

Experimental studies of the microscopic structure of the pygmy dipole resonance

Thank you very much, Angela, and all the best.

Mark Spieker

Symposium on resonances and related topics, Bormio (Italy), 2025

8th International Conference on Collective Motion in Nuclei under Extreme Conditions

The electric dipole response of atomic nuclei [Example of ²⁰⁸Pb and isovector response]

The electric dipole response of atomic nuclei [Example of ²⁰⁸Pb and isovector response]

RUNA

How Al pictures the PDR... [idea "stolen" from Andreas Zilges (University of Cologne)]

FSU

"A neutron skin of 24 neutrons oscillates against a core of 50 neutrons and 50 protons of an atomic nucleus. Protons are red and neutrons are blue. Do not add electron orbits."

How Al pictures the PDR... [idea "stolen" from Andreas Zilges (University of Cologne)]

"A neutron skin of 24 neutrons oscillates against a core of 50 neutrons and 50 protons of an atomic nucleus. Protons are red and neutrons are blue. Do not add electron orbits."

The neutron skin should be blue...

FSU

How Al pictures the PDR... [idea "stolen" from Andreas Zilges (University of Cologne)]

"A neutron skin of 24 neutrons oscillates against a core of 50 neutrons and 50 protons of an atomic nucleus. Protons are red and neutrons are blue. Do not add electron orbits."

The neutron skin should be blue...

FLORIDA STATE UNIVERSITY

FSU

The r process and neutron capture (n,y) rates

How and where are the elements heavier than iron synthesized?

[A New Era of Discovery: The 2023 Long Range Plan for Nuclear Science; The NuPECC Long Range Plan 2024 for European Nuclear Physics]

[**Figure 1:** https://www.ligo.org/science/Publication-GW170817MMA/] [**Figure 2**: M. Mumpower *et al.*, PPNP **86**, 86 (2016)] [**Figure 3**: H. Lenske and N. Tsoneva, EPJA **55**, 238 (2019)] [**Figure 4**: X. Roca-Maza *et al.*, PRC **85**, 024601 (2012)]

NIS

ARUNA

Appearance of PDR is strongly model-dependent!

From the PDR to the neutron skin to neutron-star radii

Measure the neutron skin (10⁻¹⁶ m) and constrain possible neutron-star radii (10⁴ m)

20 orders of magnitude difference!

The problem remains! Can we reliably predict the PDR or identify it experimentally?

[Figure 2: J. Piekarewicz, PRC 83, 034319 (2011)]

FLORIDA STATE UNIVERSITY

M. Spieker – Department of Physics

From the PDR to the neutron skin to neutron-star radii

What can we expect at rare isotope beam facilities?

[[]Figure 1: J. Piekarewicz, PRC 83, 034319 (2011)]

Massive neutron skins expected in neutronrich isotopes (~ 0.4 - 0.6 fm). Reminder PREX result indicates ~ 0.28 fm for 208 Pb.

[Figure 2: M. Kortelainen et al., PRC 88, 031305(R) (2013)]

What causes the low-energy E1 bump that also influences (n,**y**) rates?

(What is the single-particle structure of the PDR?)

[X. Roca-Maza et al., PRC 85, 024601 (2012); see also A. Bracco et al., PPNP 106, 360 (2019)]

What causes the low-energy E1 bump that also influences (n, γ) rates?

(What is the single-particle structure of the PDR?)

[X. Roca-Maza et al., PRC 85, 024601 (2012); see also A. Bracco et al., PPNP 106, 360 (2019)]

Are the PDR strength and neutron-skin thickness correlated?

Single-particle structure influences strengths significantly! → Only occupation of low-L orbitals leads to significantly more IV strengths?

ARUNA

NIS

[T. Inakura et al., PRC **84**, 021302(R) (2011)]

..., so, let us probe that neutron 1p-1h nature of the PDR.

FLORIDA STATE UNIVERSITY

M. Spieker – Department of Physics 14

²⁰⁷Pb(d,p)²⁰⁸Pb @ Q3D at MLL (Garching, Germany)

[M. Spieker et al., PRL **125**, 102503 (2020)]

- E_d = 22 MeV
- ²⁰⁷Pb target (0.11 mg/cm²; 99% enrichment) on thin Carbon backing.

