

First nuclear structure measurement at GANIL-SPIRAL2/NFS :

The study of the Pygmy Dipole Resonance via neutron inelastic scattering

Périne MIRIOT-JAUBERT – 3^{rd} year PhD student

Thesis director : Marine VANDEBROUCK

PARIS and MONSTER collaborations

The Pygmy Dipole Resonance (PDR)

- 1) An exotic excitation mode of dipole nature ...
 - Low energy electric dipole strength
 - Characteristic of neutron-rich nuclei
 - Around the neutron separation energy threshold

A. Bracco, E.G. Lanza and A. Tamii, Phys. Rev. B 106, 360-433 (2019)

2) ... often described macroscopically as:

The oscillation of a neutron skin around an isospin symetric core

- 3) ... with possible interest in:
 - ▷ Astrophysical r-process

▷ Nuclear equation of state (neutron stars properties)

The Pygmy Dipole Resonance (PDR)

3) ... with possible interest in:

▷ Astrophysical r-process

Nuclear equation of state (neutron stars properties)

Preliminary results

GANIL-SPIRAL2/NFS experimental area : a new opportunity

Preliminary results

The experimental setup – E833 experiment (Sept. 2022)

Study of the PDR in the ¹⁴⁰Ce (~ 88% in ^{nat}Ce) :

^{nat}Ce(n,n')^{nat}Ce*(γ)^{nat}Ce

MONSTER modules (x 48) : n' detection Liquid scintillators (BC501A / EJ301)

PARIS clusters (x 8) : γ detection

Scintillation crystals (LaBr / CeBr + Nal) 8 clusters of 9 phoswiches each

Elastic scattering analysis : ^{nat}C(n,n)^{nat}C and ^{nat}Ce(n,n)^{nat}Ce

Angular differential cross-section results:

✓ Validation of the analysis method for the **reconstruction of the scattered neutron**

Inelastic scattering analysis : $^{nat}C(n, n')^{nat}C^{*}(\gamma)^{nat}C$

Study of the first 2⁺ excited state of ¹²C at 4.440 MeV

1) Coincidence matrix:

2) γ -ray angular distribution in the PARIS array:

 \checkmark Validation of the analysis method for the **n**'- γ coincidences

Inelastic scattering analysis : $^{nat}Ce(n,n')^{nat}Ce^{*}(\gamma)^{nat}Ce$

Study of the PDR in ¹⁴⁰Ce – Ongoing analysis, Goal: <u>extraction of the dipole strength distribution</u>

1) Coincidence matrix:

1') Selection of direct decays to the ground state:

Inelastic scattering analysis : $^{nat}Ce(n,n')^{nat}Ce^{*}(\gamma)^{nat}Ce$

Study of the PDR in ¹⁴⁰Ce – Ongoing analysis, Goal: <u>extraction of the dipole strength distribution</u>

2) Scattered neutron angular distributions in MONSTER

02/07/2025

13

Inelastic scattering analysis : $^{nat}Ce(n,n')^{nat}Ce^{*}(\gamma)^{nat}Ce$

Study of the PDR in ¹⁴⁰Ce – Ongoing analysis, Goal: <u>extraction of the dipole strength distribution</u>

3) Extraction of the dipole strength from a Multipole Decomposition Analysis (MDA)

Inelastic scattering analysis : $^{nat}Ce(n,n')^{nat}Ce^{*}(\gamma)^{nat}Ce$

Study of the PDR in ¹⁴⁰Ce – Ongoing analysis, Goal: <u>extraction of the dipole strength distribution</u>

3) Extraction of the dipole strength from a Multipole Decomposition Analysis (MDA)

Conclusion

1st experimental study of the **Pygmy Dipole Resonance using neutron inelastic scattering**

- ☑ Experiment in September 2022 @ GANIL-SPIRAL2/NFS
- Benchmarking with:
 - elastic scattering on C and Ce targets
 - inelastic scattering with the 2+ excited state of ¹²C
- ✓ Promising preliminary results for the study of the PDR in ¹⁴⁰Ce via (n,n') inelastic scattering using the scattered neutron observable
- □ Next steps of the analysis : **extract the dipole strength distribution**
 - □ With the scattered neutron observable
 - $\Box \text{ With the } \gamma \text{-ray observable}$

Thank you for your attention !

