Superconducting Qubits

CO

 $|S\rangle = a |0\rangle + b |1\rangle$

Probability $(S = 0) = |a|^2$ Probability $(S = 1) = |b|^2$

Entanglement

2 atoms with total spin zero

 THE NOBEL PRIZE

 In PHYSICS 2002

Quantum Sensing

Quantum Computing

Quantum Cryptography

02

01

Quantum Simulation

Quantum Computing

Computational Complexity

Minimum resources needed to perform a given computation

...

...

2 ⁿ numbers	n=4 bits		$f(x) = 0 \text{ for } x \neq x_0$
0	0000		$f(x_0) = 1$
1	0001		Find x such that <i>f(x)</i> =1
2	0010		
3	0011		
4	0100		
5	0101	A classical comput	ter must compute <i>f(x)</i> fo

Exploits the uniform superpositions of all the states

 $|S\rangle = (\cancel{\phi} + \cancel{\phi}) \quad (\cancel{\phi} + \cancel{\phi}) \quad (\cancel{\phi} + \cancel{\phi}) = |0\rangle + |1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + \dots$

- 1. Acts in parallel on all the configurations
- 2. Amplifies the probability of measuring the configuration corresponding to the correct answer
- 3. Requires N^{1/2} operations

$a_0|0\rangle+a_1|1\rangle+a_2\;|2\rangle+a_3|3\rangle+\;\dots$

 $U_{\omega}|x\rangle = (-1)^{f(x)}|x\rangle$ $f(x = \omega) = 1 \text{ and } 0 \text{ otherwise}$ $U_{S} = 2|S\rangle\langle S| - I$ Grover Algorithm obtained by performing the rotation U_{GA} many times

$$U_{GA} = U_S U_{\omega}$$

Example of one iteration of GA with 3 qubits for ω =1:

 $|S\rangle = (|0\rangle + |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$

 $U_{\omega}|x\rangle = (-1)^{f(x)}|x\rangle$ $f(x = \omega) = 1 \text{ and } 0 \text{ otherwise}$ $U_{S} = 2 |S\rangle \langle S| - I$ Grover Algorithm obtained by performing the rotation U_{GA} many times

$$U_{GA} = U_S U_{\omega}$$

Example of one iteration of GA with 3 qubits for ω =1:

```
|S\rangle = (|0\rangle + |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}
```

 $U_{\omega}|S\rangle = (|0\rangle - |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$

 $U_{\omega}|x\rangle = (-1)^{f(x)}|x\rangle$ $f(x = \omega) = 1 \text{ and } 0 \text{ otherwise}$ $U_{S} = 2 |S\rangle \langle S| - I$ Grover Algorithm obtained by performing the rotation U_{GA} many times

$$U_{GA} = U_S U_{\omega}$$

Example of one iteration of GA with 3 qubits for ω =1:

$$|S\rangle = (|0\rangle + |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$$

 $U_{\omega}|S\rangle = (|0\rangle - |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$

$$U_{GA}|S\rangle = U_S \frac{1}{\sqrt{8}} (|0\rangle - |1\rangle + |2\rangle + \cdots) = \frac{2}{\sqrt{8}} (|0\rangle + |1\rangle + \cdots) \frac{6}{8} - \frac{1}{\sqrt{8}} (|0\rangle - |1\rangle + \cdots)$$

 $U_{\omega}|x\rangle = (-1)^{f(x)}|x\rangle$ $f(x = \omega) = 1 \text{ and } 0 \text{ otherwise}$ $U_{S} = 2 |S\rangle \langle S| - I$ Grover Algorithm obtained by performing the rotation U_{GA} many times

$$U_{GA} = U_S U_{\omega}$$

Example of one iteration of GA with 3 qubits for ω =1:

$$|S\rangle = (|0\rangle + |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$$

$$U_{\omega}|S\rangle = (|0\rangle - |1\rangle + |2\rangle + \dots + |7\rangle)/\sqrt{8}$$

$$U_{GA}|S\rangle = U_{S} \frac{1}{\sqrt{8}}(|0\rangle - |1\rangle + |2\rangle + \dots) = \frac{2}{\sqrt{8}}(|0\rangle + |1\rangle + \dots) \frac{6}{8} - \frac{1}{\sqrt{8}}(|0\rangle - |1\rangle + \dots) = \frac{1}{2\sqrt{8}}(|0\rangle + 5|1\rangle + |2\rangle + \dots)$$

