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PART 1: INTRODUCTION 
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Galactic cosmic rays 

• High-energy (GeV–TeV) charged primary Cosmic 
Rays (CRs) are believed to be produced in our 
galaxy, most likely in Supernova Remnants 
(SNRs) 

• CRs injected into ISM propagate for millions of 
years before escaping to intergalactic space 

• Particle interactions with interstellar gas, 
radiation and magnetic fields produce EM 
radiation from radio to gamma rays, and other 
secondaries (e±, nuclei, etc.) 

• During the transport from their source of origin 
to our solar system, CRs scatter on random and 
irregular components of the μG Galactic 
Magnetic Field (GMF), which almost isotropize 
their directions. 

• Contrary to hadronic CRs, high-energy (>GeV) 
Cosmic Ray Electrons and Positrons (CREs) 
propagating in the GMF lose their energy 
rapidly through synchrotron radiation and by 
inverse Compton collisions with low-energy 
photons of the interstellar radiation field. 
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The Milky Way 

• Left: Schematic picture of the Milky Way with a gas and dust disc, an 
extended halo of gas and cosmic rays, surrounded by globular clusters. 
– Everything is immersed in a halo of dark matter. 

• Right: Maps of the Milky Way's spiral structure 
– Orion–Cygnus Arm contains the Sun and Solar System 
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Propagation Equation 
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sources (SNR, nuclear reactions…) 

convection 
(Galactic wind) 

Diffusion 

Diffusive reacceleration  
(diffusion in the momentum space) 

E-loss 

fragmentation radioactive decay 

+ boundary conditions 

For a particular particle species:  



Propagation Equation (cont’d) 

• n 𝑟 , 𝑝, 𝑡 𝑑𝑝 = 4𝜋𝑝2𝑓 𝑝 𝑑𝑝, where 𝑓 𝑝  is the phase-space density 

• 𝐷𝑥𝑥= spatial diffusion coefficient ~ 1028
𝑐𝑚2

𝑠
 at energy ~

1𝐺𝑒𝑉

𝑛
 and 

increases with rigidity as 𝑅0.3 − 𝑅0.6 

– It is, in general, a function of 𝑟 ,  =
𝑣

𝑐
,
𝑝

𝑍
, where Z is the charge and 

p/Z determines the gyroradius in a given magnetic field (aka Larmor 

radius), 𝑟𝑔 =
𝑝𝑐

𝑍𝑒𝐵
=

𝑅

𝐵
≈

𝐸 106𝐺𝑒𝑉

𝑍 𝐵(𝜇𝐺)
𝑝𝑐 

• 𝐷𝑝𝑝= momentum diffusion coefficient 
– 𝐷𝑝𝑝 is related to 𝐷𝑥𝑥 by 𝐷𝑥𝑥𝐷𝑝𝑝 ∝ 𝑝

2, whit the proportionality 
constant dependent on the theory of stochastic reacceleration 

– 𝐷𝑥𝑥𝐷𝑝𝑝 = (𝑝𝑉𝑎)
2/9, where 𝑉𝑎 is the Alfén velocity  30 km/s  

• 𝑉 is a function 𝑟  of and depends on the nature of the galactic wind 

• 𝛻 ∙ 𝑉 represents the adiabatic momentum gain or loss in the 
momentum flow of gas 

• f is the time scale for loss by fragmentation 
• d is the time scale for radioactive decay 
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CR propagation in the ISM 
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Gyroradius – Larmor radius 

Gyroradii of protons and 
iron nuclei as a function of 
energy: magnetic fields of 
3μG (solid lines), 1.4μG 
(upper edges of shaded 
areas) or 6μG (lower edges) 
were assumed. 
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Random walks 

• The concept of CR diffusion explains why charged particle 
have highly isotropic distribution.  
– On the microscopic level, the diffusion of CRs results from particle 

scattering on random magnetized plasma (i.e. 
magnetohydrodynamic, MHD, waves and discontinuity)   

• After N steps 𝑙𝑖 of the same size |𝑙𝑖| = 𝑙 a particle that started 
at zero is at the position 𝑑 =  𝑙𝑖

𝑁
𝑖=1  

– We assume that the direction of each step 𝑙𝑖 is chosen randomly. 

