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Introduction

Nowadays accelerators have paramount applications in research (particle
physics, FEL, material science, biology, inertial fusion), medicine,
industry, environmental remediation, cultural heritage study,...

Huge investments (e.g. the EU project Eupraxia [Assman et al '20]) are
devoted to develop table-top ones based on new acceleration mechanisms
of charged particles, e.g. those using laser-plasma interactions.

In the Wake-Field Acceleration (WFA) [Tajima, Dawson '79] ultrarelativi-
stic electrons (e™) accelerate (up to 1 GeV per cm in the blowout regime
[Wang et al 2013]) “surfing” a plasma wave (PW) driven by a very short
laser pulse (or charged particle beam), e.g. in a supersonic diluted gas jet.

gas jet
f 10mm

laser pulse
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Classical vs. plasma wave accelerators

E-field max = 10-100 MV/m E-field i B 10-100 GV/m
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Laser pulse on a charged particle initially at rest in vacuum:

Linearly polarized EM wave Ef
X

v// F=q[E +(v%B)/c] | xz plane
¢

Electic Field

Oscillating Fe = gE induces transverse oscillations with no average drift.
Oscillating Fr, = g% x B is || Z; its average on a cycle (ponderomotive
force) F, = (Fn) # 0 causes a longitudinal drift forward. However

Motion of a single electron
ﬁl
[

e

No net energy gain (Lawson-Woodward theorem), alas!




Pulse in diluted plasma displaces e~ w.r.t. ions; very intense = huge E?!

An, arrange in a plasma wave (PW) traveling with phase velocity ~ c;
again the e~ remain in the plasma, in spite of huge accelerations (alas!).
As water molecules in water waves.

However, if some e~ are injected

faster than their neighbours, they can
increase their speed "surfing” a PW.
As foam at the crest of water waves.

These e~ are finally expelled out of
the plasma just behind the beam.

Plasma waves can be induced also by particle - rather than laser - beams.

Phenomena ruled by Maxwell eqs coupled to a kinetic theory for plasma

e, ions; solvable via more & more powerful particle-in-cell (PIC) codes.

But simulations involve huge costs for each choice of the input data (ID).

Better: run PIC after a preliminary selection of ID via simpler models
= the subject of our research in this talk.
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Setup & Plane Hydrodynamic model

ve(0,x)=0. Input = nontrivial initial data (ID), i.e.:
a) the function no(z) >0, with no(z)=0if z<0, no(z)<npeR" if z>0,
yielding the initial electron (e™) and proton densities ne, np:
ne(0,x) = n,(0,x) = fig(2); (1)
b) the vector-valued function € (£) yielding the initial laser-pulse EM fields:
E(t,x) = E*(t,x) = e (ct—2), B=B"=kxE* ift<0, (2

support(e*) C [0, /] with | < y/mmc?/nye®: the pulse reaches the plasma at
t=0 & overshoots all e~ before their z reach the 1* minimum< 0 (ES pulse).
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Figure 1: Here no(z) with a down-ramp + plateau as a), ES, SMM pulse as b)



Kinematics
How to to simplify p(t) = ge-[ct—z(t)] + qu(t)/c x {kx e [ct—z(t)]} 7

ct

ct+z

X=(X,Y,2)

e AKL) (O

As every particle travels slower than light, £(t) = ct—z(t) grows strictly, and
& = ct—z can replace t as the independent parameter along its worldline (WL)
A (in Minkowski space) and in its equation of motion [GF 2016].



Kinematics

ct+z

L ANXe(t)7Ke(§)

As every particle travels slower than light, £(t) = ct—z(t) grows strictly, and
& = ct—z can replace t as the independent parameter along its worldline (WL)
A (in Minkowski space) and in its equation of motion [GF 2016]: clock=pulse.



Kinematics

ct+z

X=(X,Y,2) s .
X=(X.Y.2) " otlr . X=X, (1, X)=X.(,X)

Z,z
X =Xe (t: X) =ﬁe (‘f! X)

As every particle travels slower than light, £(t) = ct—z(t) grows strictly, and
& = ct—z can replace t as the independent parameter along its worldline (WL)
A (in Minkowski space) and in its equation of motion [GF 2016]: pulse=clock.

Fluid: X — x are 1-to-1 at all ¢, &, i.e. worldlines (WLs) do not intersect.

Eulerian observables f(t,x) = f(t,X)= f(&,X) Lagrangian . observables.



Reducing the fluid-regime dynamics to decoupled ODEs...

. % 0
Use CGS units. Let B=%, = \/1%? u= (L, u)=(y,78)= (#, %) =
4-velocity, s=v—u” >0 (all dimensionless). s—0 implies u” — 0.

PDEs: Lorentz-Maxwell & continuity eq. for the electron fluid; + in. cond.