Many Body Problems

† PRINCETON UNIVERSITY

ntum computing and condensed matter physics with microwave pho

Qubits in Superconducting Circuits

Harmonic Oscillator

Quantum Mechanics

LC Oscilaltor

Quantum Fluctuations

$$\langle \Delta \Phi^2 \rangle = \frac{\hbar}{2C\omega} \begin{cases} L = 10 \ nH \\ C = 100 \ fF \\ \omega = 2\pi \times 5 \ GHz \\ \sqrt{\langle \Delta I^2 \rangle} = \frac{\hbar C\omega}{2} \end{cases}$$

$$\langle \Delta I^2 \rangle = \langle \Delta \Phi^2 \rangle / L^2 = \frac{\hbar \omega}{2L}$$

$$E = \frac{Q^2}{2C} + \frac{\Phi^2}{2L}$$

$$\Phi = LI$$
$$\omega = \frac{1}{\sqrt{LC}}$$

Quantum LC Oscillator

To obtain a Quantum LC Oscillator we need:

- 1. Negligible thermal fluctuations: $k_B T \ll \hbar \omega$
- 2. Negligible losses: $Q \gg 1$

Operate in a dilution refrigerator $T \ll 1K$

Use Superconducting Circuits R=0

A Quantum LC is not a Qubit

Anharmonic Oscillator

Anharmonic Oscillator

 $E_{n+1} - E_n < E_n - E_{n-1}$

The Josephson Junction

$$\psi_L = \sqrt{\rho_L} e^{i\varphi_L} \qquad \psi_R = \sqrt{\rho_R} e^{i\varphi_R}$$

Insulating barrier

In a SIS junction, Cooper pairs cross the insulating barrier by tunnel effect.

Tunneling current

$$I = I_c \sin \varphi$$

Voltage across the junction

$$V = \frac{\hbar}{2e} \frac{d\varphi}{dt}$$

Phase difference

$$\varphi = \varphi_R - \varphi_L$$

FIB image of a JJ fabricated at FBK

The Superconducting Qubit

Charging energy

Inductive energy

Q	\leftrightarrow	p	V	
$2\pi\phi/\phi_0$	\leftrightarrow	θ		
С	\leftrightarrow	m		
L	\leftrightarrow	l/mg	E	
$\phi_0 = 2.068 \times 10^{-15} Wb$				

$$W_{J} = \int dt V I = -E_{J} cos 2\pi \phi / \phi_{0}$$
$$E = \frac{Q^{2}}{2C} - E_{J} cos 2\pi \phi / \phi_{0}$$
$$E_{J} = \frac{\phi_{0} I_{C}}{2\pi} \qquad L_{J} = \frac{\phi_{0}}{2\pi I_{C}}$$

The Superconducting Qubit

Qubit designed within the QubIT-INFN project and fabricated at NIST (thanks in particular to D. La Branca PhD Uni MiB and H. Corti PhD Uni Fi)

The Tunable Qubit

Feynman Lectures on Physics

The Tunable Qubit

Rabi Oscillations

Qubit Control

$$\Omega_{Rabi} = 2g_{01}\sqrt{n_{photons} + 1} \qquad \qquad g_{01} \propto \frac{C_C}{C_S + C_C}$$

Naghiloo arxiv:1904.09291

The number of excitations "n" is conserved

The physical states are superpositions of states with equal number of excitations "n":

$$|+,n\rangle = \cos\theta_n |n,\downarrow\rangle + \sin\theta_n |n+1,\uparrow\rangle \\ |-,n\rangle = -\sin\theta_n |n,\downarrow\rangle + \cos\theta_n |n+1,\uparrow\rangle$$

Qubit Coupled to a Resonator - Dispersive Limit

The emission spectrum of the spin-resonator system is modified by the interaction.

In particular, in the dispersive limit: $\left| \frac{g_{01}}{\omega_q - \omega_r} \right| \ll 1$

A. Blais et al., Phys. Rev. A 69, 062320 (2004)

Qubit Readout

Naghiloo arxiv:1904.09291

Qubit in a 3D Resonator

Qubit in a 3D Resonator

Experimental Setup

Qubit Control

Qubit Readout

Experimental Setup


```
Qubit Readout
```


Experimental Setup

Qubit Control

Qubit Characterization

Appl. Sci. 2024, 14(4), 1478

Quantum Sensing

Axion Dark Matter

Quantum Sensing with SC Qubits

Quantum Sensing with SC Qubits

$$i\hbar\frac{\partial\psi}{\partial t} = H_{int}\psi$$

Quantum Sensing with SC Qubits

$$i\hbar\frac{\partial\psi}{\partial t} = H_{int}\psi$$

QubIT INFN CSNV Project Superconducting qubits and JPA amplifiers for quantum sensing and computing

Design of 2D and 3D Superconducting Qubits

Ansys / HFSS

iSWAP Gate

Thanks to Alex Piedjou PostDoc at LNF

Qubit Control with RFSoC

3D Cavity Fabrication

Mechanical machining

Vibro-tumbling

Electropolishing

The End

