

Rg

UNIVERSITÀ DEGLI STUDI **DI MILANO**

115 Mc

114 FI

167

VIIth Topical Workshop on **Modern Aspects in Nuclear Structure**

The Many Facets of Nuclear Structure

BORMIO 3-8 February 2025

Metastable States in Superheavy Nuclei

examples in SHN

- isomers and decay mode competition
- K-isomers
- low statistics and complexity

perspectives

 facilities and plans (for GANIL SPIRAL2/LINAC+S³

Dieter Ackermann

GANIL

SHE/SHN – einsteinium to oganesson

D. Ackermann arXiv:2501.04053

Dieter Ackermann

cea

SHE/SHN – einsteinium to oganesson

SHN nuclear structure: beyond the mere discovery -Decay modes, stability and quantum mechanics

SHE/SHN research

 \rightarrow nature rules success chances → production probabilities: x-sections

SHE synthesis

cea

- new element/isotope
- basic decay properties

SHN nuclear structure: beyond the mere discovery – Decay modes, stability and quantum mechanics

SHE synthesis

- new element/isotope
- basic decay properties

SHN Nuclear structure

- single particle levels and the spherical shell gaps at the "island of stability"
- isomeric states K-isomers for deformed nuclei
- nuclear stability and decay mode (α, SF, ...) competition
- deformation ...

particle

cea

SHN nuclear structure: beyond the mere discovery – Decay modes, stability and quantum mechanics

Dieter Ackermann

Isomers in SHN – - types and decay modes

Isomers in heavy nuclei first isomer - one of the heaviest nuclei known in 1936

1921 Otto Hahn observed

2 β activities produced by β decay of a substance called UX₁

O. Hahn, Naturwissenschaften 9, 84 (1921)s

In 1936 Carl Friedrich von Weizsäcker coined the notion of isomers in nuclei:

"β-labile Kerne... in zwei 'isomeren' Sorten ... " → β-unstable nuclei... of two 'isomeric' kinds

"Der erste bekannte Fall ist die von Hahn sehr wahrscheinlich gemachte Isomerie von UX_2 und UZ." \rightarrow "The first known case is the by Hahn most probably produced isomerism of UX_2 and UZ

C.F. Weizsäcker, Naturwissenschaften 24, 813 (1936)

Bormio, February 6th 2025

GANH

Isomers in heavy nuclei first isomer - one of the heaviest nuclei known in 1936

1921 Otto Hahn observed

2 β activities produced by β decay of a substance called UX₁

O. Hahn, Naturwissenschaften 9, 84 (1921)s

In 1936 Carl Friedrich von Weizsäcker coined the notion of isomers in nuclei:

"β-labile Kerne... in zwei 'isomeren' Sorten ... "
 → β-unstable nuclei... of two 'isomeric' kinds

"Der erste bekannte Fall ist die von Hahn sehr wahrscheinlich gemachte Isomerie von UX_2 und UZ." \rightarrow "The first known case is the by Hahn most probably produced isomerism of UX_2 and UZ

C.F. Weizsäcker, Naturwissenschaften 24, 813 (1936)

Bormio, February 6th 2025

GANH

Nuclear deformation and metastability - K-isomers in the region of SHN

high J orbitals in the vicinity of Z = 100 and N = 152 \rightarrow high values of K and high ΔK between initial and available final state \rightarrow decay hindrance

²⁵⁵Rf structure from ²⁵⁹Sg α-decay - SF/SPL properties

SF-a competition

- α -decay from both low lying levels $T_{1/2}(, ^{259}Sg) \approx 411 \text{ ms}/254 \text{ ms}$
- SF from 1/2⁺[620] only

