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Anisotropy search methods 

• The starting point of an anisotropy study is the construction 
of a sky map corresponding to the case of no-anisotropy (null 
hypothesis), i.e. case of a perfectly isotropic distribution, 
taking into account the instrument observation mode 

• Comparison of the no-anisotropy sky map with the actual sky 
map can reveal the presence of any anisotropies in the data 
– Sometime the no-anisotropy map is called background map, since 

it represents the map to be used to search a possible significant 
excess signal when is compared with the real one 

• Usually the signal is very weak, i.e. 
𝐼 = 𝐼𝑖𝑠𝑜 + 𝐼𝑎𝑛𝑖𝑠𝑜 , 𝑤𝑖𝑡ℎ 𝐼𝑎𝑛𝑖𝑠𝑜 ≪ 𝐼𝑖𝑠𝑜, so it is important to 
estimate the no-anisotropy  map in an unbiased manner, 
trying to avoid to include any systematic uncertainties 
– A flawed no-anisotropy map estimate can mistakenly create an 

apparently significant signal, or bury a real signal 
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Search at large angular scale 

• Once the no-anisotropy map has been built, the next step is  to 
search for any possible excess or deficit at different angular 
scales, since a large scale anisotropy is expected for charged 
cosmic rays 

• One way to search for anisotropies at some angular scale is to 
use sky maps composed of independent bins with bin size 
similar to the angular scale of the anisotropy under search.  

• However, when using independent bins, a potential anisotropic 
signal might become too weak to be detected since it will 
probably be distributed among multiple adjacent bins 
– spillover effects reduce sensitivity 

• A more sensitive way to perform the search, is to use sky maps 
consisting of a large number of correlated bins. 
– The effective number of trials involved in evaluating all possible 

directions in integrated sky maps  need to be taken into account 
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Integrated sky maps 

• The starting point are real and the no-anisotropy maps made with small 
independent-bins 

• The content of a correlated bin is equal to the integrated number of events in a 
circular region around that bin.  

• Using such ‘‘integrated sky maps,’’ it is very likely that there will be at least one 
bin with its center roughly aligned with the direction of the center of a potential 
anisotropy, reducing spillover effects and increasing sensitivity.  

• In general, the sensitivity for detecting an anisotropy of given angular scale is 
greater when an integration radius close to that scale is chosen.  
– If the integration radius is too small or too large compared to the angular scale of 

the prospective anisotropy, the sensitivity becomes suboptimal since either the 
signal can be split among several adjacent bins or there can be too much 
‘‘background’’ (isotropic signal) contamination. 
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Spherical harmonic analysis 

• A function f (e.g. fluctuation map) on the sphere can be expanded in 
spherical harmonics, Ylm, as  𝑓 𝑑 =    𝑎𝑙𝑚𝑌𝑙𝑚(𝑑)

𝑙𝑚𝑎𝑥
𝑚=−𝑙𝑚𝑎𝑥

𝑙𝑚𝑎𝑥
𝑙=0  

• Where d is a unit vector pointing at polar angle  and azimuth , and 
under the assumption that there is insignificant signal power in modes 
with l> lmax, and 𝑎𝑙𝑚 =  𝑓 Ω 𝑌𝑙𝑚

∗ Ω 𝑑Ω (d  ) 

• < 𝑌𝑙𝑚
∗ 𝑌𝑘𝑞 > =  𝑌𝑙𝑚

∗ Ω 𝑌𝑘𝑞 Ω 𝑑Ω = 𝛿𝑙𝑘𝛿𝑚𝑞 

• Pixelising f(d) corresponds to sampling it at Npix locations dp, p[0,Npix 
− 1] 

• The sample function values fp can then be used to estimate alm  

                             𝑎 𝑙𝑚 =
4𝜋

𝑁𝑝𝑖𝑥
 𝑌𝑙𝑚

∗ 𝑑𝑝 𝑓(
𝑁𝑝𝑖𝑥−1

𝑝=0 𝑑𝑝)  