Lines DWBA calculations for: Blue: $(3p_{1/2})^{-1}(4s_{1/2})^{+1}$ (l = 0)Red: $(3p_{1/2})^{-1}(3d_{3/2})^{+1}$ (l = 2)

²⁰⁷Pb(d,p)²⁰⁸Pb @ Q3D at MLL (Garching, Germany)

Excitation energies of 1⁻ states were known from previous experiments. Calculated angular distributions are in **excellent agreement with data**.

(d,p) and (p,p')_{IAR} data compared to other probes (Experiment)

FSU

NIS

[M. Spieker et al., PRL **125**, 102503 (2020)]

Main observations:

Two strong states. Remaining strength fragmented up to S_p.

Dominant fragments for some p-h excitations at "low" E_x . In general, strength is fragmented among several states.

One dominating state but significant IV strength below S_n . (PDR < 8.3 MeV?)

IS strength below S_n carried by four states.

 $[(p,p')_{300 \text{ MeV}}$: I. Poltoratska et al., PRC **85**, 041304(R) (2012)] $[(^{17}O,^{17}O'\gamma)$: F.C.L. Crespi, A. Bracco, et al., PRL **113**, 012501 (2014)] $[(p,p')_{IAR}$ analysis: A. Heusler]

(d,p) and (p,p')_{IAR} data compared to other probes (Experiment)

[M. Spieker et al., PRL **125**, 102503 (2020)]

NIS

RUNA

Detailed spectroscopy can provide access to some of the p-h E1 matrix elements.

(d,p) angular distributions

Experimental observables compared to LSSM and QPM calculations

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]

NIS

CENTER FOR EXCELLENCE

Microscopic structure of 1⁻ states

Some states seem to be rather pure 1p-1h excitations (one configuration clearly dominates), others have many 1p-1h excitations contributing to their state vector. Structures become more complex at higher E_x .

LSSM wave functions more complex than QPM.

Is there a clear transition from more 1p-1h dominated wavefunctions to wavefunctions with more complex contributions? Will that tell us anything about the microscopic structure of the PDR?

[M. Spieker et al., PRL 125, 102503 (2020)]

Comparison LSSM and QPM

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]

NIS

FNT

RUNA

2p-2h (or 2-phonon) excitations are not negligible and start

contributing significantly to the states' structure above 7 MeV. [3-phonon contributions start contributing above 9 MeV]

However, the low-lying states are dominated by 1p-1h (1-phonon) excitations!

 \rightarrow Are these the "real" PDR states in ²⁰⁸Pb?

[M. Spieker et al., PRL **125**, 102503 (2020)]

Comparison LSSM and QPM

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]

NIS

A R

FNT

2p-2h (or 2-phonon) excitations are not negligible and start

contributing significantly to the states' structure above 7 MeV.

[3-phonon contributions start contributing above 9 MeV]

However, the low-lying states are dominated by 1p-1h (1-phonon) excitations!

 \rightarrow Are these the "real" PDR states in ²⁰⁸Pb?

In general, findings agree with conclusions presented by Poltoratska et al.

[M. Spieker et al., PRL 125, 102503 (2020)]

Story in ¹²⁰Sn is analogous

[M. Weinert et al., PRL 127, 242501 (2021)]

Obvious question when seeing this clear separation between 1p-1h dominated states and states with contributions from more complex configurations: Is the isospin splitting connected to this?

PDR IV strength is small!

Conclusions supported by recent Oslo-type study of isovector E1 strength in Sn isotopes.

B(E1) strength increase beyond N=28 – Onset of the PDR?

- Ries et al. observed significant strength increase in ⁵⁴Cr.
- \rightarrow In line with experimental data for other nuclei around N=28.

NIS

CENTER FOR EXCELLENCE

ARUNA

- E1 strength shifts down significantly with increasing neutron number.
- Strength appears significantly more fragmented for "doubly" open-shell nuclei, i.e., ⁶⁶Zn.

[Figure 2: Miriam Müscher, "The low-lying dipole response of medium-mass nuclei - Study of ⁶⁴Ni using complementary real-photon scattering experiments", PhD thesis, Universität zu Köln (2024)]

B(E1) strength increase beyond N=28 – Onset of the PDR?

