The $V_{c b}$ puzzle: status and progress

Marzia Bordone

LNF
24.04.2024

Outline:

1. Introduction: the CKM matrix and the $V_{c b}$ puzzle
2. Inclusive $B \rightarrow X_{c} \ell \bar{\nu}$ decays
3. Exclusive $B \rightarrow D^{(*)} \ell \bar{\nu}$ decays
4. Open problems and conclusions

Introduction

Interaction basis

\Rightarrow gauge interactions are diagonal
\Rightarrow mass terms are not diagonal

$$
-\mathcal{L}_{\mathrm{Y}}=\underbrace{Y_{d}^{i j} \bar{Q}_{L}^{i} H d_{R}^{j}+Y_{u}^{i j} \bar{Q}_{L}^{i} \tilde{H} u_{R}^{j}+\text { h.c. }}_{\text {Non-diagonal Yukawa }}
$$

Mass basis
\Rightarrow Yukawa couplings are diagonal
\Rightarrow The CKM matrix is the remnant of the diagonalisation

$$
\mathcal{L}_{c c} \propto \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{j} W_{\mu}^{+} V_{\uparrow}
$$

CKM matrix

The CKM matrix

nuclear β decays

- The CKM is a unitary matrix
- The elements associated with the first and second families are better determined
- How do we determine the other elements?

The unitarity triangles

- The CKM is parametrised by three mixing angles and one CP-violating phase
\Rightarrow We can determine the not-so-precise elements from the most precise ones
- Unitarity is essential to assess whether there are any deviations that could hint at BSM physics
- Useful to use the Wolfenstein parametrisation

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Unitarity: $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

The unitarity triangles

- The CKM is parametrised by three mixing angles and one CP-violating phase
\Rightarrow We can determine the not-so-precise elements from the most precise ones
- Unitarity is essential to assess whether there are any deviations that could hint at BSM physics
- Useful to use the Wolfenstein parametrisation

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Unitarity: $\left(V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}\right) / V_{c d} V_{c b}^{*}=0$

The unitarity triangles

- The CKM is parametrised by three mixing angles and one CP-violating phase
\Rightarrow We can determine the not-so-precise elements from the most precise ones
- Unitarity is essential to assess whether there are any deviations that could hint at BSM physics
- Useful to use the Wolfenstein parametrisation

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Unitarity: $\left(V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}\right) / V_{c d} V_{c b}^{*}=0$

The Unitarity triangles

The CKM status in 2024

". .. there is a general consistency, at the percent level, between the SM predictions and the experimental measurements. Thus in order to discover new physics effects a further effort in theoretical and experimental accuracy is required."
[2212.03894]

However, there are tensions which (in my opinion) require even more urgent attention

The CKM status in 2024

". .. there is a general consistency, at the percent level, between the SM predictions and the experimental measurements. Thus in order to discover new physics effects a further effort in theoretical and experimental accuracy is required."
[2212.03894]

However, there are tensions which (in my opinion) require even more urgent attention

The $V_{c b}$ saga

How do we extract $V_{c b}$?

Inclusive processes:

- We start from a well determined initial hadronic state and we sum over all possible hadronic final states

Exclusive processes

- We resolve the hadronic final state
- More data available

Requires predictions for observables related to hadronic decays

The theory drawback

Fundamental challenge to match partonic and hadronic descriptions

The long-standing $V_{c b}$ puzzle

The long-standing $V_{c b}$ puzzle

The long-standing $V_{c b}$ puzzle

The long-standing $V_{c b}$ puzzle

Why we need a better determination of $V_{c b}$?

- The value of $V_{c b}$ has a major impact on flavour observables like $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$ or ϵ_{K}
- A resolution of the puzzle is central given the perspective sensitivities at Belle II and LHCb

Main challenges for the future

- Data are one of the most important ingredient
\Rightarrow Belle and Belle II exhausted their available datasets, but Belle II is taking data according to the foreseen expectations
\Rightarrow LHCb started producing results, but we don't have data yet that we can use for phenomenological analysis
- From the theory point of view, progress has been done but more is needed
\Rightarrow We need to reconcile different approaches
\Rightarrow How do we estimate uncertainties and how can we go beyond the current status?