• Then the scalar product of 𝑑  with itself is 
𝑑 ∙ 𝑑 =   𝑙𝑖 ∙

𝑁
𝑗=1 𝑙𝑗

𝑁
𝑖=1  

• Splitting the sum into the diagonal and the off-diagonal terms, 
we obtain 𝑑2 = 𝑁𝑙2 + 2𝑙2  cos 𝜃𝑖𝑗 ≈

𝑁
𝑗<𝑖

𝑁
𝑖=1 𝑁𝑙2 

• By assumption, the angles ij between 𝑙𝑖 and 𝑙𝑗  are chosen 
randomly and thus the off-diagonal terms cancel against each 
other. 
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• The diffusion equation can be written as: 
𝜕𝑛

𝜕𝑡
− 𝛻 ∙ 𝐷𝛻𝑛 = 𝑄  

• Assuming that D is independent on the position, the diffusion equation 
can be transformed into the free Schrödinger equation substituting  D 
↔ ħ2/(2m) and t ↔ −it. 

• Hence we can borrow the free propagator for a non-relativistic particle 
as Green’s function G(r) for the diffusion equation with D = const. and 

obtain with the mentioned substitutions, 𝐺 𝑟 =
1

4𝜋𝐷𝑡
3
2

 𝑒−
𝑟2

4𝐷𝑡  

• Thus the mean distance traveled outward is ∝ 𝐷𝑡, as in a random walk 
with < 𝑟2 > ~𝑁𝑙2 

• Connecting the two pictures, we obtain D~
𝑁𝑙2

𝑡
~ 𝑣𝑙 with 𝑣 =

𝑁𝑙

𝑡
 

• Therefore, the diffusion coefficient D can be estimated as the product of 
the cosmic ray velocity v ≈ c and its mean free path l. 

• A more precise analysis gives D = l v/3, where the factor three reflects 
the number of spatial dimensions. 

Diffusion equation 
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Diffusion coefficient 

• We estimate now the energy-dependence of D(E) and 
its numerical value for a cosmic ray propagating in the 
Galactic disc 

• We start picturing its propagation as a random-walk 
caused by scatterings on magnetic clouds of size r0  

• Then one can distinguish two different regimes: 
– At low energies, i.e. when the Larmor radius is smaller 

than the size r0 of magnetic clouds with density , the 
angles between the entrance and the exit directions are 
isotropically distributed 

– Since the direction is on average changed considerably in 
each scattering process, the mean free path l0 is simply the 
distance between clouds, 𝑙0 =

1

𝜎𝜌
~

1

𝑟0
2𝜌

 and thus 

𝐷0 =
1

3
𝑙0 𝑣 =

1

3
𝑐

1

𝑟0
2𝜌
~ const  
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Diffusion coefficient (cont’d) 

– At high energies, cosmic rays are deflected in each cloud 
only by a small angle  ∼ r0/rg 

– The directions are uncorrelated and thus the mean 
deflection is zero, <>=0, and the variance is given again 
by the result for a random-walk, < 2> ∼ N(r0/rg)

2 

– The effective free mean path l0 is the distance after which 
< 2> ∼ 1 

– Hence the energy dependence of the diffusion coefficient 

is 𝐷 𝐸 = 
𝑟𝑔

𝑟

2
𝐷0 ∝ 𝐸2 

– The transition between these two regimes happens when 
rg(Ecr) = r0 

• Numerically, this energy is given by Ecr ≈ 1015eV(B/μG)(r0/pc) 

• Obviously, the picture of magnetic clouds or domains 
with an unique size r0 is an oversimplification 

M. Nicola Mazziotta - MAPSES 2011 12 



Realistic picture for D 

• In a more realistic picture, there is a distribution of magnetic 
field fluctuations that can be easiest characterized by the 
spectrum of its Fourier components, < 𝐵2 𝑘 > ∝  𝑘−𝛼 

• Charged particles scatter mainly at field fluctuations which 
wave numbers k matches their Larmor radius, k ∼ 1/rg. 