• A statistically isotropic sky means that all ms are equivalent, i.e., there 
is no preferred axis 

• The average variance of these coefficients  is used to construct an 
angular power spectrum at angular scale 180°/l  
– Dipole  l = 1  

• The variance of the f(d) (or equivalently the power spectrum in l) then 
fully characterizes the anisotropies 
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Angular power spectrum 

• The angular power spectrum can be defined as  

        𝐶𝑙 =
1

2𝑙+1
  < |𝑎𝑙𝑚|2>

𝑙𝑚𝑎𝑥
𝑚=−𝑙𝑚𝑎𝑥

 

• The  𝑎 𝑙𝑚 can be used to compute estimates of the angular 
power spectrum 𝐶 𝑙 as 

        𝐶 𝑙 =
1

2𝑙+1
  | 𝑎 𝑙𝑚|2

𝑙𝑚𝑎𝑥
𝑚=−𝑙𝑚𝑎𝑥

 

• It is an unbiased estimator of the true power spectrum Cl, i.e. 
< 𝐶 𝑙 >= Cl 

• Each coefficient 𝐶 𝑙 characterizes the intensity of the 
fluctuations on an angular scale of 180°/l 

• The variance of each measured Cl (i.e., the variance of the 
variance) is 𝑣𝑎𝑟 𝐶𝑙 =

2

2𝑙+1
𝐶𝑙

2 

• Each Cl is χ2 distributed with (2l + 1) degrees of freedom, i.e. 

the random variable 2𝑙 + 1
𝐶 𝑙

𝐶𝑙
 follows a χ2

2l+1 distribution. 
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Dipole anisotropy 

• The most basic approach to a large scale variation of the cosmic ray flux is the 
assumption of a dipole anisotropy 

•  𝐼 𝜑, 𝜃 =  𝐼0 + 𝐼1𝑑 (𝜑, 𝜃) ∙ 𝑑 (𝜑𝑑𝑖𝑝, 𝜃𝑑𝑖𝑝)  
• 𝐼 = 𝑎00𝑌00 +  𝑎1𝑚𝑌1𝑚

1
−1 , since alm=0 for l>1 

• 𝑌00 =
1

2

1

𝜋
 

• 𝑌10 =
1

2

3

𝜋
 cos (𝜃) 

• 𝑌1±1 = ∓
1

2

3

𝜋
 sin (𝜃)𝑒±𝑖𝜑 

• 𝐼 = 𝐼0 + 𝐼12
𝜋

3
𝑌10 ⟹ 𝑎00 = 𝐼0 4𝜋 𝑎𝑛𝑑 𝑎10 = 𝐼1

4𝜋

3
  

• Setting 𝑓 𝜃 =
𝐼 𝜃 −𝐼0

𝐼0
 ⟹ 𝑎10 =

𝐼1

𝐼0

4𝜋

3
 

• 𝐶1 =
|𝑎10|2

3
=

1

3

𝐼1

𝐼0

2 4𝜋

3
⟹ 𝛿 = 3

𝐶1

4𝜋
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Dipole map example  

Example of a dipole distribution: 
• The dipole vector points to 15◦ latitude and 60◦ longitude 
• The magnitude is 0.1. 
• The Mollweide projection has been used for visualization. As features of 

this projection technique, latitudes are straight horizontal parallel lines, 
and equal solid angles are represented by equal areas in the projection. 
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Poisson white noise 

• The map resulting from a random realization of N equally weighted 
points can be written as  

𝑓 Ω =
4𝜋

𝑁
 𝛿(Ω − Ω𝑘)

𝑘
 

      normalized to its mean value, i.e. 

