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Probability

What is probability?

“How much we believe something”

Versione velocizzata per MAPSES 2011
→ slide mancanti sulla pagina web dedicata
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . ,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
(E. Schrödinger, The foundation of the theory of probability - I,
Proc. R. Irish Acad. 51A (1947) 51)

1While in ordinary speech “to come true” usually refers to an event that
is envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.
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A reminder

Forse vale la pena di ricordare la famosa citazione di Einstein

La geometria, quando è certa, non dice

nulla del mondo reale,

e, quando dice qualcosa a proposito della

nostra esperienza, è incerta.

Chi vuole attenersi al regno del certo è meglio che si occupi di
matematica che di fisica.
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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability
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An helpful diagram

(. . . but NASA guys are afraid of ‘subjective’, or ‘psychological’)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p.



Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p.



Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)
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Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Juventus will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Juventus will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Juventus will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.
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Confidence on the Higgs mass fron direct searches

PDG: mH > 114.4 GeV at 95% C.L.

What does it mean?
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given only this piece of information from our LEP colleagues:
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• What is P (mH ≤ 114.4 GeV)?
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given only this piece of information from our LEP colleagues:

• What is P (mH ≥ 114.4 GeV)?
• What is P (mH ≤ 114.4 GeV)?

Definitely not 95% and 5%! (. . . ??)
But, nevertheless, the 95% upper limit from radiative corrections
gives a 95% probability. . .
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Confidence on the Higgs mass fron direct searches

PDG: mH > 114.4 GeV at 95% C.L.

What does it mean?

given only this piece of information from our LEP colleagues:

• What is P (mH ≥ 114.4 GeV)?
• What is P (mH ≤ 114.4 GeV)?

Definitely not 95% and 5%! (. . . ??)
But, nevertheless, the 95% upper limit from radiative corrections
gives a 95% probability. . .

Siamo uomini o caporali?
G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p. 10



Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]
4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”
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=
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P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)
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P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p. 16
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• P (Ei |Hj , I) :
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P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p. 16



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)
P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

We are ready!
−→ Let’s play with our toy
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)
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From now on it is only a question of

• experience and good sense to model the problem;
• patience;
• math skill;
• computer skill.
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)

From now on it is only a question of

• experience and good sense to model the problem;
• patience;
• math skill;
• computer skill.

Moving to continuous quantities:
• transitions discrete→continuous rather simple;
• prob. functions→ pdf
• learn to summarize the result in ‘a couple of meaningful numbers’

(but remembering that the full answer is in the final pdf).
G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p. 17



Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes
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=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
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P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
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Exercises and discussions

• Continue with six box problem [→ AJP 67 (1999) 1260]

→ Slides
• Home work 1: AIDS problem→ P (HIV |Pos) ?

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

• Home work 2: Particle identification:
A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is identified as a
µ, then a trigger is fired. Knowing that the particle beam is a mixture of
90% π and 10% µ, what is the probability that a trigger is really fired by
a µ? What is the signal-to-noise (S/N ) ratio?
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .
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P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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Further comments on first meeting
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The three models example

Choose among H1, H2 and H3 having observed x = 3:

In case of ‘likelihoods’ given by
pdf’s, the same formulae apply:
“P (data |Hj)”←→ “f(data |Hj)”.

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

x x

fHxÈHiL

BFj,k = f(x=3 |Hj)
f(x=3 |Hk)

BF2,1 = 18, BF3,1 = 25 and BF3,2 = 1.4→ data favor model H3

(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabilities of 2.3%, 41% and 57% for the three models.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed
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• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].
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[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.

• Why do frequentistic test often work? → Think about. . .
(Just by chance – no logical necessity)
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The hidden uniform

What was the mistake of people saying P (HIV |Pos) = 0.2?

We can easily check that this is due to have set P◦(HIV)

P◦(HIV)
= 1,

that, hopefully, does not apply for a randomly selected Italian.
• This is typical in arbitrary inversions, and often also in

frequentistic prescriptions that are used by the practitioners
to form their confidence on something:

→ “absence of priors” means in most times uniform priors over
the all possible hypotheses

• but they criticize the Bayesian approach because it takes
into account priors explicitly !

Better methods based on ‘sand’ than methods based on nothing!
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Inferring a rate of a Poisson process

rs T rB T0

λs λB λB0

λ X0

X
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Inferring a rate of a Poisson process

rs T rB T0

λs λB λB0

λ X0

X

f(rs, rb |x, x0, T, T0) ∝ f(x, x0 | rs, rb, T, T0) · f0(rs, rb)

∝ f(x | (rs + rb) · T ) · f(x0 | rb · T0) · f0(rs) · f0(rb)

f(rs |x, x0, T, T0) ∝
∫ ∞

0
f(rs, rb |x, x0, T, T0) drb
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Inferring a rate of a Poisson process

rs T rB T0

λs λB λB0

λ X0

X

f(rs, rb |x, x0, T, T0) ∝ f(x, x0 | rs, rb, T, T0) · f0(rs, rb)

∝ f(x | (rs + rb) · T ) · f(x0 | rb · T0) · f0(rs) · f0(rb)

f(rs |x, x0, T, T0) ∝
∫ ∞

0
f(rs, rb |x, x0, T, T0) drb ⇒ JAGS
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Making the model more realistic

ǫσϕ A

. . . . . . . . .

rs T rB T0

λs λB λB0

λ X0

X

. . .