• If the amplitude of this resonant magnetic field fluctuation is 

δBres, then 𝐷 ≈
𝛿𝐵𝑟𝑒𝑠

𝐵

−2 𝑣𝑟𝑔

3
 

• Thus the energy dependence of D below Ecr is determined 
by the power-spectrum of magnetic field fluctuations. 

• The size r0 of magnetic field domains is in this picture 
replaced by the correlation length lc, i.e. the length scale 
below the field is smooth.   

• An estimation of the diffusion coefficient 𝐷𝑥𝑥 ≈ 2 ×

1027 𝛽 
𝑅

𝐺𝑉

𝛼
 𝑐𝑚2 𝑠−1, 𝑤ℎ𝑒𝑟𝑒 𝛼 ≈ 0.3 − 0.5  
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Cosmic ray intensity 

• The intensity, I, is the number of incident particles per unit solid 
angle, per unit time on an unit are perpendicular to the direction 
of observation 
– Thus its units are [I] = cm-2s-1sr-1 

• The particle flux 𝐹Ω =  𝐼 cos 𝜃 𝑑Ω, where   is the angle between 
the normal to the area and the particle velocity direction, and d 
is the element of solid angle. 

• For isotropic intensity the particle flux from one hemisphere 

through a planar detector is 𝐹 = 2𝜋  𝐼 cos 𝜃
𝜋/2

0
sin 𝜃  𝑑𝜃 = 𝜋𝐼 

• Again, for isotropic intensity, the number density of cosmic rays 
with velocity v is 𝑛 =

4𝜋

𝑣
𝐼 

• In case of not monoenergetic particles, the differential intensity 
I(E) is such that I(E)dE is the intensity of particles in the energy 
range from E and E+dE  

– 𝑛 = 4𝜋𝑝2𝑓 𝑝  ⟹ 𝐼(𝐸) ∝  𝑝2𝑓 𝑝   
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Diffusion and cosmic ray anisotropies 

• Anisotropy of CRs is usually defined as 𝛿 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
, 

where Imax and Imin are the maximum and minimum 
intensity with respect to directions at a given point. 

• In case of the dipole anisotropy, I = I0 + I1 cos, we get 
𝛿 = I1/ I0 

• For isotropic intensity, if the particle flux through a surface 
at right angle to the direction  =0 is F(0), and the flux 
through the opposite direction  =  is F(), then the 

resultant flux is 𝐹 𝜋 − 𝐹 0 =   𝐼 cos 𝜃 𝑑Ω =
4𝜋

3
𝐼1

𝜋

0
 

• On the other hand, for diffusion law is valid, 𝐹 𝜋 −
𝐹 0 = −𝐷𝛻𝑛  

• Comparing the two equations we obtain  𝐼1 = −
3

4𝜋
 𝐷𝛻𝑛  
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Diffusion and cosmic ray anisotropies (cont’d) 

• Then the dipole anisotropy is 𝛿 =
3(𝐹 𝜋 −𝐹 0 ) 

4𝜋𝐼0
= 

3𝐷

𝑐
 
𝛻𝑛

𝑛
, 

where the relation 𝐼 ≈ 𝐼0 =
𝑣

4𝜋
𝑛 ≈

𝑐

4𝜋
𝑛 is used and ultra 

relativistic particles are considered.  

• The experimental results for δ provide thus information 
on D 

• For an estimate we set 𝛻𝑛 ≈
𝑛

ℎ
 where h is the 

characteristic scale on which n changes.  
– With h ∼ 100 pc and using D  1027 cm2 s-1, it follows   10-3 

• The diffusion time is 𝜏𝑑𝑖𝑓𝑓 =
𝑅𝑑𝑖𝑓𝑓
2

2𝐷(𝐸)
≈

𝑅𝑑𝑖𝑓𝑓
2

2𝐷0
(
𝐸

𝐸0 
)−𝛼 

• The amplitude of the dipole anisotropy 𝛿~
1

𝜏𝑑𝑖𝑓𝑓
~𝐸𝛼 
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Single source anisotropy 

• The general solution for the diffusion equation is given by 

the Green function: 𝑛 ∝ 𝑒−
𝑟2

4𝐷𝑡 
– D is the diffusion coefficient, D=D0(E/E0)