Are reduced to the family (parametrized by Z) of ordinary Cauchy problems

A= 12;‘”—%, ¢ =k {N[z+A]-N(2)}, (3)
A(0,Z7) =0, 50,2)=1 (4)

[GF2018] (f' = 8f /9€) in the unknowns A(£,Z) = 2.(€,Z)—Z, 3(€,Z), in the
spacetime region where X(&, ) : X — x is one-to-one, we can neglect 2-particle

4re?

collisions+pulse depletion, and regard ions as immobile. Here K := <75, and
ea™ 2 ¢
e =B @[ aeo

_ z A (5)
N(Z) = / d¢ 7o 0), U(A;Z)::K/O dC(D—C) m(Z+0).

Clearly, v > 0, and N(Z) grows with Z.



...which are Hamiltonian for 1-dim systems

For each Z > 0 (3) are Hamilton equations ¢' = OH/dp, p' = —0H/dq of a
1-dim system: &, A, —3§ play the role of t, g, p, and the Hamiltonian reads

£ 4 14v(©)

53 +U(A; 2) (6)

A(A 8, 2) =
up to mc?. For € > | v=const, H=h=const, (3) are autonomous and can be
solved by quadrature, if Z>0 the solutions are periodic in &; £4(Z) = period.

All other unknowns can be expressed via (A, 3):

L ea'(§) O e S . 1401248

u - mc2 ) u = 2§ 3 ’Y* 2§ b (7)
RE(6.X) — X* f/gdn o= (n) 5(6X) — Z = A€.2) (8)
« (& 2 3. 2) (& )

As a*(€) is independent of X so are p,ii*; as 5, A are independent of X,Y
so are p°, i, A%e. Replacing (&, X) — (ct—z, Xc(ct—z,x)) in the arguments

we get their Eulerian counterparts, e.g. ne(t,z)= “/”0 i )
(&,2)= (ct—z,Ze(ct—z,z))



Special case: mp(Z) = np = const

If no(Z) = no = const, then (3) and its solution are in fact Z-independent:
, 1+v 1 ,
YN =0, s©)=1, (9)
where M= Kng=w?/c®, U(A,Z)=MA?/2: relativistic harmonic oscillator.

a) Linearly polarized gaus-
sian pulse with peak ampli-
tude ap=\eEy /2nmc* =2,
Iiwhm = 10X.  We consider
/=40\ and cut tails outside
[&E—1/2|<1/2.

b) Corresponding solution
of (9) if Ao(z) = ny = ncr /267
(ner :7rmc2/e2)\2 is the crit-
ical density); as a result,
E/mc* = h=1.28.

§ is insensitive to fast
oscillations of € !




a) "Optimal” ng(z) for the
above pulse: no=n}=nc, /267,
ny = 1.28 x nf, z, = 120),
Z—2,=6.6) [GF 2023].

b) WLs of e~ with Z=0, A,...,
156\ are obtained solving (3-4)
and look as plot until they first
intersect (circles), = WBs. The
black WL of the e~ self-injected
by the earliest WB holds for all
t; after WB it is ruled by (15).

The yellow region is filled only
by ions; in the pink region (0 <
& < 40)) the pulse modulating
intensity €2 is nonzero; in the red
region (|€¢—20)\| < 5.25)) €2 is
above half maximum.

c) Zoom of the blue box in a).
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Hydrodynamic regime up to wave-breaking

The map Xe(€,-):X—x, is invertible, and the HR is justified, as long as

0%.| 0.
X >0 (10)

=357 .

J;‘

J(€,2)<0: 32/ £ 27, sit. 2.(¢,2") = 2.(£,Z), i.e. Z,Z' e layer cross, 3 WB.

diverges where J = 0. (11)

ne(t, z) = PA"?

§J } (&:2)= (Cf*z,fe(ctfz,z)

For & > | then J satisfies [GF, DeNicola, Akhter, Fedele, Jovanovi¢ '23]

Hetngn2) = Je.2)-n02N(€2),  WneN, 220, (12)
& J&2) = a6 2)+eb(s 2), (13)
where b = 7%5', a= ./Afgb are &y-periodic in &, and b has zero mean

over a period (apply 0z to A[é+n&u(2),Z]=A(&,Z), use Eu-periodicity of A).
By (12) we can extend our knowledge of J from [/, /+&,[ to all & > 1.



Z=7,=121.61

§ & ﬁv“ﬁt‘ .f‘br ‘fs+‘3ﬁt |
Figure 4: f,& vs. £ for Z = Zp, ~ 121.6\ and input data as in Fig. 3.