       < 𝑓 > =   𝑓 Ω 𝑑Ω = 1 

      to be adimensional 
• The coefficients alm will follow (apart the constant monopole 

contribution) a gaussian distribution with <alm> = 0 and  

    < |𝑎𝑙𝑚|2> =
4𝜋

𝑁
 and 

    𝐶𝑙 = 𝐶𝑁 =
1

2𝑙+1
  < |𝑎𝑙𝑚|2>

𝑙𝑚𝑎𝑥
𝑚=−𝑙𝑚𝑎𝑥

=
4𝜋

𝑁
 

• That is, the APS is uniform (white or Poisson noise) 
• The Poisson noise due to finite statistic represents a truly isotropic 

signal, so any anisotropy can be detected if the fluctuations (i.e. the 
angular power spectrum) are above the Poisson noise level     
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No-anisotropy map: the exposure method 

• Given a carefully calculated exposure map it is possible to calculate the 
intensity distribution from a set of measured arrival directions 
– The exposure takes the experiment’s geometry (effective area or 

acceptance) and the actual measurement times into account.  
– For a given direction (expressed i.e. in terms of declination and right 

ascension), the exposure corresponds to the product of the surface area 
that has been exposed to the cosmic rays multiplied by the measurement 
time (i.e. livetime) during which the given direction has been visible (i.e. 
field of view) 

• The effective area, calculated from a Monte Carlo simulation of the 
instrument, could suffer from systematic errors 

• The integrated livetime over a given sky region could suffer from 
systematic uncertainties too 

• Of course, any systematic errors involved in the calculation of the 
exposure will propagate to the flux, possibly affecting its directional 
distribution. If the magnitude of these systematic errors is comparable 
to or larger than the statistical power of the available data set, their 
effects on the flux’s directional distribution might masquerade as a real 
detectable anisotropy 
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No-anisotropy map: data based method 

• Assuming that the detector is responding to 
an isotropic particle intensity, an equivalent 
data set corresponding to the null hypothesis 
can be constructed artificially from the 
measured data set 

• Two approaches are usually implemented to 
build the no-anisotropy sky map: 

– Direct integration technique 

– Shuffling technique 
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Calculation of the Exposure 

• The detector instrument response functions depend on the 
angles between a given sky direction (i.e. right ascension α 
and declination ) to and the instrument X-axis an Z-axis 
(i.e. instrument polar and azimuth angles) 

• The exposure can be most generally calculated as follows 
(to keep the notations simple, we will omit the energy 
dependence): ℰ 𝛼, 𝛿 =   𝐴 𝜑, 𝜃, 𝑡 𝑓𝑙𝑖𝑣𝑒𝑡𝑖𝑚𝑒(𝜑, 𝜃, 𝑡) 𝑑𝑡 

• A( ,ϑ, t) denotes the area that is exposed to the particular 
viewing direction at the time t.  

• 𝑓𝑙𝑖𝑣𝑒𝑡𝑖𝑚𝑒(𝜑, 𝜃, 𝑡) marks the fraction of livetime, i.e. the 
accumulated time during which the detector is actively 
taking data, from the given viewing direction and at the 
given time. 

• The livetimes are therefore a function of the four  
dimensional space comprising the sky position and 
instrument angles 
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Livetime calculation 

• As a practical matter, the livetime cannot be provided 
as a continuous function of inclination angles or 
position on the sky 

• The livetime is evaluated on a grid on the sky and in 
inclination angles bins (livetime hypercube) 

• To evaluate the livetime hypercube the detector 
pointing history is needed along with the time range 
and Good Time Interval (GTI) selections  
– any change in data selection affects the GTIs  

• Since livetimes are additive, the livetime hypercube for 
a given epoch can be obtained by co-adding the 
livetime hypercubes for the subset of non-overlapping 
time ranges that it comprises 

• Once the livetime is made, the exposure can be 
evaluated 
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Counts and intensity map 

• The exposure and the counts map are made 
with finely-gridded sky pixel and energy bins, 

• The intensity map can be then evaluated as 
I(pix, E) = Counts(pix, E)/Exposure(pix, E) 

• The pixel size should be sufficiently small 
compared to the instrument’s resolution to 
avoid any excessive, and pixel shape 
dependent, signal smoothing 

• The finely-gridded energy bins of the intensity 
can be also summed to build maps covering 
larger energy bins 
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Angular Power Spectrum 

