VII<sup>th</sup> Topical Workshop on Modern Aspects in Nuclear Structure

The Many Facets of Nuclear Structure



# SPES Low Energy RIB for nuclear physics and applications



Alberto Andrighetto – INFN Laboratori di Legnaro



### **Talk overview**

- The RIB production
- The Low Energy Beam Line
- The first radioactive beam
- Isolpharm: Radioisotopes for medicine









### **The RIB production**







### **RIB production area**







### The Target Ion Source system

#### **The SPES Front-End:**

#### The SPES TIS unit:









### **TIS Remote Handling**

#### **Remote Handling Framework:**

Design focused on TIS unit lifecycle -> Positioning in the FE, Irradiation, Storage -> Ready for Commissioning







### The Low Energy Beam Line







### Low Energy Experimental area







#### 1- SPES Tape Station (STS) for beam diagnostic



- Monitoring RIB composition and intensity by γ-ray spectroscopy
- ➢ 2 HPGe deterctor
- Coincidence with beta counters
- ➢ As a reference for SPES-MED experiment









### 2 - Beta decay station (INFN-Milano)



- -> Study on the structure of excited states in atomic nuclei
- Gamma detection using 5 HPGe detector (Galileo like)
- Beta tagging by EJ212 plastic scintillator
- Second detection point for Conversion Electron Spectroscopy

By courtesy of Giovanna Benzoni







#### **3 – ISOLPHARM Irradiation Station**



- -> Station for Radionuclide Deposition & Quality Control
- \* Beam Collection on secondary target
- \* Isotopes Detection
- \* Pellet Handling







### **IRIS - Life cycle of the secondary target**







### The first ISOL beam

#### (for Source Commissioning)

SPES Phase 2a - commissioning of the ISOL machine - Production of the first Radioactive Ion Beam at LNL



1st RIB @ LNL: 14/11/2024





### The SPES commissioning phases







### **Experimental Layout**





-> Detection point installed just out of the ISOL Source bunker

Beam (pre-operation phase) E<sub>proton</sub>= 40 MeV I<sub>prorton</sub>= 100nA

#### Detectors:

- 2 LaBr Scintillator
- 2 HPGe
- 5 Beta counters EJ212







### **Experimental settings**



#### SPES SiC target (1600°C) 13 mm diameter



- 40 MeV
- 100 nA



**SPES FEBIAD Ion Source** (30 KeV 1+ Ion Beam)





#### Wien Filter set for mass 28 (a.m.u.)





mass 28 composition: <sup>28</sup>P<sup>1+</sup>, <sup>28</sup>Al<sup>1+</sup> (radioactive)  $CO^{1+}$ ,  $N_2^{1+}$  (stable)



**<u>RIB characterization by</u>** beta-gamma spectroscopy









### Gamma in-beam spectrum



By Courtesy of A. Gottardo, A. Goasduff











### The ISOLPHARM method

By the ISOL technique is possible to select and trap a SINGLE RADIO-**ISOTOPE->** 

> **CARRIER FREE RADIOISOTOPES**

+ high specific activity

**ISOLPHARM** is

a Irradiation Station

at **SPES** 







### **ISOLPHARM: 11 Years of activity**





experiments

NFN

PRIN



2014 - 2017







SILPHARM

CORE

Interdisciplinary Study Group on production of medical radioisotopes at SPES

Simulations and feasibility evaluation of Ag as radiopharmaceutical precursor

First production of <sup>111</sup>Ag in reactor and beginning of in-vitro and in-vivo testing