 

• D0  5.8 × 1028 cm2 s-1 ,  =0.3 and E0  4 GeV 

• For a single source with age tk at the distance rk, the 

anisotropy towards its direction is given by 𝛿𝑘 =
3𝑟𝑘

2𝑐𝑡𝑘
 

• However, the total anisotropy due to a distribution of 

sources in the sky is given by 𝛿 =
 𝑛𝑘𝛿𝑘𝑘 𝑟 𝑘∙𝑟 𝑚𝑎𝑥

 𝑛𝑘𝑘
, where 

𝑟 𝑚𝑎𝑥 is the direction of maximum intensity. 
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Diffusive propagation of electrons 

• Since high-energy cosmic ray electrons (CRE) above 10 GeV lose 
their energy mainly via the synchrotron and inverse Compton 
processes while propagating through the Galaxy, the energy-loss 

      rate is given by 
𝑑𝐸

𝑑𝑡
= −𝑏𝐸2 with 𝑏 =

4𝜎𝑐

3 𝑚𝑐2 2

𝐵2

8𝜋
+𝑤𝑝ℎ  

– Here, E is the electron energy, m is the mass of electron, c is the speed 
of light, B is the magnetic field strength in the Galaxy, wph is the energy 
density of interstellar photons, and  is the cross-section for Compton 
scattering. 

• Typically quoted value of the energy-loss coefficient of b is b1.4 × 
10-16 GeV-1 s-1  

• CREs lose almost all of their energy E after a time T: 
– T=1/bE2×105 yr/E(TeV) 

• CREs can diffuse over a distance R=(2DT)1/2 during the lifetime T 
– R  1.6 (0.75) kpc for E=100 GeV (1 TeV) 

• Such high-energy CREs might originate from a highly anisotropic 
collection of a few nearby sources 
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Latitude and East-West effect 

• We measure cosmic rays after they traversed the magnetic field of the Earth 
• An isotropic cosmic ray flux remains isotropic propagating through a magnetic 

field as long as the phase space is simply connected 
– This is a consequence of Liouville theorem 

• In other words, a necessary condition is that all trajectories starting from the 
point considered on Earth (after reversing the charge of the particle) reach r=  

• At low energies, this condition may be violated, because trajectories can be 
deflected back to the Earth or trapped within a finite distance r 

• In this case, the magnetic field does induce anisotropies in the observed flux 
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Latitude and East-West effect (cont’d) 

• Consider a particle of charge Ze with orbit in the equatorial plane of a 
dipole with magnetic moment M 

• Equating the centrifugal and the Lorentz force gives 𝑍𝑒 𝑣 × 𝐵 =
𝑚𝑣2

𝑟
, 

with 𝐵 =
𝜇0

4𝜋
 
𝑀

𝑟3
 

• The radius of the orbit is 𝑟 =
𝜇0

4𝜋

𝑍𝑒𝑀

𝑝
 

 
• Setting r = R⊕ and using M = 8 × 1022 Am as magnetic moment of the 

Earth, it follows 
𝑝

𝑍
=

𝜇0

4𝜋

𝑒𝑀

𝑅⨁
2 ≈ 60 𝐺𝑒𝑉 

• This is the minimal momentum of a proton (electron) able to reach 
the Earth from the East (West), if its orbit is exactly in the (magnetic) 
equatorial plane. 

• Towards the poles, the influence of the dipole field becomes weaker 
𝑣 × 𝐵 , and the cutoff momentum becomes thus smaller. Thus the 

integrated cosmic ray intensity increases with latitude for charged 
particles (“latitude effect”). 
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Astronomical coordinate systems  

• Spherical Coordinates:  
– A direction in three dimensional space, such as the arrival direction of a cosmic ray 

particle at the location of an experiment, is mathematically represented by a three 
dimensional unit vector.  

– The vector connects from the origin of the coordinate system to a point on the  
sphere of unit radius.  

– The fixed vector  length eliminates one degree of freedom.  
– The remaining two degrees of freedom are usually specified by means of two 

angles. 