Possible cause: Change of single-particle structure

$${}^{49}\text{Cr: } J_{gs}^{\pi} = {}^{5/2} \xrightarrow{-} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1} \text{ (deformed)}$$

$${}^{51}\text{Cr: } J_{gs}^{\pi} = {}^{7/2} \xrightarrow{-} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1}$$

$${}^{53}\text{Cr: } J_{gs}^{\pi} = {}^{3/2} \xrightarrow{-} \rightarrow (2p_{3/2})^{-1} (2d_{5/2})^{+1}, (2p_{3/2})^{-1} (2d_{3/2})^{+1}, (2p_{3/2})^{-1} (3s_{1/2})^{+1}$$

Inakura et al. indeed predict that occupation of low-L orbitals near Fermi surface causes strength increase!

[T. Inakura et al., PRC **84**, 021302(R) (2011)]

	⁵² Ni _{β+}	⁵³ Νi _{β+}	⁵⁴ Νi _{β+}	⁵⁵ Νi _{β+}	⁵⁶ Νi _{β+}	⁵⁷ Νi _{β+}	⁵⁸ Ni _{Stable}	⁵⁹ Νi _{β+}	⁶⁰ Ni _{Stable}	⁶¹ Ni _{Stable}	⁶² Ni _{Stable}	
	⁵¹ Co _{β+}	⁵² Cο _{β+}	⁵³ Cο _{β+}	⁵⁴ Cο _{β+}	⁵⁵ Co _{β+}	⁵⁶ Co _{β+}	⁵⁷ Co e- capture	⁵⁸ Cο _{β+}	⁵⁹ Co _{Stable}	⁶⁰ Cο β-	⁶¹ Co β-	
	⁵⁰ Fe _{β+}	⁵¹ Fe _{β+}	⁵² Fe _{β+}	⁵³ Fe _{β+}	⁵⁴ Fe _{Stable}	⁵⁵ Fe e- capture	⁵⁶ Fe _{Stable}	⁵⁷ Fe _{Stable}	⁵⁸ Fe _{Stable}	⁵⁹ Fe β-	⁶⁰ Fe β-	
	⁴⁹ Μn _{β+}	⁵⁰ Μn _{β+}	⁵¹ Mn _{β+}	⁵² Μn _{β+}	⁵³ Mn e- capture	⁵⁴ Mn e- capture	⁵⁵ Mn _{Stable}	⁵⁶ Μn β-	⁵⁷ Mn β-	⁵⁸ Μn β-	⁵⁹ Mn β-	
	⁴⁸ Cr _{β+}	⁴⁹ Cr _{β+}	⁵⁰ Cr _{Stable}	⁵¹ Cr e- capture	⁵² Cr _{Stable}	⁵³ Cr _{Stable}	⁵⁴ Cr _{Stable}	⁵⁵ Cr β-	56 Cr	⁵⁷ Cr	⁵⁸ Cr	1
	⁴⁷ γ _{β+}	⁴⁸ γ _{β+}	⁴⁹ V e- capture	⁵⁰ V Stable	⁵¹ V Stable	52 β	$3s_{1}^{+}$	1 /2 	$2d_{5}^{+}$	/2 	$2d_{3/2}$	2
	⁴⁶ Ti _{Stable}	⁴⁷ Ti _{Stable}	⁴⁸ Ti _{Stable}	⁴⁹ Ti _{Stable}	⁵⁰ Ti Stable	⁵¹] β-	$2p_{3}^{-}$	·1 /2	$2p_{3}^{-}$	1 /2	$2p_{3}^{-2}$	1 ′2
						-	0	<u> </u>	9			

All these neutron one-particle one-hole (1p-1h) configurations can contribute to $J^{\pi}=1^{-}$ states' (PDR) wavefunctions

[https://people.physics.anu.edu.au/~ecs103/chart/]

B(E1) strength increase beyond N=28 – Onset of the PDR?

