Progress in the study of electric giant and pygmy resonances over the last five decades

Muhsin N. Harakeh

University of Groningen, the Netherlands

Symposium in honor of Angela Bracco

Bormio, Italy

Operators and Microscopic Structure

 university of groningen

Microscopic picture: GRs are coherent (1p-1h) excitations induced by single-particle operators.

- Excitation energy depends on

 multipole L (Lħω, since radial operator ∝ r^L; except for ISGMR and ISGDR, 2ħω & 3ħω, respectively),
 strength of effective interaction and
 collectivity.
- Exhaust appreciable % of EWSR
- Acquire a width due to coupling to continuum and to underlying 2p-2h configurations.

Microscopic structure of ISGMR & ISGDR

Transition operators:

 $3\hbar\omega$ excitation (overtone of c.o.m. motion)

university of groningen

$$\begin{split} P_{0\mu} &= \frac{1}{2} \sum_{i} r_{i}^{2} \\ \sum_{n} (E_{n} - E_{0}) B(E0, 0 \to n) = S_{0} = \frac{\hbar^{2}}{2m} A < r^{2} > \\ P_{1\mu} &= \frac{1}{2} \sum_{i} r_{i}^{3} Y_{1\mu}(\hat{r}_{i}) \\ \sum_{n} (E_{n} - E_{0}) B(E1, 0 \to n) = S_{1} = \frac{\hbar^{2}}{8\pi m} \frac{3}{4} A[11 < r^{4} > -\frac{25}{3} < r^{2} >^{2} -10\varepsilon < r^{2} >] \\ \varepsilon &= (\frac{4}{E_{2}} + \frac{5}{E_{0}}) \frac{\hbar^{2}}{3mA} \\ Q_{\lambda\mu} &= \sum_{i} r_{i}^{\lambda} Y_{\lambda\mu}(\hat{r}_{i}) \\ \sum_{n} (E_{n} - E_{0}) B(E\lambda, 0 \to n) = S_{\lambda} = \frac{\hbar^{2}}{8\pi m} \lambda (2\lambda + 1)^{2} A < r^{2\lambda - 2} > \end{split}$$

5

university of groningen

Compression Modes ISGMR & ISGDR Hydrodynamic Models

university of groningen

The Collective Response of the Nucleus: Giant Resonances

Bormio, Italy; 3 February 2025

8

university of groningen

 $K_{A} = \left[r^{2} (d^{2} (E/A)/dr^{2}) \right]_{r=R_{0}}$ J.P. Blaizot, Phys. Rep. 64 (1980) 171 ISGMR, ISGDR \Rightarrow Incompressibility, symmetry energy $K_{A} = K_{vol} + K_{surf}A^{-1/3} + K_{sym}((N-Z)/A)^{2} + K_{Coul}Z^{2}A^{-4/3}$

university of

Thomas Flechel Köln

Bormio, Italy; 3 February 2025

university of groningen

Nucleus, e.g., ²⁰⁸Pb

Inelastic α scattering

Bormio, Italy; 3 February 2025

y university of groningen

ISGQR, ISGMR

 $\Leftarrow^{208} Pb(\alpha, \alpha')$ at E_{α} =120 MeV Spectra obtained with solidstate detectors

Large instrumental background and nuclear continuum!

M. N. Harakeh et al., Phys. Rev. Lett. 38 (1977) 676

BBS@KVI

(*p*,*p'*) at $E_p \sim 300$ (*a*,*a'*) at $E_a \sim 400$ & 200 MeV at RCNP & KVI, respectively

RCNP

university of groningen

ISGQR at 10.9 MeV

ISGMR at 13.9 MeV

18

groningen

Multipole decomposition analysis (MDA)

$$\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.},E)\right)^{\exp.} = \sum_{L} a_L(E) \left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.},E)\right)_{L}^{calc.}$$

$$\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.},E)\right)^{\exp}$$

: Experimental cross section

 $\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{I}^{cauc.}$: DWBA cross section (unit cross section)

 $a_{I}(E)$: EWSR fraction

- a. ISGR (L<15)+ IVGDR (through Coulomb excitation)
- **b.** DWBA formalism; single folding \Rightarrow transition potential

$$\delta U_{L}(r,E) = \int d\vec{r}' \,\delta \rho_{L}(\vec{r}',E) [V(|\vec{r}-\vec{r}'|,\rho_{0}(r')) + \rho_{0}(r') \frac{\partial V(|\vec{r}-\vec{r}'|,\rho(r'))}{\partial \rho_{0}(r')}]$$

$$U(r) = \int \vec{dr'} V(|\vec{r} - \vec{r'}|, \rho_0(r'))\rho_0(r')$$

Transition density

ISGMR Satchler, Nucl. Phys. A472 (1987) 215

$$\delta \rho_0(r, E) = -\alpha_0 [3 + r\frac{d}{dr}]\rho_0(r)$$
$$\alpha_0^2 = \frac{2\pi\hbar^2}{mA < r^2 > E}$$