• Once the intensity map is built, the fluctuation map is 

evaluated as 𝑓 Ω𝑝 =
𝐼 Ω𝑝 − 𝐼

𝐼
 

• The (raw) angular power spectrum can be then 
evaluated (outside of the mask, for a masked sky map) 
– anafast code belong the HEALPix packages can be used 

– lmax = (2  3) Nside 

– In case the masked sky map pixel should be also provided  
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Partial sky map coverage 

• When a fraction of the sky is masked, the 
measured spherical harmonics coefficients are 
related to the true, underlying spherical 
harmonics coefficients, (alm)true, via the so 
called coupling matrix  

• anafast returns a raw angular power spectrum 
(Cl)

raw that is related to the true one as 
(Cl)

raw= (Cl)
true fsky, whre fsky is the portion of 

unmasked sky used in the analysis  

– The Poisson noise for masked sky is 𝐶𝑁 =
4𝜋

𝑁
𝑓𝑠𝑘𝑦 
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Pixel and Beam Window Functions 

• The angular power spectrum calculated from a map is affected by the 
point spread function (PSF) (i.e. detector angular resolution) of the 
instrument and the pixelization of the map (i.e. size of the pixel), 
encoded in the beam window function Wl

beam and the pixel window 
function Wl

pix  respectively, both of which can lead to a multipole-
dependent suppression of angular power that becomes stronger at 
larger multipoles 
– Wl

pix is provided with the HEALPix package for l4Nside for each resolution 
parameter Nside 

• In case of Gaussian angular resolution, , the beam window function is 

      𝑊𝑙
𝑏𝑒𝑎𝑚 = 𝑊𝑙

𝑝𝑖𝑥
𝑒−

𝑙 𝑙+1 𝜎2

2   

• Depending upon whether the power spectrum originates from signal or 
noise, corrections for the beam and pixel window functions must be 
applied to the measurement differently 

• If we assume all the pixels to be identical, the power spectrum of the 
signal, Cl

signal, is related to the raw angular power spectrum Cl
raw, by 

      𝐶𝑙
𝑠𝑖𝑔𝑛𝑎𝑙

= 

𝐶𝑙
𝑟𝑎𝑤

𝑓𝑠𝑘𝑦
− 𝐶𝑁

(𝑊𝑙
𝑏𝑒𝑎𝑚)2

 where 𝐶𝑁 =
4𝜋

𝑁
𝑓𝑠𝑘𝑦 
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Example of pixel window function 
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UL on dipole from APS 

• From fluctuation maps is possible to evaluate the amplitude 

of dipole anisotropy as 𝛿 =
𝐼1

𝐼𝑜
= 3

𝐶1

4𝜋
 where C1 is the 

angular power spectrum for l=1 

– In case of Poisson noise δ = 3
1

𝑁
 (i.e. sensitivity)  

• To set an upper limit on  we start by calculating the 

probability distribution function (pdf) of 𝛿 = 3
𝐶 1

4𝜋
 by a 

change of variable on the probability distribution function of 
𝐶 1 (𝜒3

2 centered on C1) 
• The probability density function to observe 𝐶 1 given the true 

     dipole power C1 is 𝑃 𝐶 1 𝐶1) =
3 3

2𝜋𝐶1

𝐶 1

𝐶1
𝑒

−
3𝐶 1
2𝐶1  

• With a change of variables we obtain 𝑃 𝛿 𝛿) =
3 6

𝜋

𝛿 2

𝛿3 𝑒
−

3𝛿 2

2𝛿2 
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UL on dipole from APS (cont’d) 

• The upper limit of the true anisotropy UL is the value of 
for which the integrated probability of measuring a value 
of 𝛿  at least as large as the one we measured is equal to 

the confidence level, i.e.  𝑃 𝛿 𝛿 𝑑𝛿 = 𝐶𝐿
𝛿𝑈𝐿

0
, where 

𝑃 𝛿 𝛿 =
𝑃 𝛿 𝛿 𝑃(𝛿)