. . .
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)

A very simple problem:
• counting experiment described by a binomial of unkown p;
• our aim is to ‘get’ p, in the sense of evaluating f(p |data);
• we make n trials and get x = 0 successes.
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)

A very simple problem:
• counting experiment described by a binomial of unkown p;
• our aim is to ‘get’ p, in the sense of evaluating f(p |data);
• we make n trials and get x = 0 successes.

Bayes’ theorem:

f(p |n, x = 0,B) =
f(x = 0 |n,B) f0(p)

∫ 1
0 f(x = 0 |n,B) f0(p) dp

with

f(x = 0 |n,B) = (1− p)n
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Bernoulli trials⇒N boxes→∞

Conceptually exactly equivalente to the 6-box problem:

• “success” ↔ “white ball”
• p↔ “proportion of white balls”
• f(p |x, n) ↔ P (Hi |x, n)
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• “success” ↔ “white ball”
• p↔ “proportion of white balls”
• f(p |x, n) ↔ P (Hi |x, n)

• as log as we continue to extract only black boxes we get
more and more convinced (’confident’) that Nature has
presented us H0, although we cannot exclude H1, a bit less
H2, etc.
⇒ Rigorously speaking, only HN gets falsified!
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Bernoulli trials⇒N boxes→∞

Conceptually exactly equivalente to the 6-box problem:

• “success” ↔ “white ball”
• p↔ “proportion of white balls”
• f(p |x, n) ↔ P (Hi |x, n)

• as log as we continue to extract only black boxes we get
more and more convinced (’confident’) that Nature has
presented us H0, although we cannot exclude H1, a bit less
H2, etc.
⇒ Rigorously speaking, only HN gets falsified!

P (HN |n, x = 0) = 0 ↔ f(p = 1 |n, x = 0) = 0
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Inference about p from 0 counts

Using flat prior, i.e. f0(p) = k

f(p |n, x = 0,B) = (n + 1) (1− p)n

pmax = 0

E(p) =
1

n + 2
→ 1

n

σ(p) =

√

(n + 1)

(n + 3)(n + 2)2
→ 1

n

p95%UL = 1− n+1
√

0.05.
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Inference about p from 0 counts

Using flat prior, i.e. f0(p) = k

f(p |n, x = 0,B) = (n + 1) (1− p)n

pmax = 0

E(p) =
1

n + 2
→ 1

n

σ(p) =

√

(n + 1)

(n + 3)(n + 2)2
→ 1

n

p95%UL = 1− n+1
√

0.05.

As n increases, we get more and more convinced that p has to
be very small
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Inference about p from 0 counts

f(p |n, x = 0,B) = (n + 1) (1− p)n

p95%UL = 1− n+1
√

0.05.
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Inference about p from 0 counts

Seems not problematic at all, but we have to remember that it
relies on

f(x = 0 |n,B) = (1− p)n

f0(p) = k
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When likelihoods are non ‘closed’

Where is the problem? (Flat priors are regulary used, and are
often assumed in other approaches, e.g. ML methods)
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When likelihoods are non ‘closed’

The major problem is not in f0(p), but rather in the likelihood
f(x = 0, |n,B) that does not go to zero on both sides!
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When likelihoods are non ‘closed’

The major problem is not in f0(p), but rather in the likelihood
f(x = 0, |n,B) that does not go to zero on both sides!

A different representation of the likelihood (properly rescaled)
helps:
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A probabilistic lower bound for the Higgs?

A similar think happens with the direct searches of the Higgs
particle at LEP

ℜ

(1999 figure, but substance unchanged)G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) – p. 32



A probabilistic lower bound for the Higgs?

Impossible to express our confidence in probabilistic terms,
unless we define an upper cut!

ℜ
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A probabilistic lower bound for the Higgs?

Confidence limit⇒ Sensitivity bound

ℜ
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Conclusions

• Probabilistic reasoning helps . . .
. . . at least to avoid conceptual errors.

• Probabilistic statements can attributed, quantitaively and
consistently, to all ‘objects’ respect to which we are in
condition of uncertainty

• . . . allowing us to make meaninful statements concerning
true values.

• In particular uncertainties due to systematic errors can be
easily included

• Several ‘standard’ methods (like Least Square, etc.) can be
easily recovered under well defined assumptions.

• But if this is not the case, nowdays there are no longer
excuses to avoid the more general approach.

• Bayesian networks are a powerful conceptual and
computational tool.
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Are Bayesians ‘smart’ and ‘brilliant’?
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End

FINE
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