• Since the problem of describing a location on the unit sphere matches the 
problem of describing a geographical location on Earth, it is practical to adopt 
the geographical terminology.  
– The x-y-plane and the z-axis of the coordinate system are called the equatorial 

plane and the polar axis, respectively.  
– The afore mentioned angles can be chosen to correspond to latitude and longitude.  
– The latitude is defined as the angle between a given unit vector and its projection 

onto the equatorial plane.  
– The longitude indicates the angle between that projection and the positive x-axis.  
– As a consequence of this definition, latitude values are contained in the range 

between −π/2 and π/2, whereas longitude values range between 0 and 2π. 
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The Celestial Sphere 

• When observing astronomical objects like stars or galaxies, there is no apparent 
way to measure their distance from Earth.  

• From this fact evolved the concept of the celestial sphere.  
– The celestial sphere is an imaginary sphere of infinite radius, with the Earth at its 

center  

• All astronomical objects are thought to lie on this imaginary sphere. 
– From this point of view, the distances of those objects are not taken into account  

anymore, but only the directions from which they are observed. 

• A coordinate system on the celestial sphere must be defined. Such reference  
frame can be defined in several  ways 
– Some are bound to an observer on Earth, providing constant coordinates for fixed 

viewing directions.  
– Others are bound to the sky and maintain constant coordinates for the fix stars. 

• Because of the celestial sphere’s arbitrary large radius, not only the Earth but 
the whole solar system virtually concentrates in a single point in the center of 
the sphere 
– This obviously only holds true for the observation of remote astronomical objects, 

for which the approximation of infinite distances is valid.  
– However, for close-by objects such as the Sun, the Moon and the planets of our 

solar system, the situation is much more complicated and the parallax effects 
should be taken into  account 
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Coordinate systems  

• Horizontal coordinate system 

• Equatorial coordinate system 

– based on Earth rotation 

• Ecliptic coordinate system 

– based on Solar System rotation 

• Galactic coordinate system 

– based on Milky Way rotation 

• Supergalactic coordinate system 

– based on plane of local supercluster of galaxies 
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Horizontal Coordinates 

• The horizontal coordinate system relates points on the celestial 
sphere with viewing directions for an observer on Earth.  

• The horizontal coordinates of a specific astronomical object 
therefore depend on the location of the observer, as well as on 
the time of the observation. 

• The local horizon, i.e. a tangential plane touching Earth at the 
place of the observer, corresponds to the equatorial plane of 
this spherical coordinate system. 

• In ground cosmic ray experiments, horizontal coordinates are 
the natural choice for specifying arrival directions of cosmic 
rays, as reconstructed from experimental data. 
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Equatorial coordinate system 

• The equatorial coordinate system aims to eliminate the dependence on 
the observer’s time and location when describing a point on the 
celestial sphere.  

• The celestial equatorial plane, is the projection of the Earth’s equatorial 
plane onto the celestial sphere.  

• The celestial North and South poles are the intersections of the celestial 
sphere with the prolongation of the Earth’s polar axis.  

• As for all spherical coordinate systems, the definition of an equatorial 
plane alone yields the latitude-like coordinate, the declination δ.  

• The longitude-like component of the equatorial coordinates is called the 
right ascension α. It measures the angle of an object east of the 
apparent location of the center of the Sun at the time t of the March 
equinox, a position known as the vernal equinox point or the first point 
of Aries 
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Sidereal Time and Hour-Angle 

• Sidereal time is kept with respect to the position of distant 
stars: a star is observed to return in the same position in the 
sky after exactly 24 sidereal hours have elapsed 
– Each sidereal day is slightly shorter than the solar day: 24 hours of 

sidereal time corresponding to 23h 56m of solar time 

• The Greenwich sidereal time (GST) is the sidereal time 
measured on the Greenwich meridian (longitude 0°). 

• Local sidereal time (LST) is the sidereal time measured on a 
given meridian 
– Longitudes West give LST earlier than GST  and longitudes East later 

• Right ascension may be converted into hour-angle, H = LST-, 
where LST is the Local Sidereal Time 

• One sidereal hour later (approximately 0.997269583 solar 
hours later), the Earth's rotation will make that star appear to 
the west of the meridian, and that star's hour angle will be +1 
sidereal hour. 
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Galactic coordinate system 

• The galactic coordinate system uses the 
projection of the plane of our Galaxy onto the 
celestial sphere as its equatorial plane.  