S - $T_{1/2}($, ²⁵³Sg) ≈ 411 ms/254 - $T_{1/2}($ SF, ²⁵⁹Sg) ≈ 235 ms

\rightarrow SF hindrance by quantum mechanics

²⁵⁵Rf direct production - ER-CE-(CE)-γ-SF/α correlations

Production: ${}^{207}Pb({}^{50}Ti,2n){}^{255}Rf, \sigma \approx 11 nb$

²⁵⁵Rf two high-K isomers T_{1/2} 15(+6/-4) μs and 38(+12/-7) μs

a possible quasi-particle coupling

 $1/2-[521]\pi \otimes 9/2+[624]\pi \otimes 9/2-[734]\nu \rightarrow K = 19/2+$ with $\Delta K = 5$

 \rightarrow K > 17/2

P. Mosat et al. PHYSICAL REVIEW C 101, 034310 (2020)

Nuclear deformation and metastability - K-isomers in the region of SHN

high J orbitals in the vicinity of Z = 100 and N = 152 \rightarrow high values of K and high ΔK between initial and available final state \rightarrow decay hindrance

ω $K = \Omega_1 + \Omega_2$ definition of K 12 j1+ j2 ٨1 Σ, Λi projection of the orbital angular momentum ℓ of the nucleon on the symmetry axis z Σi projection of the spin S of the nucleon on z Ω_i projection of the total angular momentum j on z: $\Omega_i = \Lambda_i + \Sigma_i$ Κ sum of all projections Ω_i on z : $K = \Omega_1 + \Omega_2 + \dots$

Dieter Ackermann

cea

²⁵⁵No – revisited (ER-γ-CE- α /SF correlations) - CE correlations \rightarrow observation of 3 new K-isomers

²⁵⁵No – revisited (ER-γ-CE- α /SF correlations) - CE correlations \rightarrow observation of 3 new K-isomers

Comparison experiment – theoryred:self-consistent modelsblue:mic-mac model

M. Asai, A. Lopez-Martens and F.P. Heßberger, NPA 944, (2015) 308–332

Dieter Ackermann

cea

An and a second second

Bormio, February 6th 2025

GANIL

Nuclear deformation and metastability - K-isomers in the region of SHN

high J orbitals in the vicinity of Z = 100 and N = 152 \rightarrow high values of K and high ΔK between initial and available final state \rightarrow decay hindrance

D. Ackermann S. Antalic F.P. Heßberger Eur. Phys. S.T. 233 (2024) 1017–1036

Decay details

- time distributions

and a

²⁷⁰Ds decay

- α decay and α - γ coincidences

cea

Energy Density Functional Calculations - Dario Vretenar, Vaia Prassa et al.

- \rightarrow Retardation due to $\Delta K > 0$
- K-isomers decaying by α decay

Dieter Ackermann

 \rightarrow sensitive probe for detailed 2(4)-quasi-particle structure

GANIL

Dieter Ackermann

High-K isomers in trans-actinide nuclei close to N=162 - Energy Density Functional Calculations, Vaia Prassa et al.

FIG. 1. (Color online) Self-consistent RHB triaxial energy maps of even-even Hs isotopes in the $\beta - \gamma$ plane ($0 \le \gamma \le 60^{\circ}$). For each nucleus energies are normalized with respect to the binding energy of the absolute minimum.

Bormio, February 6th 2025

GANIL

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Vaia Prassa et al. PRC 91, 034324 (2015)

cea

selfconsistent constraint triaxial HFB calculations based on the DD-PC1 functional (PRC 88, 044324 (2013)

Perspectives: GANIL/SPIRAL2 - LINAG+NEWGAIN and S³

SPIRAL2 - NEWGAIN - floorplan and design intensities

SPIRAL2 - NEWGAIN - floorplan and design intensities

Perspectives: GANIL/SPIRAL2 - S³ and its 2 focal plane set-ups

S³-SIRIUS (Spectroscopy & Indentification of Rare Ions Using S³)

> particle (SI) and photon (Ge) detection array DSAS and SHE synthesis

S³-LEB (Low Energy Branch) gas-stoping/lasers/MRToF/ Si-Ge installation laser spec, mass measurement and DSAS

cea

Collaboration

