## In Memoriam, a Colleague and Beloved Friend Sydney Benjamin Galès

November 1, 1943 – November 29, 2024



Corrine and Sydney Galès, Jaffa, Tel Aviv, April 27, 2019

### **Nuclear Astrophysics With TPCs and Gamma-Beams \***

### Moshe Gai, University of Connecticut

moshe.gai@uconn.edu

http://Astro.uconn.edu









- 1. Oxygen Formation in Stellar Helium Burning/ the  $^{12}C(\alpha,\gamma)$  Reaction
- 2. Status of World Best Data (Stuttgart's Heroic Effort)
- 3. UConn Measurement, Optical Readout TPC (O-TPC @ HIyS)
- 4. Present/ Future: The Warsaw electronic readout (eTPC @ HIγS)

\* Supported in part by the USDOE grant No. DE-FG02-94ER40870.

VII Workshop..., Bormio, February 2-9, 2025

## Nuclear Astrophysics in the Era of Windows on the Universe Multi-Messenger Astrophysics (WoU-MMA)

**SN1987A:** First MMA, Type II Supernova

**Observed Neutrinos & 4 HR Later Light Curve (EM)/** MMA object

Progenitor: Sanduleak −69 202 (Sk -69 202) Blue Supergiant ~20M<sub>☉</sub>

SN1987A (JWST 2024): Neutron Star, Not Black Hole

**Type II SN:** Neutron Star or Black Hole, Determined by C/O



Helium Burning:  $3\alpha \rightarrow {}^{12}C$  (~11%) "Hoyle State"  ${}^{12}C(\alpha,\gamma){}^{16}O$  @300 keV ???  ${}^{12}C(\alpha,\gamma) \rightarrow C/O = ?$ 

Two partial waves:

p-wave  $S_{E1}(300)$ 

d-wave  $S_{E2}(300)$ 

E1-E2 Mixing Phase Angle  $(\phi_{12})$ 



W.A. Fowler: Rev. Mod. Phys. 56, 149 (1984)

"The  $^{12}$ C( $\alpha,\gamma$ ) reaction is of paramount importance"

## $\varphi_{12} = \delta_2 - \delta_1 + \arctan(\eta/2)$

F.C. Barker and T. Kajino, Aust. J. Phys. 44, 369 (1991), R-Matrix Theory.



### E1-E2 Mixing Phase Angle $(\phi_{12})$

M. Gai, Phys. Rev. C 88, 062801(R) (2013).

C. R. Brune, Phys. Rev. C 64, 055803 (2001).

L.D. Knutson, Phys. Rev. C 59, 2152 (1999).

K.M. Watson, Phys. Rev. 95, 228 (1954).

Required by Unitarity

4) EUROGAM 5) 0.01%  $^{13}$ C [x100 Reduced  $^{13}$ C( $\alpha$ ,n)]





### M. Gai, PRC, 88, 062801(R) (2013)



#### M. Assuncao *et al.*. PRC 73, 055801 (2006)





**Abbildung C.35:** Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=2.209\,{\rm MeV}.$   $E_L=2.945\,{\rm MeV}$ 



**Abbildung C.34:** Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=1.696\,{\rm MeV}.$   $E_{\rm L}=2.261\,{\rm MeV}$ 



**Abbildung C.33:** Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=1.452\,{\rm MeV}.$   $E_{\rm L}=1.936\,{\rm MeV}$ 

197







 $E_{\gamma} \; ({
m MeV})$ 

<del>▐▆</del>▄**▞▊▙▐**▙▄▗▄▗▞▄▃▟▞▙▘▀▞▃▙▄▄▞▀▄▄▛▀▄▗▀▜▀ᡶ▗▜▃▗▀▄▙▀▊▗▊▞▘▊▃▞⋻▗▃▞▊▄▄▀▜▞▄▄▞<u>▊</u>▙▄▞░▙▄▟▃▙<sub>▃</sub>