 𝑃 𝛿 𝛿 𝑃 𝛿 𝑑𝛿
 

• Assuming P()=1 for 01 we get 𝛿𝑈𝐿 =
1

1−
2

3

ln (𝐶𝐿)

𝛿 2

 

• On the other hand, it is possible to evaluate the upper 
limit by using frequentist confidence interval (confidence 

belt) by solving  𝑃 𝛿 𝛿 𝑑𝛿 = 1 − 𝐶𝐿
𝛿 

0
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UL on dipole from APS due to Poisson noise 
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No-anisotropy map: direct integration method 

• The number of (background) events expected to fall within a 
sky map pixel with right ascension α and declination , (to 
keep the notations simple, we will omit the energy 
dependence), is given by: 𝑁 𝑝𝑖𝑥 =   𝑑𝑡  𝑑Ω 𝑅 𝜑, 𝜃, 𝑡  𝜀(𝑡) 
where 
– R(,,t) is the (background) event rate per solid angle as a function 

of the instrument zenith angle, , azimuthal angle, , and time, t  
– (t)=1 when , and t are such that they fall within the sky pixel, 

and (t)=0 otherwise 

• R(,,t) is evaluated from the distribution of detected events, 
with the assumption that events from a possible anisotropy 
signal represent, at most, a minor perturbation to this 
distribution  

• The local-angle dependence and the time dependence of R 
are assumed to be independent: 𝑅 𝜑, 𝜃, 𝑡 = 𝐸 𝜑, 𝜃 ℛ 𝑡  

• This recognizes the fact that the overall event rate, ℛ 𝑡 , 
changes often but that E(,)  is nearly constant except when 
changes in the detector configuration are made. 
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Direct integration method (cont’d) 

• The main idea of this method is to first extract from the data set the 
values of ℛ 𝑡  and E(,), and then construct the associated no-
anisotropy sky map. 

• The presence of any anisotropies in the data would create transient 
fluctuations in the instantaneous values of these functions, as these 
anisotropies passed through the instrument field of view. 

• However, these anisotropies would have no effect on the longer-term 
average values of these functions, since any transient fluctuations 
would be averaged out 
– In this application, a constant-over-time E(,) is used 

• Similarly, any temporal variations of the effective area of the detector 
would create fluctuations of the instantaneous value and the longer-
term averages of ℛ 𝑡 , depending on the time scales of the effective-
area variations  
– The all-sky rate exhibited fluctuations on multiple time scales caused by 

varying background rates occurring for instance as the spacecraft was 
moving through regions of different geomagnetic coordinates and by 
changes in the instrument’s hardware settings. 
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Direct integration method (cont’d) 

• Any such instrumental effects affecting the all-sky rate could be  
evstimated, and given an averaged over multiple sky 
observation value of the all-sky rate, the all-sky rate at some 
shorter duration segment could be accurately predicted. 

• These parameterizations are necessary because the direct-
integration method constructs the no-anisotropy-sky map 
incrementally, adding the results from observations of short 
enough duration that the instrument pointing can be assumed 
quasi-constant 

• This choice has the benefit of automatically taking care of any 
temporal variations of the effective area, avoiding the need to 
apply any corrections and, most importantly, avoiding any 
systematic errors introduced by such corrections.  

• It should be noted however that not performing an averaging 
in the all-sky rate weakens the power of this method to smear 
out the presence of any anisotropies in the data, with the 
result of any stronger anisotropies possibly leaking in the no-
anisotropy sky map. 
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No-anisotropy map: shuffling method 

• One way of generating the no-anisotropy map is to randomize 
the reconstructed directions of the detected events 

• A set of isotropic simulated events can be built by randomly 
coupling the times and the directions of real events in local 
instrument coordinates. 

• The randomization is performed starting with the position of 
a given event in the instrument frame and exchanging it with 
the direction of another event, which was selected randomly 
from the data set with a uniform probability.  