Follows the technological aspect for the radionuclide production









### **Collaboration infrastructures**













NF













Istituto Nazionale di Fisica Nucleare Laboratori kazionali di legnard

#### **Radionuclides of interest: Main RIB available at SPES**

|                                       | Isotope           | Half-<br>life | In-target<br>production<br>[nuclide/s] | Time to collect<br>1 MBq [h] | Activity for 1 day<br>collection at EOB<br>[MBq] | Activity for 1 day<br>collection 1 day after<br>EOB [MBq] | Application<br>Ready in<br>the market |
|---------------------------------------|-------------------|---------------|----------------------------------------|------------------------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Silicon<br>carbide<br>(SiC) target    | <sup>24</sup> Na  | 15.0 h        | 7.8e7                                  | 0.12                         | 126                                              | 42                                                        | S                                     |
|                                       | <sup>28</sup> Mg  | 20.9 h        | 8.8e6                                  | n/a                          | 0.27                                             | 0.12                                                      |                                       |
|                                       | <sup>7</sup> Be   | 53.2 d        | 9.5e10                                 | 0.13                         | 183                                              | 181                                                       |                                       |
| Titanium<br>carbide<br>(TiC) target   | <sup>43</sup> K   | 22.3 h        | 9.8e7                                  | 0.09                         | 181                                              | 86                                                        | •                                     |
|                                       | <sup>51</sup> Cr  | 27.7 d        | 3.9e7                                  | 6.9                          | 0.348                                            | 0.345                                                     | ٢                                     |
|                                       | <sup>47</sup> Sc  | 3.35 d        | 1.1e11                                 | 0.05                         | 473                                              | 385                                                       | <b>S</b>                              |
| Uranium<br>carbide<br>(UCx)<br>target | <sup>111</sup> Ag | 7.45 d        | 4.9e8                                  | 0.11                         | 1635                                             | 1490                                                      | S 100                                 |
|                                       | 131               | 8.03 d        | 4.6e10                                 | 0.05                         | 2078                                             | 1906                                                      |                                       |
|                                       | <sup>153</sup> Sm | 46.3 h        | 6.7e8                                  | 0.06                         | 944                                              | 659                                                       | •                                     |
|                                       | <sup>89</sup> Sr  | 50.57 d       | 1.6e9                                  | 0.28                         | 302                                              | 298                                                       | •                                     |





### Radiopharmaceutical radiolabeled with <sup>111</sup>Ag



<sup>111</sup>Ag properties

- **β**<sup>-</sup> emitter (average energy **360 keV**)
- Good half-life (7.45 days)
- Average tissue penetration (1.8 mm)
- Medium energy  $\gamma$  rays -> SPECT candidate

Target dissolution  $\rightarrow$ No radiopharmaceuticals radiolabeled with 111Silver in the market.

 $\rightarrow$  Silver-111 can be produced @ SPES with high purity & with high production rate

 $\rightarrow$  No Isobaric contamination in the secondary target (also with LASER off)!

 $\rightarrow$  <sup>111</sup>Ag exhibits possible 'theranostic' properties similar to <sup>177</sup>Lu which was recently approved by FDA.

 $\rightarrow$  <sup>111</sup>Ag has dosimetric behavior equal to <sup>186</sup>Re, which was recently studied in Phase II trials

|  | 111 Isobaric chain | Half-Life T <sub>%</sub> | Decay | Target Yield                             |  |
|--|--------------------|--------------------------|-------|------------------------------------------|--|
|  | Cadmium-111        | Stable                   |       | Low yield production                     |  |
|  | Silver-111         | 7.45 days                | β-    | Good yield production                    |  |
|  | Palladium-111      | 23.4 min                 | β-    | Bad release, short T <sub>1/2</sub>      |  |
|  | Rhodium-111        | 11 sec.                  | β-    | No release, very short $\rm T_{\rm 1/2}$ |  |





### In vivo experiment with <sup>111</sup>Ag (april '24)

Routine production of Ag-111 at the LENA facilities, purification and quality control

1) 150 mg of <sup>110</sup>Pd irradiated in the TRIGA reactor









### Other experiments with <sup>111</sup>Ag performed in 2024

2

Nazionale di Fisica Nuclear

DRATORI NAZIONALI DI LEGNA





### Conclusions



### Low Energy RIBS at SPES: Future scenario

2025: <sup>24</sup>Na from SiC target (commissioning LIS) 2026: <sup>7</sup>Be from SiC target (low activity expected) 2027-28: <sup>51</sup>Cr (low activity expected), <sup>43</sup>K from TiC target + <sup>111</sup>Ag +.... from UC<sub>x</sub>



Yield measurement the radionuclides-radiotracers & study for possible applications in:

- medicine -> ISOLPHARM
- environment
- industry. 🌇



**.** 



### Activities with SPES radioisotopes at LNL

In the Low Energy Experimental Room, it will be possible to start experiments with RIB for <u>Nuclear physics</u> and <u>Medical applications</u>

#### \* SPES\_MED experiment:

Nuclear Yield measurements of RIB produced by a Carbide target (just started at CSN3)



IRIS implantation foil

After measurements, either:

- dispose of the radionuclide
- reuse it for applications ?

# 8

0 0

#### \* ISOLPHARM – ADMIRAL experiment:

Radiobiology, Detector Technology and Nuclear Medicine study whit <sup>111</sup>Ag produced by TRIGA reactor



Opportunity to start test of Radiobiology with new radiotracers coming from SiC & TiC target



**Radiobiology** is a field of sciences that involves **study of the effects of ionizing radiation on living things**, in particular health effects of radiation.



### **Collaboration network**





## **THANKS FOR YOUR ATTENTION!**

The presented activities are the result of the work of the whole SPES-ISOL & ISOLPHARM teams