ISGDR Harakeh & Dieperink, Phys. Rev. C23 (1981) 2329

$$\begin{split} &\delta\rho_1(r,E) = -\frac{\beta_1}{R\sqrt{3}} [3r^2 \frac{d}{dr} + 10r - \frac{5}{3} < r^2 > \frac{d}{dr} + \varepsilon(r\frac{d^2}{dr^2} + 4\frac{d}{dr})]\rho_0(r) \\ &\beta_1^2 = \frac{6\pi\hbar^2}{mAE} \frac{R^2}{(11 < r^4 > -(25/3) < r^2 >^2 - 10\varepsilon < r^2 >)} \end{split}$$

Other modes Bohr-Mottelson (BM) model

$$\delta \rho_L(r, E) = -\delta_L \frac{d}{dr} \rho_0(r)$$

$$\delta_L^2 = (\beta_L c)^2 = \frac{L(2L+1)^2}{(L+2)^2} \frac{2\pi\hbar^2}{mAE} \frac{\langle r^{2L-2} \rangle}{\langle r^{L-1} \rangle^2}$$

22

 university of groningen

For the equation of state of symmetric nuclear matter at saturation nuclear density:

$$\left[\frac{d(E/A)}{d\rho}\right]_{\rho=\rho_0} = 0$$

and one can derive the incompressibility⁰ of nuclear matter: -20

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho_0}$$

E/A: binding energy per nucleon

- **ρ** : nuclear density
- ρ_0 : nuclear density at saturation

J.P. Blaizot, Phys. Rep. 64 (1980) 171

In HF+RPA calculations,

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho = \rho_0}$$

Nuclear matter

 K_A : incompressibility

24

university of

groningen

E/A: binding energy per nucleon

ρ : nuclear density

ĸ

 ρ_0 : nuclear density at saturation

 $K_{A} \text{ is obtained from excitation energy of ISGMR & ISGDR}$ $K_{A} = 0.64K_{nm} - 3.5$ J.P. Blaizot, Nucl. Phys. A591 (1995) 435

From GMR data on ²⁰⁸Pb and ⁹⁰Zr,

$K_{\infty} = 240 \pm 10 \ (\pm 20) \text{ MeV}$ [See, *e.g.*, G. Colò *et al.*, Phys. Rev. C 70 (2004) 024307]

This number is consistent with both ISGMR and ISGDR Data and with non-relativistic and relativistic calculations

/ university groningen

Isoscalar GMR strength distribution in Sn-isotopes obtained by Multipole **Decomposition Analysis** of singles spectra obtained in A Sn(α, α') measurements at incident energy 400 MeV and angles from 0° to 9°

$$K_A \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2 + K_{Coul} Z^2 A^{-4/3}$$
$$K_A - K_{Coul} Z^2 A^{-4/3} \sim K_{vol} (1 + cA^{-1/3}) + K_{\tau} ((N - Z)/A)^2$$

~ Constant + $K_{\tau}((N - Z)/A)^2$

We use $K_{Coul} = -5.2$ MeV (from Sagawa) (N - Z)/A¹¹²Sn - ¹²⁴Sn: 0.107 - 0.194

T. Li et al., Phys. Rev. C81 (2010) 034309

29

/ university of groningen

D. Patel et al., Phys. Lett. B718 (2012) 447

30

university of groningen

Colò *et al.*: Non-relativistic RPA (without pairing) reproduces ISGMR in ²⁰⁸Pb and ⁹⁰Zr.

- Piekarewicz: Relativistic RPA (FSUGold model) reproduces g.s. observables and ISGMR in ²⁰⁸Pb, ¹⁴⁴Sm and ⁹⁰Zr [$K_{\infty} = 230$ MeV]
- Vretenar: Relativistic mean field (DD-ME2: densitydependent mean-field effective interaction).

[$K_{\infty} = 240$ MeV]. Possibly agreement is fortuitous since strength distributions are not much different from those by Colò *et al.* and Piekarewicz.