• Thus, points on the galactic plane have a galactic 
latitude b=0◦, with the galactic center at a 
galactic longitude l=0◦. 
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Map projection 

• A map projection is any method of representing the surface of a 
sphere or other three-dimensional bodis on a plane.  

• Map projections are necessary for creating maps 
– All map projections distort the surface 

• Equal-area map projections: 
– Aitoff  
– Hammer 
– Mollweide  
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HEALPix map 

• HEALPix - Hierarchical Equal Area iso-Latitude Pixelization is a versatile 
data structure with an associated library of computational algorithms 
and visualization software that supports fast scientific applications 
executable on large area surveys in the form of discretized spherical 
maps http://healpix.jpl.nasa.gov/  

• Originally developed to address the data processing and analysis needs 
of the present generation of cosmic microwave background (CMB)  

• HEALPix is a partition of the sphere into exactly equal area 
quadrilaterals of varying shape. The base-resolution comprises twelve 
pixels in three rings around the poles and equator. 

• The resolution of the grid is expressed by the parameter Nside which 
defines the number of divisions along the side of a base-resolution pixel 
that is needed to reach a desired high-resolution partition 
– The total number of pixels is 𝑁𝑝𝑖𝑥 = 12 𝑁𝑠𝑖𝑑𝑒

2
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Nside = 1, 2, 4 and 8 
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Compton-Getting effect 

• Compton and Getting first discussed that a 
relative motion of observer and cosmic ray 
sources results in an anisotropic cosmic ray flux 

• CRs of greater intensity arriving from the 
direction of motion and those of less intensity 
arriving from the opposite direction 

• The dipole anisotropy due to the Compton-
Getting effect has the amplitude  

    𝛿𝐶𝐺 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
=  2 −

𝑑 ln 𝐼

𝑑 ln 𝐸

𝑢

𝑐
= 2 + 𝛼

𝑢

𝑐
     

     since I(E)  E- 
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Solar motion around the Galactic center: 

Differential  energy spectrum of CR  E-  

 

 is the angle with respect to the direction of motion   
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Terrestrial orbital motion around the Sun 
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v=30km/s 

Tibet measurement in solar time  
M. Amenomori, et al.  Science 314, 439 (2006) 

Local Solar time anisotropy 



Search for radiation anisotropies 

• Cosmic microwave background (CMB) 
radiation 

• Gamma ray  

• …  

• Same tools and methodologies  
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Gamma-ray anisotropy searches 

• This all-sky view from Fermi reveals bright emission in the plane of the 
Milky Way (center), bright pulsars and super-massive black holes, i.e. 
the gamma-ray sky is not isotropic! 

• Possible anisotropies in the diffuse gamma-ray background could due 
to the contribution of unresolved sources (blazar, dark matter, ecc.) 
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Detecting unresolved sources with anisotropies 
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Bright Sources + diffuse +… 
Faint Sources 

Dark matter? 



Isotropic gamma-ray background (IGRB) 

• IGRB is used to refer to the observed diffuse gamma-ray 
emission which appears isotropic on large angular scales but 
may contain anisotropies on small angular scales.  

• The IGRB describes the collective emission of unresolved 
members of extragalactic source classes and Galactic source 
classes that contribute to the observed emission at high 
latitudes, and gamma-ray photons resulting from the 
interactions of ultra-high energy cosmic rays with intergalactic 
photon fields 

• The IGRB contains angular information in the form of 
fluctuations on small angular scales 
– The statistical properties of these small-scale anisotropies may be 

used to infer the presence of emission from unresolved source 
populations. 

– If some component of the IGRB emission originates from an 
unresolved source population, rather than from a perfectly isotropic, 
smooth source distribution, the diffuse emission will contain 
fluctuations on small angular scales due to the varying number 
density of sources in different sky directions. 
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Using Fermi Data, just like WMAP 
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WMAP 94GHz Fermi LAT -ray  