Inclusive decays

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\text {eff }}^{\dagger}(x) \mathcal{H}_{\text {eff }}(0)\right\}|B(p)\rangle
$$

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle
$$

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework for $B \rightarrow X_{c} \ell \bar{\nu}$

Double expansion in $1 / m$ and α_{s}

$$
\begin{aligned}
\Gamma_{s l}=\Gamma_{0} f(\rho) & {\left[1+a_{1}\left(\frac{\alpha_{s}}{\pi}\right)+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}-\left(\frac{1}{2}-p_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}\right.} \\
& \left.+\left(g_{0}+g_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right]
\end{aligned}
$$

- The coefficients are known
- $\mu_{\pi}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}$
\Rightarrow No Lattice QCD determinations are available yet
- Use for the first time of α_{s}^{3} corrections
- Ellipses stands for higher orders
\Rightarrow proliferation of terms and loss of predictivity

How do we constrain the hadronic parameters?

We need information from kinematic distributions

- Traditional method: Extract the hadronic parameters from moments of kinematic distributions in E_{l} and M_{X}
- New idea: Use q^{2} moments to exploit the reduction of free parameters due to RPI
- Measurements of branching fractions are needed and are at the moment quite old
- Can we do it on the lattice?

Global fit

[MB, Capdevila, Gambino, '21, Finauri, Gambino, '23]

	$m_{b}^{\text {kin }}$	\bar{m}_{c}	μ_{π}^{2}	μ_{G}^{2}	ρ_{D}^{3}	$\rho_{L S}^{3}$	$10^{2} \mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$	$\chi_{\min }^{2}(/ \mathrm{dof})$
without	4.573	1.092	0.477	0.306	0.185	-0.130	10.66	42.16	22.3
q^{2}-moments	0.012	0.008	0.056	0.050	0.031	0.092	0.15	0.51	0.474
Belle II	4.573	1.092	0.460	0.303	0.175	-0.118	10.65	42.08	26.4
	0.012	0.008	0.044	0.049	0.020	0.090	0.15	0.48	0.425
Belle	4.572	1.092	0.434	0.302	0.157	-0.100	10.64	41.96	28.1
	0.012	0.008	0.043	0.048	0.020	0.089	0.15	0.48	0.476
Belle \&	4.572	1.092	0.449	0.301	0.167	-0.109	10.65	42.02	41.3
Belle II	0.012	0.008	0.042	0.048	0.018	0.089	0.15	0.48	0.559

About QED effects in inclusive decays

Why do we care about QED Effects?

- We want to match the theory description with the experimental measurements that are always affected by photon emissions
- The MC PHOTOS accounts for QED effects, reporting results which can be compared with the non-radiative theory predictions
- PHOTOS knows only about real emission and obtains the virtual part by normalisation

$$
\frac{d \Gamma}{d z d x}=\mathcal{F}^{(0)}\left(\omega_{\text {virtual }}+\omega_{\text {real }}\right) \Rightarrow \int d x\left(\omega_{\text {virtual }}+\omega_{\text {real }}\right)=1
$$

> Are virtual corrections under control?

Leading contributions

1. Collinear logs: captured by splitting functions

$$
\sim \frac{\alpha_{e}}{\pi} \log ^{2}\left(\frac{m_{b}^{2}}{m_{e}^{2}}\right)
$$

2. Threshold effects or Coulomb terms

$$
\sim \frac{4 \pi \alpha_{e}}{9}
$$

3. Wilson Coefficient

$$
\sim \frac{\alpha_{e}}{\pi}\left[\log \left(\frac{M_{Z}^{2}}{\mu^{2}}\right)-\frac{11}{6}\right]
$$

Branching ratio

- The total branching ratio is not affected by large logs due to KLN theorem
- The large corrections are from the Wilson Coefficient and the threshold effects

- Large shift of the branching ratio of the same order of the current error on $V_{c b}$
- How do we incorporate in the current datasets?
- Moments are less sensitive because they are normalised