• Starting with this information, the sky direction is re-
evaluated for the simulated (random) event. 

• In case the direction distribution of the CR flux is perfectly 
isotropic, a time-independent intensity should be detected 
when looking at any given detector direction. 

• Possible time variation of the intensity would be due only to 
changes in the operating conditions of the instrument.  
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Shuffling method (cont’d) 

• The random coupling preserves the exposure and the 
total number of events.  

• This process is repeated multiple times, with each time 
producing a sky map that is compatible with an isotropic 
CR direction distribution.  

• The final no-anisotropy sky map is produced by taking 
the average of these sky maps.  

• By this construction, the simulated data set preserves 
exactly the energy and angular (with respect to the 
instrument reference frame) distributions, and also 
accounts for the detector dead times.  

• To minimize the possible effects of a varying CR event 
rate due to any changes in the detector configuration, 
the data set can be first split into sub-segments, and the 
technique is applied to each of these sets separately. 
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Remarks on no-anisotropy map from real events 

• Since the real events are used to estimate the no-
anisotropy map for the Direct integration and 
Shuffling method, this map could be an overestimate 
of the “true” isotropic map if a signal is present 

• This leads to an underestimation of the signal 
strength, in particular for large angular scale 
anisotropy 

• The coordinate system has to fixed a priori for the 
background map evaluated with Direct Integration 
method, while the Shuffling Method allows to 
evaluate the background map in all systems at the 
same time   

• As general comment: a cross-check among different 
analysis is appreciated! 
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Significance: Direct bin-to-bin comparison 

• Once the real and the no-anisotropy maps are 
made, a simple direct bin-to-bin (i.e. pixel to 
pixel) comparison of the two maps can be 
performed to search for statistically significant 
deviations between the number of actually 
detected and the number of expected events 
under the assumption of isotropy is 
performed. 

– The comparison is also performed between the 
contents of the integrated actual and no-
anisotropy sky maps 
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Calculating the significance of an excess/deficit 

• Once the best estimate has been obtained for the 
number of background events in a given pixel, 
nb=nb(pix), there remains the question of the best way 
to estimate the statistical significance of any excess or 
deficit. 

• For the case of the direct-integration technique, since 
its produced no-anisotropy sky map is the result of a 
direct calculation, there were no associated statistical 
errors and the significance can be calculated using 
simple Poisson probabilities with known value of the 

background, i.e. P ≥ 𝑛𝑟 =  
𝑒−𝑏𝑏𝑘

𝑘!
∞
𝑘=𝑛𝑟

, where b=nb 
and nr is the number of events in the real map for that 
pixel, i.e. nr=nr(pix) 
– For large values of nb and nr the Gaussian pdf can be used 

instead of Poisson one 
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Li and Ma significance 

• For the case of the shuffling method, the statistical errors 
involved in construction of the no-anisotropy sky maps 
should be taken into account 

• The method suggested by Li and Ma, Astrophys. J. 272, 317 
(1983), is widely adopted. 

• This prescription involves the determination of the likelihood 
functions for the null hypothesis H0 i.e. no signal (ns=0) and 
all observed events are due to background, and for the signal 
hypothesis H1, i.e. ns0 

• The significance of the excess is obtained from the maximum 
likelihood ratio  of these likelihood functions, 𝜆 =

𝐿(𝑋|𝐻0)

𝐿(𝑋|𝐻1,)
 

• In this case the observed data X={nr, nb}, estimated 
unknown parameter ={ns, b} 

• In case of large number of events -2ln follows a 2 
distribution with one degree of freedom 
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Li and Ma significance (cont’d) 

• For H1, the maximum likelihood estimates b=nb 
and ns=nr- nb 

• For H0, ns=0 and 𝑏 =
𝛼

1+𝛼
(𝑛𝑟 + 𝑛𝑏) 

•  is the ratio of the source signal region and the 
background region, i.e. =1/number of random 
maps evaluated with the shuffling method 

• The significance S (in sigma units) is evaluated as 
𝑆 = −2𝑙𝑛𝜆 while the probability p that the 
significance is not less than S is produced by the 
backgrund can be evaluated by the Normal pdf.  

