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Introduction

Nowadays accelerators have paramount applications in research (particle
physics, FEL, material science, biology, inertial fusion), medicine,
industry, environmental remediation, cultural heritage study,...

Huge investments (e.g. the EU project Eupraxia [Assman et al ’20]) are
devoted to develop table-top ones based on new acceleration mechanisms
of charged particles, e.g. those using laser-plasma interactions.

In the Wake-Field Acceleration (WFA) [Tajima, Dawson ’79] ultrarelativi-
stic electrons (e−) accelerate (up to 1 GeV per cm in the blowout regime
[Wang et al 2013]) “surfing” a plasma wave (PW) driven by a very short
laser pulse (or charged particle beam), e.g. in a supersonic diluted gas jet.









Classical vs. plasma wave accelerators



Laser pulse on a charged particle initially at rest in vacuum:

Oscillating Fe = qE induces transverse oscillations with no average drift.
Oscillating Fm = q v

c × B is ∥ z⃗ ; its average on a cycle (ponderomotive
force) Fp = ⟨Fm⟩ ≠ 0 causes a longitudinal drift forward. However

No net energy gain (Lawson-Woodward theorem), alas!



Pulse in diluted plasma displaces e− w.r.t. ions; very intense ⇒ huge E z !

∆ne arrange in a plasma wave (PW) traveling with phase velocity ≃ c ;
again the e− remain in the plasma, in spite of huge accelerations (alas!).
As water molecules in water waves.

However, if some e− are injected
faster than their neighbours, they can
increase their speed ”surfing” a PW.
As foam at the crest of water waves.

These e− are finally expelled out of
the plasma just behind the beam.

Plasma waves can be induced also by particle - rather than laser - beams.

Phenomena ruled by Maxwell eqs coupled to a kinetic theory for plasma
e−, ions; solvable via more & more powerful particle-in-cell (PIC) codes.

But simulations involve huge costs for each choice of the input data (ID).

Better: run PIC after a preliminary selection of ID via simpler models
= the subject of our research in this talk.
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Setup & Plane Hydrodynamic model

ve(0,x)=0. Input = nontrivial initial data (ID), i.e.:

a) the function ñ0(z) ≥ 0, with ñ0(z)=0 if z<0, ñ0(z)≤nb∈R+ if z>0,
yielding the initial electron (e−) and proton densities ne , np:

ne(0,x)=np(0,x)= ñ0(z); (1)

b) the vector-valued function ϵ⊥(ξ) yielding the initial laser-pulse EM fields:

E(t, x) = E⊥(t, x) = ϵ⊥(ct−z), B = B⊥ = k×E⊥ if t ≤ 0, (2)

support(ϵ⊥) ⊆ [0, l ] with l ≲
√
πmc2/nbe2: the pulse reaches the plasma at

t=0 & overshoots all e− before their z reach the 1st minimum< 0 (ES pulse).

Figure 1: Here ñ0(z) with a down-ramp + plateau as a), ES, SMM pulse as b)



Kinematics

How to to simplify ṗ(t) = qϵ⊥
[
ct−z(t)

]
+ qv(t)/c ×

{
k×ϵ⊥

[
ct−z(t)

]}
?

As every particle travels slower than light, ξ̃(t) = ct−z(t) grows strictly, and
ξ = ct−z can replace t as the independent parameter along its worldline (WL)
λ (in Minkowski space) and in its equation of motion [GF 2016].

Fluid: X 7→ x are 1-to-1 at all t, ξ, i.e. worldlines (WLs) do not intersect.

Eulerian observables f (t, x) = f̃ (t,X) = f̂ (ξ,X) Lagrangian observables.
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Reducing the fluid-regime dynamics to decoupled ODEs...

Use CGS units. Let β≡ ẋ
c
, γ≡ 1√

1−β2
, u=(u0, u)≡(γ, γβ)=

(
p0

mc2
, p
mc

)
=

4-velocity, s≡γ−uz > 0 (all dimensionless). s→0 implies uz →∞.