P. Miriot-Jaubert ⁽¹⁾, <u>M. Vandebrouck</u> ⁽¹⁾, <u>I. Matea</u> ⁽²⁾, D. Doré ⁽¹⁾,

N. L. Achouri ⁽³⁾, L. Al Ayoubi ⁽²⁾, D. Beaumel ⁽²⁾, P. Bednarczyk ⁽⁴⁾, Y. Blumenfeld ⁽²⁾, A. Bogenschutz ⁽¹⁾, A. Bracco ⁽⁵⁾, S. Brambilla ⁽⁵⁾, S. Calinescu ⁽⁶⁾, F. Camera ⁽⁵⁾, D. Cano Ott ⁽⁷⁾, W. Catford ⁽⁸⁾, M. Ciemala ⁽⁴⁾, A. Corsi ⁽¹⁾, F. Crespi ⁽⁵⁾, Y. Demane ⁽⁹⁾, W. Dong ⁽²⁾, O. Dorvaux ⁽¹⁰⁾, J. Dudouet ⁽⁹⁾, M. Dupuis ⁽¹¹⁾, D. Etasse ⁽³⁾, S. Erturk ⁽¹²⁾, A. M. Frelin ⁽¹³⁾, J. Gerl ⁽¹⁴⁾, J. Gibelin ⁽³⁾, M. N. Harakeh⁽¹⁵⁾⁽¹³⁾, D. Jenkins ⁽¹⁶⁾, S. Kihel ⁽¹⁰⁾, M. Kmiecik ⁽⁴⁾, M. Lebois ⁽²⁾, X. Ledoux ⁽¹³⁾, S. Leoni ⁽⁵⁾, M. Lewitowicz ⁽¹³⁾, M. Mac Cormick ⁽²⁾, A. Maj ⁽⁴⁾, T. Martinez ⁽⁷⁾, I. Mazumdar ⁽¹⁷⁾, V. Nanal ⁽¹⁷⁾, P. Napiorkowski ⁽¹⁸⁾, A. Pérez de Rada Fiol ⁽⁷⁾, S. Péru ⁽¹¹⁾, D. Ramos ⁽¹³⁾, E. Rey-Herme ⁽¹⁹⁾, Ch. Schmitt ⁽¹⁰⁾, M. Stanoiu ⁽⁶⁾, O. Stezowski ⁽⁹⁾, Ch. Theisen ^{(1)†}, D. Thisse ⁽¹⁾, L. Thulliez ⁽¹⁾, G. Tocabens ⁽¹⁾, J. Wilson ⁽²⁾, M. Zieblinski ⁽⁴⁾, M. Zielinska ⁽¹⁾ - PARIS and MONSTER Collaborations

(1) Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

(2) Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

(3) Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

(4) The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland

(5) Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy

(6) Horia Hulubei National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest-Magurele, Romania

(7) Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, 28040 Madrid, Spain

(8) School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

(9) Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, IP21, 4 Rue Enrico Fermi, F69622 Villeurbanne Cedex, France

(10) Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France

(11) CEA, DAM, DIF, F-91297 Arpajon, France

(12) Department of Physics, University of Nigde, 51240 Nigde, Turkey

(13) Grand Accélérateur National d'Ions Lourds, Bd Henri Becquerel, 14076 Caen, France

(14) GSI Helmholtzzentrum fur Schwerionenforschung GmbH, 64291 Darmstadt, Germany

(15) ESRIG, University of Groningen, Zernikelaan 25, 9747 AA Groningen, the Netherlands

(16) University of York, York, United Kingdom

(17) Tata Institute of Fundamental Research, Mumbai 400005, India

(18) Heavy Ion Laboratory, University of Warsaw, PL-02-093 Warsaw, Poland

(19) Université de Bordeaux, CNRS/IN2P3, LP2i, 33170 Cradignan, France

† Deceased author