• Then the probability that a real excess exists, that 
is the confidence level CL, is CL=1-p 
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Significance with small numbers 

• In case of small number of events, the significance can be 
evaluated from a Poisson pdf including the fluctuations of both 
observed and background events 

• This involves a calculation of the probability of observing nr 
events or more, given each possible fluctuation in the total 
number of observed background events, nb  

• Assuming that 𝑛𝑏~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑏 , 𝑃 𝑛𝑏 𝑏) =
𝑒−𝑏𝑏𝑛𝑏

𝑛𝑏!
 and 

𝑛𝑠~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝛼𝑏 , 𝑃 𝑛𝑠 𝛼𝑏) =
𝑒−𝛼𝑏(𝛼𝑏)𝑛𝑠

𝑛𝑠!
 

• P ≥ 𝑛𝑟| 𝑛𝑏 , 𝛼 =   𝑑𝑏 𝑃(𝑛𝑏|𝑏)
∞

0
∞
𝑛𝑠=𝑛𝑟

𝑃 𝑛𝑠 𝛼𝑏) =

 
𝛼𝑛𝑠

1+𝛼 𝑛𝑏+𝑛𝑠+1

𝑛𝑏+𝑛𝑠 !

𝑛𝑏! 𝑛𝑠!
∞
𝑛𝑠=𝑛𝑟

= 1 −  
𝛼𝑛𝑠

1+𝛼 𝑛𝑏+𝑛𝑠+1

𝑛𝑏+𝑛𝑠 !

𝑛𝑏! 𝑛𝑠!

𝑛𝑟−1
𝑛𝑠=0  

• Once the probability P is evaluated, the significance in sigma 
units can be evaluated  from  a Normal pdf, i.e. S=-1(1-P) 
where  is the cumulative distribution of the Normal and -1is 
it inverse (quantile) function. 
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Independent Trials 

• Sometime many observation could be made to search any 
excess from a given region in the sky 

• In this case the significance S after T attempts (trails) being 
made, the confidence level is not only dependent  on its 
significance, but also on the total number of trials 

• In this context the a priori significance Spre and the posterior 
significance Spost are introduced to take into account the 
number of trials 

• Consider an outcome X that occurs with probability Ppre(X) in a 
single trial.  

• Then the probability of producing t such events is 
𝐶𝑇

𝑡𝑃𝑝𝑟𝑒
𝑡 (1 − 𝑃𝑝𝑟𝑒)𝑇−𝑡 , where 𝐶𝑇

𝑡  is the binomial coefficient.  
• The probability that none of such events (t=0) is produced in all 

T independent trials is (1 − 𝑃𝑝𝑟𝑒)𝑇 
• Consequently, the confidence level that a real excess is 

observed in T uncorrelated trials is 𝑃𝑝𝑜𝑠𝑡 = 1 − (1 − 𝑃𝑝𝑟𝑒)𝑇 
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Effective Trials 

• Sometime the whole sky was searched for anisotropies 
with no a priori assumptions, that is from any direction 
in the whole sky 

• As such, it involves a large number of trials 
(independent tests), that have to be accounted for 
when judging the statistical significance of its results.  

• For a whole-sky search performed using independent 
bin sky maps, the number of trials is equal to the 
number of pixels in the sky map.  

• On the other hand, searches that use correlated-bin 
sky maps, such as this one, involve a number of 
effective trials that is in general smaller than the 
number of bins in one such sky map.  

• For correlated trials T is replaced by its effective 
number Teff, i.e. 𝑃𝑝𝑜𝑠𝑡 = 1 − (1 − 𝑃𝑝𝑟𝑒)𝑇𝑒𝑓𝑓  
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Effective Trials (cont’d) 

• The number of effective trials involved in evaluating the 
contents of an integrated map can be evaluated using a 
Monte Carlo simulation 

• Fake significance maps were built corresponding to various 
integration radii and to a perfectly isotropic signal.  

