

Reconfigurable Electronics for Experimental Physics

R. Giordano^{1,2}

¹University of Naples "Federico II", Italy ²INFN Sezione di Napoli, Italy

Presenter email: rgiordano@na.infn.it

Outline

• FPGA-embedded Hadron Fluence Sensors

– PHI experiment CSNV (INFN NA + JSI)

• Beyond-CMOS Hardware for Machine Learning

FPGA-embedded Hadron Fluence Sensors

Motivation

- SRAMs used as fluence sensors at LHC [1] and in proton therapy [2]
- Hadrons with energy>few MeV and thermal neutrons may indirectly induce SEUs in SRAMs

- $\sigma_{bit} = \sigma_{bit}$ (device, V_{DD}, hadron, E)
- Sensor SRAM + readout device (FPGA [3])
 - Complex interface and PCB
 - Radiation hardening issues related to the readout circuitry

S. Danzeca et al., 2014, doi: 10.1109/TNS.2014.2365042
 K. S. Ytre-Hauge et al., 2019, doi: 10.1016/j.radmeas.2019.01.001
 E. Blackmore et al., 2019, doi: 10.1109/TNS.2018.2884148.

SRAM Cypress CY62157EV30 8Mb (90nm) [1]

SRAM-based Field Programmable Gate Arrays

Φ

- FPGAs embed programmable fabric and configuration SRAM (CRAM) [1]
- Programmable fabric can access CRAM via dedicated internal ports (ICAP for AMD/Xilinx)
- Many devices are TD-tolerant (>few kGy) and latch-up free
- FPGA as a compact hadron fluence counter
 - CRAM as sensitive element + fabric programmed as readout
- Opposite requirements
 - CRAM as sensitive as possible to SEUs (sensor)
 - firmware as robust as possible against single event effects (readout)

Early study on correlation between fluence and upsets

[1] V. Bocci et al., 2001, doi: 10.5170/CERN-2001-005.137

FPGA-Embedded Hadron Fluence Sensor

- Compact PCB •
 - Only COTS components, radiation tolerance studies in [1,2]
 - Low power consumption (~0.7 W)
- AMD/Xilinx Artix-7 FPGA
 - 28nm CMOS
 - 59 Mb CRAM + 18 Mb BRAM
 - Expected proton-SEU σ_{dev} = $5.5 \cdot 10^{-7} \text{ cm}^2$ (CRAM)
- Radiation-Hardening by Design on PCB and firmware
 - Triple traces for clock, UART, JTAG self-scrubbing (loopback)

[1] T. Higuchi et al., 2012, doi: 10.1088/1748-0221/7/02/C02022 [2] Y. Yu Nakazawa et al., 2020, doi: 10.1016/j.nima.2019.163247

Congresso di Gruppo V - 20 Marzo 2024

Proton Irradiation Facility

- INFN facility: Trento Institute for Fundamental Physics and Applications (Trento, Italy)
- Cyclotron provides monoenergetic protons from 70 MeV to 228 MeV (energy degraders)
- Intensities 10^6 to 10^8 p/s
- Gaussian beam
- Beam spot size depend on energy
- Real-time proton counting provided by the facility (ionization chamber)

TIFPA's Experimental Room

Test Setup

10.2 m

Test Conditions

- Total proton fluence delivered over six units 1.3·10¹³ p/cm²
 - i.e., average $2.1 \cdot 10^{12} \text{ p/cm}^2$ per sample
- Average flux $6.7 \cdot 10^8 \text{ p/(cm}^2 \text{s})$
- Test partitioned in runs with more than 10k upsets each (count uncertainty < 1%)
- Average temperature of chip stable within 2°C in a run
- Test run procedure

Physics line

Sample positioned at ISO center

Total fluences on samples	
Sample code	Φ (10 ¹² p/cm ²)
5N03	4.7
SN04	2.5
SN05	1.1
5N06	1.9
5N07	1.3
5N08	1.2

R. Giordano - Congresso di Gruppo V - 20 Marzo 2024

Imaging the Beam with an FPGA

- Readback CRAM bitmap
- Cluster adjacent bits, 1 cluster = 100 bits x 100 bits
- Upsets per cluster => histogram and density map
- Approximate proton beam image
- Masked regions

Beam Image Vs Proton Energy

R. Giordano - Congresso di Gruppo V - 20 Marzo 2024

Imaging the Beam with an FPGA (2)

- Useful to check sample alignment and estimate proton fluence
- CRAM access logic
 SEFIs => false counts
- JTAG failed (13 times), but very reliable
 - $\sigma_{JTAG} = 1.0 \pm 0.2 \cdot 10^{-12} \text{ cm}^{2}$

Outlook: Beyond-CMOS Hardware for Machine Learning

Φ

Motivation

- Trigger and data acquisition systems in HEP are complex
 - Many heterogenous (fast) sensors, ~10-100 millions of electronic channels
 - ~1-10 Petabyte/year raw data rate
- Complexity will grow even more, power consumption too
- on/near-sensor processing for reducing data rates and triggering
 - ECFA recommendation [1]
- Reconfigurability required
 - e.g. search for different physics processes, change of collider conditions

Digital-Circuit-based Machine Learning

- ML today widely used in off-line data processing
- Fast (i.e. on-line) ML increasingly being used, even on detector
 - Mostly FPGA and ASIC-based implementations
 - Examples of trigger [1,2] (off-detector) and data compression [3] (on-detector)
 - Latency: tens of ns (ASIC) to microseconds (FPGA)
- CMOS digital hardware designed for logic and arithmetic
 - not optimized for Neural Networks
- [1] <u>www.doi.org/10.48550/ARXIV.1910.13679</u>
- [2] www.doi.org/10.1051/epjconf/202024501021
- [3] <u>www.doi.org/10.1109/TNS.2021.3087100</u>

Beyond-CMOS Hardware for Machine Learning

Memristor crossbar

64 × 64 passive crossbar circuit

H. Kim et al. arXiv 2019

Background work: M. Prezioso et al., Nature 521, 61 2015, M. Prezioso et al. IEDM'15 p. 17.4.1, 2015, F. Merrikh Bayat et al. Nature Comm., 2018

https://doi.org/10.1038/s41467-021-25455-0

- Emerging hardware represents directly neurons and synapses
 - Memristors: CMOS-compatible, high circuital density (Tb/cm²) and low power consumption (fJ 100x100 VMM at 6b)
 - Computing in memory
- R&D required to leverage new hardware, PRIN at Unina (PI) + INFN

Goal

- Demonstrate fast hybrid digitalneuromorphic computing with FPGAs interfaced to memristive crossbars
 - Perform analog-grade IO with <u>compact</u> circuitry
 - Study of performance and limiting factors (e.g. memresistance granularity)
 - Compare with full digital ML implementations
- Case Study
 - Graph-based Neural Networks for anomaly detection

Conclusions

- Reconfigurable electronics is pervading physics experiments
 - Can be used for computation but also for radiation detection
- Beyond-CMOS Hardware available for artificial neural networks
 - Need to investigate novel hybrid digital-neuromorphic systems