Differentiating (3-4) w.r.t. Z one finds that J, o= 28 fulfill

j/:_%g’ & =K (1),

. (14)
J0,2)y =1, 5(0,2) =0,

where (€, Z) = ng [2.(€, Z)]. Studying (14) one finds sufficient conditions on
no, € [GF et al 2022-23] for the first WB to occur after the laser-plasma
interaction (£>1/) and be controlled via (12).



Maximizing the WFA of (self-)injected e~

Motion of a test electron in the plasma wave
If a test e~ is injected in the PW behind the pulse its 2;, 5; evolve after
1*§[2 al N2 'YIE A
e O =k{Nz©O-N[2 2]} (15)
(15b) reduces to §/ = MA, cf. (9b), and 5;(£)—s(€) = ds=sio—s(&) = const
along the density plateau. If ds < —s,, (trapping condition), then 3¢ > & s.t.
5i(&r) =0, e is trapped & accelerated in a trough of the PW. As t — oo

zZ; =

zj—00
zi ~ ct, vi ~ Fz/A —— oo, (16)

F=KnoX |A(&f)]; reliable as long as pulse depletion is negligible, 0 < z; < z,q.
Fixed ng, if s = —1, then f
|A(&f)| = |An|, F is maximal:

~i(zi, no) ~ ~/j(v) zi/\; (17)
Jjv) = 87T2V[/_7(V)—1], h(v) =

final energy transfered by the
pulse to the e™ if no(z) = no,

_ -2 ] 0 1 2
VS. V=ng/Ner. A/

A/l 472 4,/4

Figure 5: Phase portrait of plateau e~ of fig. 3



Self-injection & maximal WFA by fixing ng in 4 steps

Step 1: Computing h(v), j(v).
(We interpolate 200 points; few
seconds via Mathematica).

Step 2: Optimal plateau density no.
If the depth available for WFA is z; <
Z,4(v)), set no/ne =vj=max{j(v)}:

v (z) ~ i) zi/ M (18)
Step 3: np with optimal down-ramp
for self-injection, LWFA.

ﬁE)(Z) = nO+T(Zfzs), zp < Z < Zs,

T= '2:;;: Let (&br, Zbr) be the pair

(€,Z) with smallest ¢ s.t. J(£,2)=0
The Z, e are the fastest injected
& trapped in a PW trough by the 1st
WB. We fix T, z, requiring: s = —1,
so that (17) applies; no WBDLPI.

Step 4: Choosing an up-ramp of ng

—h(»)-1 —5j(»

i,

A e o
0.000  0.002 0004 0006 0.008 0010 0012

¥

Figure 6: h—1 (energygain per plasma
e”) and j by the pulse of fig. 2a, vs. v

0
R

0 brista
0 50 100 150 200
ZjA
Figure 7: The optimal initial density
associated to the pulse of fig. 2a.

out of the co-ly many ones growing

from 0 to n, and preventing WB for £ < &.: no(z) ~ O(z?) GF et al 2022-23].



3D effects, discussion and conclusions
Summarizing, the steps of our preliminary optimization process are:
@ finding the final energy h transfered by the pulse to the plateau plasma
electrons and j = 87%[h—1] no/n., as functions of the density no;
@ finding the ‘optimal’ value n} of ny maximizing j(no);
© finding the ‘optimal’ length z,—zs and slope T of the density down-ramp;
@ adjusting the up-ramp (z < z) of Ag(z) to avoid WB for £ < &.

Range of applicability of the model?
The depletion of the pulse is negligible in the tilted (rather long) rectangle

0 < ct—z < |, 0 < ct+z < mc2/e2no)\ (19)

~

Pulse cylindrically symmetric around Z with waist R: by causality our results
hold strictly in the green causal cone trailing the pulse, approximately nearby.

x
plasma.

In particular, if the pulse has maximum at £ = é and
R > 22 [h+\/h2 ] (20)

then the X ~ (0,0,Z) e~ keep in that cone and move as
above: same maximal WFA, as far as pulse not depleted.

/
R > gbr_iy




Apply our optimization procedure to the pulse of Fig. 2a (a0 =2, lfwsm=10A):
we find the initial density fp(z) and the WLs of Fig. 3; F =0.28.

Ti-sapphire laser: A~0.8um; ‘moderate’ peak intensity Z=1.7 x 10"°W/cm?
yields the remarkable energy gain 1.8 GeV/cm of the Zp, electron (black WL).

Good agreement with 2D FB-PIC simulations (courtesy of P. Tomassini):

z—uzat t=539 fs Z-uzatt=872fs

70 -6 50 40 30 20  -lo -0 60 50 -a0 30 20 -1o
z-ct=2z'(um) z-ct=2'(um)

Z'-uzatt=1242fs

-70 -60 -50 -40 -30 -20 -10 0 50 100 150 200 250
z-ct= 2'(um) (z=20)/A
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LWF exploits a major laser technology progress: CPA
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