PDEs: Lorentz-Maxwell & continuity eq. for the electron fluid; + in. cond.

Are reduced to the family (parametrized by Z) of ordinary Cauchy problems

∆̂′ =
1+v

2ŝ2
− 1

2
, ŝ ′ = K

{
Ñ
[
Z+∆̂

]
−Ñ(Z)

}
, (3)

∆̂(0,Z) = 0, ŝ(0,Z) = 1 (4)

[GF2018] (f̂ ′ ≡ ∂ f̂ /∂ξ) in the unknowns ∆̂(ξ,Z) ≡ ẑe(ξ,Z)−Z , ŝ(ξ,Z), in the
spacetime region where x̂e(ξ, ·) : X 7→ x is one-to-one, we can neglect 2-particle

collisions+pulse depletion, and regard ions as immobile. Here K := 4πe2

mc2
, and

v(ξ) :=

[
eα⊥(ξ)

mc2

]2

, α⊥(ξ) := −
∫ ξ

−∞
dζ ϵ⊥(ζ),

Ñ(Z) :=

∫ Z

0

dζ ñ0(ζ), U(∆;Z) :=K

∫ ∆

0

dζ (∆−ζ) ñ0(Z+ζ) .

(5)

Clearly, v ≥ 0, and Ñ(Z) grows with Z .



...which are Hamiltonian for 1-dim systems

For each Z ≥ 0 (3) are Hamilton equations q′ = ∂Ĥ/∂p, p′ = −∂Ĥ/∂q of a
1-dim system: ξ, ∆̂,−ŝ play the role of t, q, p, and the Hamiltonian reads

Ĥ(∆̂, ŝ, ξ;Z) :=
ŝ2 + 1+v(ξ)

2ŝ
+ U(∆̂;Z) (6)

up to mc2. For ξ > l v=const, Ĥ=h=const, (3) are autonomous and can be
solved by quadrature; if Z>0 the solutions are periodic in ξ; ξH(Z) ≡ period.

All other unknowns can be expressed via
(
∆̂, ŝ):

û⊥=
e α⊥(ξ)

mc2
, ûz =

1+û⊥2−ŝ2

2ŝ
, γ̂=

1+û⊥2+ŝ2

2ŝ
, (7)

x̂⊥
e (ξ,X)− X⊥ =

∫ ξ

0

dη
û⊥(η)

ŝ(η,Z)
, ẑe(ξ,X)− Z = ∆̂(ξ,Z). (8)

As α⊥(ξ) is independent of X so are p̂⊥, û⊥; as ŝ, ∆̂ are independent of X ,Y
so are p̂z , ûz ,∆x̂e . Replacing (ξ,X) 7→

(
ct−z , X̂e(ct−z , x)

)
in the arguments

we get their Eulerian counterparts, e.g. ne(t, z)=
[
γ̂ ñ0
ŝ Ĵ

]
(ξ,Z)=

(
ct−z,Ẑe (ct−z,z)

).



Special case: ñ0(Z ) ≡ n0 = const

If ñ0(Z) ≡ n0 = const, then (3) and its solution are in fact Z -independent:

∆′ =
1+v

2s2
− 1

2
, s ′ = M∆, ∆(0)=0, s(0)=1, (9)

where M≡ Kn0=ω2
p/c

2, U(∆,Z)≡M∆2/2: relativistic harmonic oscillator.

a) Linearly polarized gaus-
sian pulse with peak ampli-
tude a0≡λeE⊥

M /2πmc2=2,
lfwhm = 10λ. We consider
l=40λ and cut tails outside
|ξ−l/2|< l/2.

b) Corresponding solution
of (9) if ñ0(z)=nj

0≡ncr/267
(ncr =πmc2/e2λ2 is the crit-
ical density); as a result,
E/mc2 ≡ h=1.28.