Possible cause: Change of single-particle structure

⁴⁹**Cr:**
$$J_{gs}^{\pi} = {}^{5/2} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1}$$
 (deformed)
⁵¹**Cr:** $J_{gs}^{\pi} = {}^{7/2} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1}$
⁵³**Cr:** $J_{gs}^{\pi} = {}^{3/2} \rightarrow (2p_{3/2})^{-1} (2d_{5/2})^{+1}, (2p_{3/2})^{-1} (2d_{3/2})^{+1}, (2p_{3/2})^{-1} (3s_{1/2})^{+1}$

Inakura et al. indeed predict that occupation of low-L orbitals near Fermi surface causes strength increase!

[T. Inakura et al., PRC **84**, 021302(R) (2011)]

⁵² Νi _{β+}	⁵³ Νi _{β+}	⁵⁴ Νi _{β+}	⁵⁵ Νi _{β+}	⁵⁶ Νi _{β+}	⁵⁷ Νi _{β+}	⁵⁸ Ni _{Stable}	⁵⁹ Νi _{β+}	⁶⁰ Ni _{Stable}	⁶¹ Ni _{Stable}	⁶² Ni _{Stable}	
⁵¹ Co _{β+}	⁵² Co _{β+}	⁵³ Cο _{β+}	⁵⁴ Co _{β+}	⁵⁵ Co _{β+}	⁵⁶ Co _{β+}	⁵⁷ Co e- capture	⁵⁸ Co β+	⁵⁹ Co _{Stable}	⁶⁰ Co β-	⁶¹ Co β-	
⁵⁰ Fe _{β+}	⁵¹ Fe _{β+}	⁵² Fe _{β+}	⁵³ Fe _{β+}	⁵⁴ Fe _{Stable}	⁵⁵ Fe e- capture	⁵⁶ Fe _{Stable}	⁵⁷ Fe _{Stable}	⁵⁸ Fe _{Stable}	⁵⁹ Fe β-	⁶⁰ Fе _{β-}	
⁴⁹ Μn _{β+}	⁵⁰ Μn _{β+}	⁵¹ Μn _{β+}	⁵² Μn _{β+}	⁵³ Mn e- capture	⁵⁴ Mn e- capture	⁵⁵ Mn _{Stable}	⁵⁶ Mn β-	⁵⁷ Mn β-	⁵⁸ Μn β-	⁵⁹ Mn β-	
⁴⁸ Cr _{β+}	⁴⁹ Cr _{β+}	⁵⁰ Cr _{Stable}	⁵¹ Cr e- capture	⁵² Cr _{Stable}	⁵³ Cr _{Stable}	⁵⁴ Cr _{Stable}	⁵⁵ Cr β-	56 Cr	⁵⁷ Cr	⁵⁸ Cr	
⁴⁷ V _{β+}	⁴⁸ γ _{β+}	⁴⁹ V e- capture	⁵⁰ V Stable	⁵¹ V Stable	52 β	$3s_{1}^{+}$	1 /2 	$2d_{5}^{+}$	1 /2 	$2d_{3/2}$	2
⁴⁶ Ti _{Stable}	⁴⁷ Ti _{Stable}	⁴⁸ Ti _{Stable}	⁴⁹ Ti _{Stable}	⁵⁰ Ti _{Stable}	⁵¹] β-	$2p_3^-$	·1 /2	$2p_{3}^{-}$	1 /2	$2p_{3}^{-7}$	1 ′2
					-	0		9		5	

All these neutron one-particle one-hole (1p-1h) configurations can contribute to $J^{\pi}=1^{-}$ states' (PDR) wavefunctions

[https://people.physics.anu.edu.au/~ecs103/chart/]

The John D. Fox Superconducting Linear Accelerator Laboratory

The Super-Enge Split-Pole Spectrograph at FSU

https://doi.org/10.3389/fphy.2024.1511394

Visit us at https://fsunuc.physics.fsu.edu

Part of PhD thesis project of B. Kelly (ongoing analysis)

We can easily study the excitation spectrum up to and beyond S_n at the SE-SPS (if Q value permits!). Energy resolution (FWHM) for ~400-500 μ g/cm² targets is typically 40-70 keV.

[(y, y ') data: U. Gayer, Master's thesis, TU Darmstadt (Germany)]

^{47,49}Ti(d,p) at the FSU SE-SPS

NIS

FSU

Basic idea: Measure angular distributions, i.e., particle yields at different scattering angles, to determine angular momentum transfer.

