MC Simulation Update

Geometry improvements

- Latest coordinates and distances of different components
- Addition of passive material on Start Counter (Al frame)

Widening of the field in passing through the phantom Input beam size 3x3 cm²: -1.5<x<1.5 cm; -1.5<y<1.5 cm

Y vs X at PHA exit

Y vs X at PHA entrance

Widening of the field in passing through the phantom Input beam size 3x3 cm²: -1.5<x<1.5 cm; -1.5<y<1.5 cm

xyPHAin 5_⊢ y [cm] y [cm] Entries 837316 SC Frame Mean x 0.003314 Mean y -0.0007538Std Dev x 0.9296 **3** 2 1 1 Std Dev v 0.9294 **3 cm** 10² <u>3 cm</u> –1⊢ -1

Y vs X at PHA entrance

-2

-3

Y vs X at PHA exit

There are tails in the space distribution hitting the SC frame

Effect on TOF distribution (using 160 ps resolution)

ToF with resolution, all events

Effect on TOF distribution (using 160 ps resolution)

ToF with resolution, all events

Justification of ToF value

In the path from SC to TW:

 $\langle \mathsf{E}_{\mathsf{kin}} \rangle$ = 155.9445 MeV $\rightarrow \beta$ = 0.5145

ToF = $< L_{track} > /(\beta * 29.979246) = 13.78$ ns

In order to get the measured <ToF> \sim 15.4 ns we would need to evaluate the Δt due to cables, etc.

Simulation of ToF calibration runs

Fixed beam, no phantom Simulation repeated also in vacuum

x,y FWHM of beam vs energy

Summary of results

Beam Energy	<β _{beam} >	<energy> out of SC (MeV)</energy>	<energy> at TW (MeV)</energy>	∆E in Air (MeV)	<β _{true} >	ToF in Air (ns)	Tof in Vacuum (ns)
62.73	0.3484	57.09	53.95	3.14	0.3287	21.47	21.14
84.94	0.3989	80.57	78.18	2.39	0.3867	18.26	18.12
110.41	0.4466	106.74	104.78	1.96	0.4382	16.11	16.04
139.77	0.4924	136.65	135.00	1.65	0.4865	14.51	14.47
169.88	0.5320	167.17	165.74	1.43	0.5277	13.38	13.36
200.84	0.5670	198.41	197.14	1.27	0.5637	12.43	12.51
228.57	0.5945	226.33	225.16	1.17	0.5917	11.94	11.92
	Effective <e<sub>kin> is lower than nominal E_{kin} of beam. Energy loss in Nozzle, Beam Monitor, SC and air is important</e<sub>			ower is E _{kin} , the er is energy loss	Effective < β > is lower than nominal β		

When using nominal β of beam

ToF (ns) 22 - Previous L/ β c + const 20 18 16 L..... 14 12 0.6 nominal β 0.35 0.45 0.5 0.55 0.4

ToF Calib.

ToF vs X as a function of gap(0.5 cm) position

Conclusions

- The effect of SC frame is confirmed, but this implies that the field width is somewhat larger than 3x3 cm²
- ToF values should be around 13.8 ns for the considered energies
- The simulation of ToF calibration points out to consider the effective average energy in the path SC-TW, considering also energy loss in air
- When fitting ToF vs x, the resolution parameter scales reasonably with the position of the gap:
 - it's larger at increasing distance from the tracker
 - it's larger for a possible tracker downstream the phantom