ŝ is insensitive to fast
oscillations of ϵ⊥ !

Figure 2



a) “Optimal” ñ0(z) for the
above pulse: n0=nj

0=ncr/267,
nb = 1.28 × nj

0, zb = 120λ,
zs−zb=6.6λ [GF 2023].

b) WLs of e− with Z =0, λ,...,
156λ are obtained solving (3-4)
and look as plot until they first
intersect (circles), ⇒ WBs. The
black WL of the e− self-injected
by the earliest WB holds for all
t; after WB it is ruled by (15).
The yellow region is filled only
by ions; in the pink region (0<
ξ < 40λ) the pulse modulating
intensity ϵ2s is nonzero; in the red
region (|ξ−20λ| < 5.25λ) ϵ2s is
above half maximum.

c) Zoom of the blue box in a).

Figure 3



Hydrodynamic regime up to wave-breaking

The map x̂e(ξ, ·) :X 7→x, is invertible, and the HR is justified, as long as

Ĵ ≡
∣∣∣∣∂x̂e∂X

∣∣∣∣= ∂ẑe
∂Z

> 0. (10)

Ĵ(ξ,Z)≤0: ∃Z ′ ̸=Z , s.t. ẑe(ξ,Z
′) = ẑe(ξ,Z), i.e. Z ,Z

′ e− layer cross, ∃ WB.

ne(t, z)=

[
γ̂ ñ0

ŝ Ĵ

]
(ξ,Z)=

(
ct−z,Ẑe (ct−z,z)

) diverges where Ĵ = 0. (11)

For ξ > l then Ĵ satisfies [GF, DeNicola, Akhter, Fedele, Jovanović ’23]

Ĵ(ξ+nξH ,Z) = Ĵ(ξ,Z)−n
∂ξH
∂Z

∆′(ξ,Z), ∀n ∈ N, Z ≥ 0, (12)

⇔ Ĵ(ξ,Z) = a(ξ,Z) + ξ b(ξ,Z), (13)

where b ≡ − ∂ log ξH
∂Z

∆̂′, a ≡ Ĵ − ξ b are ξH-periodic in ξ, and b has zero mean
over a period (apply ∂Z to ∆[ξ+nξH(Z),Z ]=∆(ξ,Z), use ξH-periodicity of ∆′).

By (12) we can extend our knowledge of Ĵ from [l , l+ξH [ to all ξ ≥ l .



Figure 4: Ĵ, σ̂ vs. ξ for Z = Zbr ≃ 121.6λ and input data as in Fig. 3.

Differentiating (3-4) w.r.t. Z one finds that Ĵ, σ≡ ∂ ŝ
∂Z

fulfill

Ĵ ′ = −1+v

ŝ3
σ̂, σ̂′ = K

(
ň Ĵ−ñ0

)
,

Ĵ(0,Z) = 1, σ̂(0,Z) = 0,
(14)

where ň(ξ,Z) ≡ ñ0 [ẑe(ξ,Z)]. Studying (14) one finds sufficient conditions on
ñ0, ϵ

⊥ [GF et al 2022-23] for the first WB to occur after the laser-plasma
interaction (ξ> l) and be controlled via (12).



Maximizing the WFA of (self-)injected e−

Motion of a test electron in the plasma wave

If a test e− is injected in the PW behind the pulse its ẑi , ŝi evolve after

ẑ ′i =
1−ŝ2i
2ŝ2i

, ŝ ′i (ξ) = K
{
Ñ[ẑi (ξ)]−Ñ

[
Ẑe(ξ,ẑi (ξ))

]}
. (15)

(15b) reduces to ŝ ′i = M∆, cf. (9b), and ŝi (ξ)−s(ξ) = δs≡si0−s(ξ0) = const
along the density plateau. If δs < −sm (trapping condition), then ∃ξf >ξ0 s.t.
ŝi (ξf ) = 0, e− is trapped & accelerated in a trough of the PW. As t→∞

zi ∼ ct, γi ≃ F zi/λ
zi→∞

−−−−→ ∞, (16)

F ≡Kn0λ |∆(ξf )|; reliable as long as pulse depletion is negligible, 0 ≤ zi ≤ zpd .