SE-SPS on rails and sliding seal scattering chamber to facilitate measurements at different scattering angles.

Single-particle strength in ⁵⁰Ti

CENT OR EXCELLENCE

NSF

ARUNA

NIS

FSU

Strength distribution for different angularmomentum, *l*, transfers.

Single-particle strength in ⁵⁰Ti

NIS

FLORIDA STATE UNIVERSITY

EINTER FOR EXCELLENC

ARUNA

Summing the spectroscopic strengths gives us in first order the occupancy of the respective orbitals.

Single-particle character of the Pygmy Dipole Resonance in ⁵⁰Ti

CENTER FOR EXCELLENCE

ARUNA

NIS

Spin-flip excitations in ⁵⁰Ti

CENT OR EXCELLENCE

NSF

ARUNA

Single-particle character of the Pygmy Dipole Resonance in ⁵⁰Ti

Single-particle character of the Pygmy Dipole Resonance

Theoretical prediction: $(2p_{3/2})^{-1}(2d_{5/2})^{+1}$, $(2p_{3/2})^{-1}(2d_{3/2})^{+1}$, and $(2p_{3/2})^{-1}(3s_{1/2})^{+1}$ neutron one-particle-one-hole contributions cause observed strength increase beyond N=28. [T. Inakura et al., PRC 84, 021302(R) (2011)]

Observations:

- Most strongly populated states in (γ,γ') not populated in (d,p).
- Only L=2 angular momentum transfers populated 1⁻ states below S_n in (d,p).
- Relative strength evolution does not follow the same trend in 5.5-7.5 MeV energy window.
- \rightarrow Systematic studies needed to test details of Inakura's theoretical predictions and other models!

[MS et al., Phys. Rev. C 108, 014311 (2023)]

Outlook – other transfer reactions

CENTER FOR EXCELLENCE

RUNA

NIS

⁴⁹Ti(d,t)⁴⁸Ti+friends at FSU SE-SPS (March 2024)

 $\begin{array}{c} 2d_{3/2} & 4 \ 3s_{1/2} & 2 \ 1g_{7/2} & 8 \ 2d_{5/2} & 6 \end{array}$

 ${1 f_{5/2}^{1/2} \over 2 p_{3/2}} {6 \over 4}$

 $1f_{7/2} \ 8 \ 28$

 $1s_{1/2} \ 2 \ 2$

 $1d_{5/2}$ 6

Outlook – other transfer reactions

CENTER FOR EXCELLENCE

RUNA

NIS

 $\begin{array}{c} 2d_{3/2} & 4 \ 3s_{1/2} & 2 \ 1g_{7/2} & 8 \ 2d_{5/2} & 6 \end{array}$

 ${1 f_{5/2}^{1/2} \over 2 p_{3/2}} {6 \over 4}$

 $1f_{7/2} \ 8 \ 28$

 $1d_{5/2}$ 6

⁴⁹Ti(d,t)⁴⁸Ti+friends at FSU SE-SPS (March 2024)

Yes: N. Tsoneva and H. Lenske, PLB **695**, 174 (2011) **No:** E. Yüksel, G. Colo, et al., PRC **97**, 064308 (2018)

Hint at existence?

L. Pellegri, A. Bracco, N. Tsoneva, et al., PRC 92, 014330 (2015)

MS, N. Tsoneva, *et al.*, PLB **752**, 102 (2016)

EINTER OR DOZLARE BELEVITARIS W DIALET

FLORIDA STATE UNIVERSITY

M. Spieker – Department of Physics 38

Yes: N. Tsoneva and H. Lenske, PLB **695**, 174 (2011) **No:** E. Yüksel, G. Colo, et al., PRC **97**, 064308 (2018)

Hint at existence?

MS, N. Tsoneva, et al., PLB 752, 102 (2016)

[^{112,114}Sn: N. Tsoneva, MS, H. Lenske, A. Zilges, NPA **990**, 183 (2019)]

L. Pellegri, A. Bracco, N. Tsoneva, et al., PRC 92, 014330 (2015)

NIS

CENTR FOR EXCELLENCE

NSF

ARUNA

Yes: N. Tsoneva and H. Lenske, PLB **695**, 174 (2011) **No:** E. Yüksel, G. Colo, et al., PRC **97**, 064308 (2018)

Is "favored" g.s. decay the critical observable?

