Development of superconducting parametric amplifiers
for quantum applications

G. Avallone, C. Barone, G. Carapella, G. Filatrella*, V. Granata, C. Guarcello, C. Mauro,
and S. Pagano

University of Salerno, Physics Dept. , Fisciano (SA), Italy;
INFN-Salerno group, Fisciano (SA), Italy;
*University of Sannio, Science and Technology Dept., Benevento, ltaly;




Motivation

Ultralow-noise microwave detection plays a central role in different applications/experiments, such
as: dark matter, axion, dark photons, neutrino, CMB, magnon, qubit read out, and quantum computing
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Current technologies for ultra low noise amplification at MW

High electron mobility transistors (HEMTSs)

 Large bandwidth and high dynamic range at very high microwave frequencies;

» Cooling gives an improvement in noise temperature, but it is negligible below 20-30 K;

« HEMT development has almost reached its physical limit in term of achievable noise;

» The current HEMT noise is 10—40 times above the fundamental limit imposed by quantum mechanics.

Used to read out array of TESs, MKIDs, and cQED devices

Josephson Parametric Amplifiers (JPA) Qub-IT INFN experiment
» Power is transferred from a strong pump tone to a weak signal by exploiting an inductive or capacitive nonlinearity

and the mixing process;
 Measured noise close to the quantum limit;
e Very small instantaneous bandwidth: < 100 MHz = read out of few detectors for line;
» High gain, but a fixed gain-bandwidth product;
* Very small dynamic range: < -100 dBm.
Used as a first stage of amplification for the readout of a superconducting qubits and RF cavities

Traveling Wave Parametric Amplifiers (TWPASs) DARTWARS INFN experiment
* Microwaves travel along a transmission line with embedded non-linear elements, that can be implemented by
Josephson Junction (JJ) or Kinetic Inductance (KI) of superconductors. A large pump tone modulates this

inductance, coupling the pump (fp) to a signal (fs) and idler (fi ) tone via frequency mixing;
* Noise near to quantum-limited,;
* High bandwidth: over a 4 GHz centered at 5 GHz;
* Limited gain: < 20 dB, and gain profile with large ripple.
Potential use for reading large number of qubits or RF cavities



https://coldlab.Inf.infn.it/experiments/qub-it/
ub-IT

The Qub-IT project aims to develop quantum sensing with superconducting qubits, with the realization of
an itinerant single-photon counter that surpasses present devices in terms of efficiency and low dark-count
rates by exploiting repeated QND measurements of a single photon and entanglement in multiple qubits.

The project covers the years 2022-2024 and involves, as INFN partners: LNF, Ferrara, Firenze, Milano,
Milano-Bicocca, Pisa, Salerno, TIPFA and, as external partners, FBK-Trento and CNR-IFN.

INFN SA Lines of activity:
* Modeling of the Josephson parametric amplifiers (JPAs) and optimization of the operational parameters
« Experimental test of superconducting circuit components to calibrate the fabrication process

Main equipment:

GPU powered workstations to perform computer intensive numerical simulations.

300 mK insert, microwave sources, spectrum analyzer, low noise microwave amplifier chain,
wedge and ball bonder.

The INFN-Salerno group: Carlo Barone, Giovanni Carapella, Giovanni Filatrella,
Claudio Guarcello, Sergio Pagano.

Local P.l.: Sergio Pagano, sergio.pagano@sa.infn.it




@m https://dartwars.unimib.it/home

The DARTWARS project is a research effort to improve the performance and reliability of travelling wave
parametric amplifiers (TWPA) with the study of new materials and with improved microwave and thermal
engineering. The long-term goal is to demonstrate, for the first time, the readout with different sensors (TESs,
MKIDs, microwave cavities, and qubits) opening the concrete possibility to increase the sensitivity of the next
generation particle physics experiments.

The project covers the years 2021-2024 and involves, as INFN partners: LNF, Lecce, Milano Bicocca,
Salerno, Trento TIPFA and, as external partners, FBK-Trento and INRiM-Torino.

INFN SA Lines of activity:
* Modelling and simulations of the Josephson TWPA and optimization of the operational parameters.
» Perform initial tests of JTWPA.

Main equipment:

GPU powered workstations to perform computer intensive numerical simulations.

300 mK insert, microwave sources, spectrum analyzer, low noise microwave amplifier chain,
wedge and ball bonder.

The INFN-Salerno group: C. Guarcello, G. Avallone, C. Barone, G. Carapella, G. Filatrella,
V. Granata, C. Mauro, and S. Pagano

Local P.l.: Sergio Pagano, sergio.pagano@sa.infn.it




Travelling Wave Parametric Amplifier (TWPA)
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Within the DARTWARS project:
0 kinetic inductance of a high-resistivity superconductor;

0 Josephson traveling-wave parametric amplifiers (JTWPA).

A Josephsonjunction can be considered as a non-
linearinductance
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Old 300 mK cryostat
Oxford Heliox VL *He cryostat

| OK for testing Al based junctions
s Needed adaptations for MW signals

HEMT Cryogenic
Sample stage 3He stage 1K pot Amplifier @ 4.2K




RF measurement setup
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DC measurement setup

Sample holder
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New 300 mK cryostat design
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JPA modeling
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JTWPA modeling

Several models have been developed to account for JTWPA behavior.

 Analytic approaches are based on low-order approximation of
nonlinearities, homogeneous systems and assume the presence of
only Signal, Idle and Pump modes, impedance matching.

 Semi-analytic approaches consider also a limited number of additional
modes and require numerical calculations (harmonic balance, ...)

 Dynamic numerical models show full behavior and can be realized
using different approaches (direct coding, scripting, wrspice,...)

The real issue is Accuracy vs Computation time

Our approach is to numerically solve the nonlinear system describing
the JTWPA without approximations. We use the device parameters
extracted from design and experiments and investigate the dynamic
behavior in different configurations.

A. B. Zorin, Phys. Rev.
Appl., 6, 034006 (2016)

20 _‘ I I I |
15 | -

10& _________ g{

WRSPICE: 1
5 5 Gain=9dB ]

Gain (dB) [n = 1175]

0

CME-1f
CME-2 |
CME-3 |
CME-4 |
CME5|

T. Dixon et al. Phys. Rev.
Appl. 14, 034058 (2020)

V. Gaygamachenko et al.
J. Appl. Phys. 132,
154401 (2022)

14




JTWPA modeling
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The model of our JTWPA is formed by 990 cells,
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circuit parameters
The applied voltageis: V; = V,mp sin(Zn fpumpt) + Vsign sin(Zn fsigt)

The output Voltage is measured across a resistive load R, = 50 Q)
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represents a sort of quality factor of the amplifier:

A constantvalue means no gain (only the pump is present)
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Effect of Ic variation along the TL

Here, we assume the JJ critical currents to be distributed

accordingto I., = I.(1+ 61I,.)
with 61, being Gaussian distributed with zero mean and

variance cr%c.
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Conclusions and outcome

We have developed a detailed know how for the modeling, simulation and experimental
characterization of quantum limited Josephson junctions based amplifiers.

Future activities, within INFN, are towards the realization of a quantum simulator

Perspective development of experimental facilities for the realization and characterization
of state of the art superconducting devices for quantum sensing, funded by NQSTI.