Abbildung C.31: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.305 \,\text{MeV}$ .  $E_{\text{L}}=1.740 \,\text{MeV}$ 



Abbildung C.30: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.103 \,\text{MeV}$ .  $E_{\text{I}} = 1.470 \,\text{MeV}$ 



195

194

Abbildung C.29: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.102 \,\text{MeV}$ .  $E_{\text{L}} = 1.469 \,\text{MeV}$ 



**Abbildung C.28:** Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{c.m.} = 1.099 \,\mathrm{MeV}$ .  $E_L = 1.465 \,\mathrm{MeV}$ 



C.2. DREHTISCH-EXPERIMENT

Abbildung C.27: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 0.903 \,\text{MeV}$ .  $E_{\text{L}}=1.204 \,\text{MeV}$ 

### Richard deBoer et al., RMP 89, 03500742 (2017)



deBoer *et al.* rely on the ANC The S-factor is derived from Alpha-transfer, e.g. (<sup>7</sup>Li,t) Not from capture gamma-ray Indirect Method ala 1980's

51 years after Dyer & Barnes We still do not have the needed Capture Gamma-Ray Data

This is the status of our field (NOT a personal criticism)



R. Smith, M. Gai, D.K. Schweitzer, S.R. Stern and M.W. Ahmed, Nature Communications, 12, 5920 (2021).

https://www.nature.com/articles/s41467-021-26179-x

### **Detailed Balance:**

(Inverse, Time Reversed Reaction)

$$\sigma[^{12}C(\alpha,\gamma)^{16}O] = \frac{^{2}k_{\gamma}^{2}}{k_{\alpha}^{2}} \sigma[^{16}O(\gamma,\alpha)^{12}C] *$$

$$\sigma[^{16}O(\gamma,\alpha)^{12}C] \approx \sim \frac{50}{50} \times \sigma[^{12}C(\alpha,\gamma)^{16}O]$$

\* For Real Photons 2S+1=2 (not 3)

Not a "Surrogate Reaction"

Not an Indirect Measurement

# Line Shape Analysis (CO<sub>2</sub> Gas)







### **Machine Learning**

$$Q(^{16}O^*) - Q(^{12}C^*) = 112 \text{ keV}$$



### $^{16}O(\gamma,\alpha)^{12}C$

O-TPC Data N<sub>2</sub>O gas Angular distributions measured at 17 angles

Kristian C.Z. Haverson

a SHU, UConn-SHU (2024)

### O-TPC (Nature + $N_2$ O) Data Benchmarked against World Data First Agreement of data on $\phi_{12}$ with Quantum Mechanics



### UConn O-TPC @ HIγS (2012)

### Warsaw eTPC @ HIγS (2022)





Looking forward to ELI-NP, Bucharest/ M. Gai Fulbright US Scholar, 2025

### **Sneak peek, 2022 Measurement with the Warsaw eTPC:**

Mateusz Fila, Ph.D. Thesis, Warsaw 2023

https://repozytorium.uw.edu.pl/bitstreams/5049fd46-45eb-4b32-9edb-fa121cba7812/download

Complete Angular Distributions, 20 Angular Bins down to ~1.3 MeV

We measured at the shown 15 Energies (Curve E1&E2 from deBoer *et al.*)

Exploratory Measurement:
Mikołaj Ćwiok, Eγ = 8.66 MeV
Ecm = 1.5 MeV







### **Conclusions**

### TPC data of unprecedented quality:

- 1. Low background, if any
- 2. Measurement in one detector (response, simple Monte Carlo)
- 3. Complete angular distribution  $(0^{\circ} 180^{\circ})$  (Measured at 17-20 bin-angles)
- 4. First Physics Result, First Agreement with Unitarity
- 5. New Criteria for Judging Data (Agreement with QM)
- 6. Further data measured at HIγS, Warsaw TPC, 2022

(Please do not publish or analyze data that disagree with QM)