\rightarrow Not as straightforward as initially thought!

[^{112,114}Sn: N. Tsoneva, MS, H. Lenske, A. Zilges, NPA **990**, 183 (2019)]

NIS

Possible PQR states at higher energies are dominantly two-phonon states in ¹¹⁴Sn. Very different from PDR! Thus, situation appears to be way more complex!

I would say we do not have a clear understanding of what is going on here and cannot claim that a PQR exists (or does not exist).

Yes: N. Tsoneva and H. Lenske, PLB **695**, 174 (2011) **No:** E. Yüksel, G. Colo, et al., PRC **97**, 064308 (2018)

FSU

Hint at existence?

L. Pellegri, A. Bracco, N. Tsoneva, et al., PRC 92, 014330 (2015)

NIS

ARUNA

NuPECC Long Range Plan 2017 – Perspectives in Nuclear Physics

Box 4. Pygmy Resonances

In neutron-rich systems, the neutron excess is expected to form a skin, often assumed to oscillate outside the proton-neutron core: this results in a concentration of E1 strength in the region around the particle binding energy (< 10 MeV) - the Pygmy Dipole Resonance. Experiments are ongoing for few exotic nuclei above separation-energy threshold, using advanced and complex setups at fragmentation facilities, while stable systems, below threshold, have been largely investigated by different probes - from photons, high energy protons and alphas and heavy ions at intermediate energies. A quite complex nature of pygmy states has been evidenced, as in the case of ¹²⁴Sn where isoscalar and isovector states seem to co-exist in the same energy region, and the character of these excitations appears to be hybrid, with mixture of compressional or non-collective character.

New experiments are envisaged to better clarify the features of the low-lying dipole strength with neutron excess and the existence of pygmy states of other multipolarities, E2 in particular. At ISOL facilities, inelastic scattering at 10-15 MeV/ nucleon in inverse kinematics will shed light on the nature of the pygmy resonance below particle threshold, while exclusive measurements based on the detection of high resolution γ rays and particle decay at intense gamma-beam facilities, such as ELI-NP, will pin down the fine structure of the entire resonance response in stable systems, shedding light on damping mechanisms.

 $\gamma\text{-decay}$ spectra from the pygmy resonance in ^{124}Sn , as measured with α scattering at 34 MeV/A (top, KVI data), heavy ion at 20 MeV/nucleon (middle, AGATA at LNL) and γ scattering (bottom, Darmstadt data). Coloured histograms give the strength resolved in individual transitions, with energy-integrated relative intensities (insets).

Angela Bracco (NuPECC Chair) for the NuPECC Committee 2012-2017

Acknowledgments

FSU – Sergio Almaraz-Calderon, Lagy T. Baby, Paul D. Cottle, Kevin Fossez, Kirby W. Kemper, Jorge Piekarewicz, Samuel Tabor, Tsz Leung (Ryan) Tang, Vandana Tripathi, Alexander Volya, Ingo Wiedenhoever, graduate & undergraduate students, postdoctoral researchers

LSU – J. Blackmon, C. Deibel, postdoctoral researchers, graduate students Oak Ridge National Laboratory – A.M. Allmond and T.J. Gray Ursinus College – L.A. Riley and undergraduate students Davidson College – A.N. Kuchera and undergraduate students Argonne National Laboratory – C.R. Hoffman, C. Müller-Gatermann Lawrence Livermore National Laboratory – G. Potel-Aguilar, R. Hughes Ohio University – A. Richard FRIB/MSU – B.A. Brown University of Cologne – A. Zilges and his research group ELI-NP – N. Tsoneva Mississippi State University – B. Crider

The FSU group acknowledges support by the U.S. National Science Foundation (NSF) under Grant Nos. PHY-2012522 [WoU-MMA: Studies of Nuclear Structure and Nuclear Astrophysics] and PHY-2412808 [Studies of Nuclear Structure and Nuclear Astrophysics], and by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) under Grant No. DE-NA0004150 [Center for Excellence in Nuclear Training And University-based Research (CENTAUR)] as part of the Stewardship Science Academic Alliances Centers of Excellence Program. Support by Florida State University is also gratefully acknowledged.