Fixed n0, if δs = −1, then
|∆(ξf )| = |∆m|, F is maximal:

γi (zi , n0) ≃
√

j(ν) zi/λ; (17)

j(ν) ≡ 8π2ν
[
h̄(ν)−1

]
, h̄(ν) =

final energy transfered by the
pulse to the e− if ñ0(z) = n0,
vs. ν≡n0/ncr .

Figure 5: Phase portrait of plateau e− of fig. 3



Self-injection & maximal WFA by fixing ñ0 in 4 steps

Step 1: Computing h̄(ν), j(ν).
(We interpolate 200 points; few
seconds via Mathematica).

Step 2: Optimal plateau density n0.
If the depth available for WFA is zi ≤
zpd(νj), set n0/ncr =νj ≡max{j(ν)}:

γM
i (zi ) ≃

√
j(νj) zi/λ. (18)

Step 3: ñ0 with optimal down-ramp
for self-injection, LWFA.

ñ0(Z) = n0+Υ(Z−zs), zb ≤ Z ≤ zs ,

Υ = n0−nb
zs−zb

. Let (ξbr ,Zbr ) be the pair

(ξ,Z) with smallest ξ s.t. Ĵ(ξ,Z)=0
The Zbr e− are the fastest injected
& trapped in a PW trough by the 1st
WB. We fix Υ, zb requiring: δs = −1,
so that (17) applies; no WBDLPI.

Figure 6: h̄−1 (energygain per plasma
e−) and j by the pulse of fig. 2a, vs. ν

Figure 7: The optimal initial density
associated to the pulse of fig. 2a.

Step 4: Choosing an up-ramp of ñ0 out of the ∞-ly many ones growing
from 0 to nb and preventing WB for ξ<ξbr ; ñ0(z) ≃ O(z2) [GF et al 2022-23].



3D effects, discussion and conclusions
Summarizing, the steps of our preliminary optimization process are:

1 finding the final energy h̄ transfered by the pulse to the plateau plasma
electrons and j = 8π2

[
h̄−1

]
n0/ncr as functions of the density n0;

2 finding the ‘optimal’ value nj
0 of n0 maximizing j(n0);

3 finding the ‘optimal’ length zb−zs and slope Υ of the density down-ramp;

4 adjusting the up-ramp (z < zb) of ñ0(z) to avoid WB for ξ < ξbr .

Range of applicability of the model?

The depletion of the pulse is negligible in the tilted (rather long) rectangle

0 ≤ ct − z ≤ l , 0 ≤ ct + z ≲ mc2/e2n0λ (19)

Pulse cylindrically symmetric around z⃗ with waist R: by causality our results
hold strictly in the green causal cone trailing the pulse, approximately nearby.

In particular, if the pulse has maximum at ξ = l
2
, and

R > ξbr −
l

2
, R ≫ a0λ

2π

[
h̄+

√
h̄2−1

]
(20)

then the X ≃ (0,0,Zbr ) e
− keep in that cone and move as

above: same maximal WFA, as far as pulse not depleted.



Apply our optimization procedure to the pulse of Fig. 2a (a0=2, lfwhm=10λ):
we find the initial density ñ0(z) and the WLs of Fig. 3; F = 0.28.

Ti-sapphire laser: λ≃0.8µm; ‘moderate’ peak intensity I=1.7×1019W/cm2

yields the remarkable energy gain 1.8 GeV/cm of the Zbr electron (black WL).

Good agreement with 2D FB-PIC simulations (courtesy of P. Tomassini):

THANK YOU FOR YOUR ATTENTION!
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LWF exploits a major laser technology progress: CPA
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