Tselyaev *et al.*: Quasi-particle time-blocking approximation (QTBA) (T5 Skyrme interaction) $[K_{\infty} = 202 \text{ MeV}?!]$

=> Softness of Sn-nuclei is still unresolved ?!

Z.Z. Li, Y.F. Niu, and G. Colò, PRL 131 (2023) 082501

Fully self-consistent Quasiparticle Random-Phase Approximation plus Quasiparticle-Vibration Coupling model (QPVC) have been developed, based on the Skyrme-Hartree-Fock-Bogoliubov (SHFB) framework. Both QPVC effects and pairing effects are considered self-consistently.

Results suggest that QPVC effects are crucial in order to reach a unified description of the ISGMR in Ca, Sn, and Pb isotopes at the same time.

This conclusion has been corroborated by **Elena Litvinova [PRC 107 (2023) L041302]** in which the inclusion of beyond-mean-field correlations of QPVC type allowed for a simultaneous description of the ISGMR in nuclei of Pb, Sn, Zr, and Ni mass regions.

ISGMR strength functions in even-even ¹¹²⁻¹²⁴Sn, ⁴⁸Ca, and ²⁰⁸Pb isotopes, calculated either by (Q)RPA using a smoothing with Lorentzian having a width of 1 MeV (dash-dotted [black] line), or (Q)RPA+(Q)PVC (solid [blue] line). The SV-K226 Skyrme force is used. The experimental data are given by green crosses **Z.Z. Li, Y.F. Niu, and G. Colò**

	SkP	SkM*	SV-K	KDE0	SV-bas	SV-K	SAMi
<u> </u>	201	217	226	229	233	241	245
_ (Q)RPA							
⁴⁸ Ca	0.11	0.89	1.09	1.17	1.40	1.70	1.72
^{120}Sn	0.22	0.43	0.78	0.76	1.05	1.31	1.34
²⁰⁸ Pb	0.74	0.14	0.14	0.20	0.37	0.60	0.76
(Q)PVC							
⁴⁸ Ca	0.70	0.25	0.36	0.51	0.67	0.90	1.07
^{120}Sn	0.67	0.14	0.02	0.18	0.36	0.68	0.82
²⁰⁸ Pb	0.94	0.37	0.25	0.06	0.08	0.31	0.48

The deviation of ISGMR energies from experimental data $[|E^{\text{theo.}} - E^{\text{exp.}}|$ (MeV)] in ⁴⁸Ca, ¹²⁰Sn, and ²⁰⁸Pb, calculated by (Q)RPA and (Q)PVC using the Skyrme parameter sets SkP, SkM*, SV-K226, KDE0, SV-bas, SV-K241, and SAMi. The experimental data are taken from [1, 2, 3]. 1- D. Patel, et al., Phys. Lett. **B 726**, 178 (2013). -- Pb 2- T. Li, et al., Phys. Rev. Lett. **99**, 162503 (2007). -- Sn 3- S. D. Olorunfunmi, et al., Phys. Rev. C 105, 054319 (2022). -- Ca

Inelastic scattering of 240-MeV α particles at small angles including 0°.

Lines in the distributions represent the individual peaks and their sum obtained from the Gaussian fits. The thin red line for ⁹⁰Zr represents the strength distribution obtained with the HF-RPA calculation.

Texas A&M D.H. Youngblood *et al.*, PRC 88 (2013) 021301 PRC 92 (2015) 014318 PRC 92 (2015) 044323

37

university of

groningen

Inelastic α scattering at E_{α} = 385MeV

Y.K. Gupta et al., Phys. Lett. B 760 (2016) 482

university of

groningen

Isoscalar Giant Resonances in Nd isotopes: QRPA calculations

K. Yoshida and T. Nakatsukasa, Phys. Rev. C 88 (2013) 034309

39

university of groningen

142,146,148,150Nd(*a*,*a*') spectra at $\theta_{\text{Lab}} = 0.75^{\circ}$ after particle identification, subtraction of the instrumental background, and of contaminants are shown in black histograms. The red histograms show the spectra before instrumentalbackground and contaminants subtraction.

M. Abdullah et al., Phys. Lett. B855 (2024) 138852

Multipole-decomposition analyses for ^{142,146,148,150}Nd

The monopole strength distributions for ^{142–150}Nd obtained from MDA. The red lines show the results of single-Lorentzian fitting \gtrsim in ¹⁴²Nd (upper left) and of double-Lorentzian fitting in ¹⁴⁶Nd (upper right), ¹⁴⁸Nd (lower left), and ¹⁵⁰Nd (lower right). In deformed Nd isotopes, the low- and high-energy components of the ISGMR are indicated by blue and green lines, respectively.

