosta et al., Phys. Rev. C 61, 034308 (2000). G. J. Lane et al., Phys. Rev. C 55, 1559 (1997).

- The 117-keV DCO is consistent with $\Delta I \leq 1$ and no plots shown.
- In ¹¹¹Te: (5/2+) is proposed
- A stronger argument the for spin assignment in ¹¹¹Te seems the h_{11/2} ~50 ns isomer decay towards the gs band
- however such h_{11/2} isomer in not present in ¹⁰⁷Te
- ¹¹³⁻¹¹⁵Te, gs is a well established 7/2⁺

Discussion – ¹⁰⁸Te lifetime

T. Bäck et al., Phys. Rev. C 84, 041306(R) (2011).

- Calculations performed with two sets of single particle energies, ϵ_{sp} . In the first set, the values for ϵ_{sp} were taken from Banu et al.. In the second set, the new result in Darby et al. was taken into account by setting ϵ_{sp} (g7/2) = 0 and ϵ_{sp} (d5/2) = 172 keV.
- [..] the inversion of the d5/2, g7/2 orbitals in the Te calculation, does not create any substantial effect.

A. Banu et al., Phys. Rev. C 72, 061305(R) (2005).I. Darby et al., Phys. Rev. Lett. 105, 162502 (2010).

Conclusions and perspectives

- Results from JYFL exp populating (¹¹⁰Xe and) ¹⁰⁷Te.
- Level scheme extended in ¹⁰⁷Te and SM calculations done, indication of collectivity and draft in preparation.
- First low-lying excited states relying on systematics, which seems to indicate a swap of 5/2⁺ and 7/2⁺ between ¹⁰⁹Te and ¹¹³Te. Attempt to extract AD from our ¹⁰⁷Te data.
- Probably transfer/ko or lifetime/Coulex experiment in light o-e Te isotopes would contribute to establishing the J^π
- During spring this year a lifetime measurement is planned with AGATA@ LNL on the light Te-I-Xe

Thanks!

D.Mengoni

BACKUP

FIG. 4. Comparison of the experimental level scheme with the theoretical calculations based on the interacting boson-fermion model. On the right hand side of the figure the main components of the calculated wave functions are also given.

<u>27/2</u> $h_{11/2}+8^+$

<u>23/2</u> h_{11/2}+6⁺

<u>19/2</u> $h_{11/2}+4^+$

g_{7/2}+6⁺

 $h_{11/2}+2^{2}$

 $h_{11/2}$

g_{7/2}+2

 $d_{5/2}+2^+$

 $g_{7/2}+2^+$

 $g_{7/2} \\ d_{5/2}$

0 נ

 $19/2^{+}$

11/2

9/2

9/2

 $7/2^{+}$

 $5/2^{+}$

3

2

= $\frac{I_{\gamma}(143^{\circ})}{I_{\gamma}(79^{\circ})+I_{\gamma}(101^{\circ})}$ shown in Table I were used to deterie the angular momentum transferred by the γ rays. the case of weak transitions the ratios R had too large ors to draw definite conclusions. Even in the case of ong transitions there remains some ambiguity, as the ie ratio can correspond to, e.g., a $\Delta I = 2$ stretched or a $\Delta I = 0$ mixed M1/E2 transition with approprimixing ratio, or similarly, the ratio can be the same a pure $\Delta I = 0$ and a mixed $\Delta I = 1$ transition. In the lysis we always assumed $\Delta I > 0$. According to thetical estimates for stretched E2 transitions $R \approx 1.5$ l for stretched dipole transitions $R \approx 0.8$.

G. de Angelis et al.r Physics LettersB 437 (1998) 236–242

Fig. 2. Proposed level scheme of ¹⁰⁹Te. The energy labels are given in keV. The widths of the arrows are proportional to the relative intensities.

K. Starosta et al., Phys. Rev. C 61, 034308 (2000).

The absolute spin values for these states are proposed on the basis of the multipolarity assignments for the transitions connecting bands 3 and 4 to band 2.

The 117 keV transition has a DCO ratio consistent with Al<1 which suggests a (5/2+) spin for the state with the lowest energy observed in this experiment. A ground state spin of (5/2+) in 111Te was suggested in Ref. [10] and adopted in Ref. [11]. The value is also consistent with the (5/2+) ground state spin of 109Te proposed in Refs. [7,8]. It should be noted, however, that (7/2+) was proposed as the ground state spin in 113Te [12].

G. J. Lane et al., Phys. Rev. C 55, 1559 (1997).

It is, however, possible that these g rays [116 keV] are due to vibrations built upon the **g7/2 quasineutron state**, as is observed in 109Te.

NSD2024 - Valencia (Spain)

The MARA setup

JUROGAM3 + MARA

M. Sandzelius et al., *Phys. Rev. Lett.* **99** (2007) 022501 A. Korgul et al., *Phys. Rev. C* **77** (2008) 034301

Results – ¹¹⁰Xe

Bormio (Italy)

Results – ¹¹⁰Xe

Table 2: Experimental B(E1)/B(E2) ratios and deduced B(E1) values for the $5^- \rightarrow 4^+$ and $7^- \rightarrow 6^+$ transitions in ^{110,112,114}Xe isotopes.

		B(E1)/B(E2)	B(E1)
	$I_i^{\pi_i} o I_f^{\pi_f}$	$[10^{-8} \text{ fm}^{-2}]$	[10 ⁻⁴ W.u.]
¹¹⁰ Xe	$5^- \rightarrow 4^+$	0.8 (7)	0.3 (3)*
	$7^- \rightarrow 6^+$	22 (13)	9.6 (59)*
¹¹² Xe	$5^- \rightarrow 4^+$	2.9 (9) 5	1.0 (3) 5
	$7^- \rightarrow 6^+$	1.7 (8) 5	0.6 (2) [5]
¹¹⁴ Xe	$5^- \rightarrow 4^+$	< 0.02 [7]	< 0.003 [7]
		0.046 (13) 6	0.006 (2) [6]
	$7^- \rightarrow 6^+$	1.5 (1) [7]	0.28 (2) [7]

* Assuming a quadrupole moment of 344 efm², taken from the theoretical calculations.

G. de Angelis et al., *Phys. Lett. B* **535** (2002) 93-102

J.F. Smith et al., *Phys. Lett. B* **523** (2001) 13-21

[5] J.F. Smith et al., *Phys. Lett. B* **523** (2001) 13-21
[6] S. Rugari et al., *Phys. Rev. C* **48** (1993) 2078
[7] E.S. Paul et al., *Nucl. Phys. A* **673** (2000) 31-44