• By counting the fraction of such sky maps Ppost that contained 
at least one bin with a probability smaller than some value 
Ppre, the effective number of trials involved in the search of 
sky maps of some integration radius is calculated as 

𝑇𝑒𝑓𝑓 =
log (1−𝑃𝑝𝑜𝑠𝑡)

log (1−𝑃𝑝𝑟𝑒)
 

• Using this effective number of trials, the post-trials probability 
𝑃 𝑝𝑜𝑠𝑡 corresponding to an measured pre-trials 𝑃 𝑝𝑟𝑒 
probability can be calculated as: 
𝑃 𝑝𝑜𝑠𝑡 = 1 − (1 − 𝑃 𝑝𝑟𝑒)𝑇𝑒𝑓𝑓(𝑃 𝑝𝑟𝑒) 
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Example of Number of effective trials 
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   60°  

   45°  

   30°  

   10°  

   Small independent pixel  

HEALPix pixelization scheme with 12288 
pixels ( 3deg2) used for the sky maps 



Fractional excess 

• The fractional excess (aka fluctuations) is defined 
as the number of excess anisotropy events from a 
given pixel (even from a circular region) in the sky 
over the number of events expected to be 
detected from the same pixel (region) if the sky 
was perfectly isotropic, minus 1 

• To evaluate the sensitivity, that is the fractional 
excess needed to detect an anisotropy with a 
given post-trials significance, the UL on the 
number of events at that significance can be used 
starting from the number events expected  for 
the isotropic sky 
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Isotropic simulation 

• A simple Monte Carlo can be performed to 
simulate an isotropic distribution on the sphere 
without any instrument 
– It can be performed to produce random (,) angles 

as =2r1 and =acos(2r2-1), where r1 and r2 are  
random numbers from uniform distribution in (0, 1) 

– Alternatively, once a pixelization is set with HEALPix 
it is enough to generate uniform integer number in 
[0, Npix-1] 

• A map (real) is made with integrated number of 
events from 600k to 3.6M with 6 steps with 
600k each (600k  6 months) 

• A reference (smoothed) map is made with x100 
statistic 
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Iostropic simulation maps 
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HEALPix pixelization scheme  with 12288 
pixels (3deg2) used for the skymaps 



Isotropic simulation APS (raw Cl)  
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Noise CL@5 
3 



Isotropic simulation: integrated maps 
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HEALPix pixelization 
scheme with 12288 pixels,  



Isotropic simulation: some results 
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Dipole simulation 

• While the probability per solid angle is constant for the isotropic 
distribution, the dipole distribution depends on the direction for any 
anisotropic distribution. 

• By choosing the dipole vector to be parallel to the Z-axis (i.e. 
perpendicular to the equatorial plane of the coordinate system), the 
probability distribution is then given by: 
𝑝 Ω 𝑑Ω =

1

4𝜋
1 + 𝛿 cos 𝜃  𝑑𝜑 𝑑𝑐𝑜𝑠 𝜃 = 

                      = 𝑝 𝜑 𝑑𝜑  (𝑝(cos 𝜃 ) 𝑑𝑐𝑜𝑠 𝜃 ) 

• Where 𝑝 𝜑 =
1

2𝜋
 and 𝑝 cos 𝜃 =

1

2
1 + 𝛿 cos 𝜃   

• The dipole simulation can be performed to produce random (,cos())  
(azimuth and polar angles) as =2r1 and   

      cos 𝜃 =
𝛿2+2𝛿 2𝑟2−1 +1−1

𝛿
, where r1 and r2 are  random numbers 

      from uniform distribution in (0, 1)  
• In order to generate dipoles pointing to an arbitrary direction (and 

different coordinate system), the coordinates obtained through the 
above mapping have to be rotated 
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Dipole anisotropy =0.01 APS 
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Dipole anisotropy =0.001 APS 
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Dipole =0.01 - Significance maps  
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