42

university of

groningen

The quadrupole strength distributions for ^{142–150}Nd isotopes obtained from MDA. The overall fits, employing a double-Lorentzian function, are represented by red lines. The main-tone modes $(\sum r_i^2 Y_2, 2\hbar\omega)$ of the quadrupole resonances are depicted using blue lines, while the overtone compression modes $(\sum r_i^4 Y_2, 4\hbar\omega)$ are illustrated with green lines.

43

university of

groningen

¹⁴⁰Ce($\alpha,\alpha'\gamma$) vs. ¹⁴⁰Ce(γ,γ')

D. Savran et al., Phys. Rev. Lett. 97 (2006) 172502

university of

groningen

44

Multipole assignment with α - γ angular correlation

Multipole assignment with α - γ angular correlation

Comparison of $(\alpha, \alpha' \gamma)$ with (γ, γ') on ¹³⁸Ba

E1 strength distribution in ¹⁴⁰Ce, ¹³⁸Ba, ¹²⁴Sn, and ⁹⁴Mo

 $- (\gamma, \gamma') \& (\alpha, \alpha' \gamma) \\- (\gamma, \gamma') only$

Bormio, Italy; 3-8 February 2025

- The grey histogram corresponds to the total unresolved strength.
- Top panel: Discrete level in α scattering
- Centre panel: Discrete levels in ¹⁷O scattering
- **Bottom panel: photon scattering**
- L. Pellegri et al., Phys. Lett. B738 (2014) 519

Panels (a) and (b) are for the $(\alpha, \alpha' \gamma)$ reaction at 130 MeV, panels (c) and (d) are for the $(p,p'\gamma)$ reaction at 80 MeV, while panels (e) and (f) show (γ, γ') measurements. The coloured bars correspond to discrete transitions while the grey bars correspond to the continuum regions in the present measurements.

F.C.L. Crespi, A. Bracco et al., Phys. Lett. B 816 (2021) 136210

51

university of

groningen

"Study of the breathing mode of ²⁰⁸Pb through neutron decay" A. Bracco, J.R. Beene *et al.*, PRL 60 (1988) 2603

"The direct neutron decay of giant resonances in ²⁰⁸Pb" A. Bracco, NPA 482 (1988) c421

"Neutron decay from the giant-resonance region in ²⁰⁸Pb" A. Bracco, J.R. Beene *et al.*, PRC 39 (1989) 725 (R) ⇒ ¹⁷O scattering at 378 MeV (22.24 MeV/u) at 13°

"Decay of the isoscalar giant monopole resonance in ²⁰⁸Pb" S. Brandenburg *et al.*, NPA 466 (1987) 29

"Evidence for a (semi) direct component in the decay of the isoscalar giant monopole in ²⁰⁸Pb" S. Brandenburg *et al.*, PRC 39 (1989) 2448

We both worked separately on the topic of hot GDR and we both have many publications on that.

"Pygmy dipole resonance in ¹²⁴Sn populated by inelastic scattering of ¹⁷O" L. Pellegri, A. Bracco *et al.*, Phys. Lett. B738 (2014) 519

"Isospin character of low-lying pygmy dipole states in ²⁰⁸Pb via inelastic scattering of ¹⁷O ions" F.C.L. Crespi, A. Bracco *et al.*, PRL 113 (2014) 012501

"Low-energy isoscalar dipole strength in ⁴⁰Ca, ⁵⁸Ni, ⁹⁰Zr and ²⁰⁸Pb" T.D. Poelhekken, ..., M.N. Harakeh Phys. Lett. B278 (1992) 423-427

"Splitting of the pygmy dipole resonance in ¹³⁸Ba and ¹⁴⁰Ce observed in the $(\alpha, \alpha' \gamma)$ reaction" J. Endres *et al.*, PRC 80 (2009) 034302

"Isospin character of the pygmy dipole resonance in ¹²⁴Sn" J. Endres *et al.*, PRL 105 (2010) 212503

"Structure of the pygmy dipole resonance in ¹²⁴Sn" J. Endres *et al.*, PRC 85 (2012) 064331

Angela and I were working on several topics in parallel for almost four decades. We started Since more than 10 years collaborating on experiments at GSI, GANIL, RCNP and at Cyclotron Centre Bronowice at IFJ-PAN.

Since 2012, I have counted that we have 25 publications in common. I mention a recent one here, which I used in my talk:

"The structure of low-lying 1⁻ states in ^{90,94}Zr from $(\alpha, \alpha'\gamma)$ and $(p,p'\gamma)$ reactions" F.C.L. Crespi et al., Phys. Lett. B 816 (2021) 136210

PhD Ceremony of Soumya Bagchi Rijksuniversiteit Groningen, May 2015

Bormio, Italy; 3 February 2025

university of groningen

Finally I wish Angela active retirement (as I do not expect otherwise from her) with many years of good health and energy to keep doing the excellent work. Thank you for your attention

$$P_{0\mu} = \frac{1}{2} \sum_{i} r_i^2$$

$$\sum_{n} (E_n - E_0) \, \tilde{P}_{0n}^{(0)} = S_0 = \frac{\hbar^2}{2m} \, A < r^2 >$$

$$P_{1\mu} = \frac{1}{2} \sum_{i} r_{i}^{3} Y_{1\mu}(\hat{r}_{i})$$

$$\sum_{n} (E_n - E_0) \, \tilde{P}_{0n}^{(1)} = S_1 = \frac{\hbar^2}{8\pi m} \frac{3}{4} \, A[11 < r^4 > -\frac{25}{3} < r^2 >^2 -10\varepsilon < r^2 >]$$

$$\varepsilon = \left(\frac{4}{E_2} + \frac{5}{E_0}\right) \frac{\hbar^2}{3mA}$$
$$Q_{\lambda\mu} = \sum_i r_i^{\lambda} Y_{\lambda\mu}(\hat{r}_i)$$

$$\sum_{n} (E_n - E_0) \tilde{Q}_{0n}^{(\lambda)} = S_{\lambda} = \frac{\hbar^2}{8\pi m} \lambda (2\lambda + 1)^2 A < r^{2\lambda - 2} >$$

Including (Q)PVC effects, ⁴⁸Ca prefers SkM* and SV-K226, ¹²⁰Sn prefers SkM*, SV-K226, and KDE0, while ²⁰⁸Pb prefers SVK226, KDE0, and SV-bas.

=>, SV-K226 and KDE0 describe all three nuclei very well at the same time, with K_∞ = 226 MeV and 229 MeV respectively: this is consistent with the constraint 240±20 MeV, obtained previously from the ISGMR of ²⁰⁸Pb in QRPA.

The ISGMR energies in ²⁰⁸Pb vs. the ones in ¹²⁰Sn (upper panel), and ⁴⁸Ca (lower panel), calculated by (Q)RPA (black squares), and by (Q)RPA+(Q)PVC (blue circles) using 7 different Skyrme parameters. The regression lines are obtained from the (Q)RPA results and (Q)RPA+(Q)PVC results, respectively. The experimental data and their uncertainties, taken from [1, 2, 3], are displayed by means of cyan-coloured bands.

58

university of

groningen

Splitting of the ISGMR under deformation

K projection of *J* on symmetry axis is good quantum number in deformed nuclei Coupling of ISGMR with *K*=0 component of ISGQR

60

university of groningen

Effect of deformation on Isoscalar Giant Resonances: Sm isotopes

Bormio, Italy; 3 February 2025

61

groningen

¹⁴⁰Ce($\alpha, \alpha' \gamma$) - coincidence matrix

D. Savran et al., PRL97 (2006) 172502

Bormio, Italy; 3 February 2025

university of

groningen

62

63

v university of groningen

Decay of giant resonances

- Width of resonance
 - $\Gamma, \Gamma^{\uparrow}, \ \Gamma^{\downarrow} \ (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[↑]: direct or escape width
 - Γ¹: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

 Γ^{\uparrow}

Overtone of the ISGQR? $[r^4Y_2]$

Conclusions!

- There has been much progress in understanding ISGMR & ISGDR macroscopic properties
 - Systematics: E_x , Γ , %EWSR
 - $\Rightarrow K_{\rm nm} \approx 240 {
 m MeV}$
 - $\Rightarrow K_{\tau} \approx -500 \text{ MeV}$
- Sn nuclei are softer than ²⁰⁸Pb and ⁹⁰Zr.
- Recently, Microscopic Structure for a few nuclei CRPA has some success in ²⁰⁸Pb & ⁵⁸Ni but fails badly in ¹¹⁶Sn & ⁹⁰Zr.
- Possible observation quadrupole compression mode, i.e. overtone of ISGQR

Identification of PDR structure in $(\alpha, \alpha' \gamma)$

15

- Good reproduction of experimental results using RQTBA transition densities + semi-classical reaction model
- ⇒ Different response to complementary probes allows identification of PDR structure

68

university of groningen