Global fit + QED

- Implementation of QED corrections are analysis dependent
- BaBar provides branching fractions with and without radiation

$$
R_{\mathrm{QCD}}^{\text {new }}=\zeta_{\mathrm{QED}} R_{\mathrm{QCD}}^{\mathrm{Babar}}
$$

$\Rightarrow \zeta_{\mathrm{QED}}$ accounts for the misalignment between the corrected BaBar results and the results from the full $\mathcal{O}\left(\alpha_{e}\right)$ computation

$m_{b}^{\text {kin }}$	$\bar{m}_{c}(2 \mathrm{GeV})$	μ_{π}^{2}	$\mu_{G}^{2}\left(m_{b}\right)$	$\rho_{D}^{3}\left(m_{b}\right)$	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.573	1.090	0.453	0.288	0.176	-0.113	10.62	41.95
0.012	0.010	0.043	0.049	0.019	0.090	0.15	0.48

- The central value shifts slightly
- Belle II data are needed to understand how to apply the correction
- Can we go beyond scalar QED?

Exclusive decays

Exclusive matrix elements

$$
\left\langle H_{c}\right| J_{\mu}\left|H_{b}\right\rangle=\sum_{i} S_{\mu}^{i} \mathcal{F}_{i}
$$

Exclusive matrix elements

Exclusive matrix elements

Form factors determinations

- Lattice QCD
only points at specific kinematic points
- QCD SR, LCSR

Form factors parametrisations

- HQET (CLN + improvements) \Rightarrow reduce independent degrees of freedom
- Analytic properties \rightarrow BGL
data points needed to fix the coefficients of the expansion

The z-expansion and unitarity

[Boyd, Grinstein, Lebed, '95, Caprini, Lellouch, Neubert, '98]

- in the complex plane form factors are real analytic functions

- q^{2} is mapped onto the conformal complex variable z

$$
z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

- q^{2} is mapped onto a disk in the complex z plane, where $\left|z\left(q^{2}, t_{0}\right)\right|<1$

$$
\begin{aligned}
F_{i}= & \frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k} \\
& \sum_{k=0}^{n_{i}}\left|a_{k}^{i}\right|^{2}<1
\end{aligned}
$$

[Alternative method: 2105.02497 and following]

The Heavy Quark Expansion in a nutshell

The HQE exploits the fact that the b and c quarks are heavy

- Double expansion in $1 / m_{b, c}$ and α_{s}
- The HQE symmetries relate $B^{(*)} \rightarrow D^{(*)}$ form factors
- At $1 / m_{b, c}$ drastic reduction of independent degrees of freedom

With current precision we know we have to go beyond the $1 / m_{b, c}$ order and we use the following form

$$
F_{i}=\left(a_{i}+b_{i} \frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \sum_{j} c_{i j} \xi_{\mathrm{SL}}^{j}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \sum_{j} d_{i j} \xi_{\mathrm{SL}}^{j}+\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}}\right)^{2} \sum_{j} g_{i j} \xi_{\mathrm{SSL}}^{j}
$$

- Total of 10 independent structures to be extracted from data
- We use the conformal mapping $q^{2} \mapsto z\left(q^{2}\right)$ to include bounds and have a well-behaved series

$B \rightarrow D^{*}$ after 2021

- FNAL/MILC '21
- HQE@1/ m_{c}^{2}
- Exp data (BGL)
- JLQCD '23
- HPQCD '23
- Are the Lattice QCD datasets compatible?
- What's the source of the discrepancy with HQET?
- Why are experimental data so different from LQCD data?

Can we combine the LQCD results?

- A combined fit to all possible LQCD data is possible in the BGL approach
- How does it compare with data?
- New Belle and Belle II datasets available!
- How can we extract $V_{c b}$?

$V_{c b}$ from JLQCD and Belle II data

- With JLQCD results and Belle II datasets $V_{c b}$ is flat throughout the bins
- The combination needs to account for correlations
- The statistical procedure to do it has to be carefully defined

Comparison with kinematic distributions

- Fits are all acceptable
- Theory and Experiment agree on the shapes

What can we learn from the HQE?

[MB, J. Harrison, M. Jung, in preparation]

$\Rightarrow V$ and A_{1} drive the $V_{c b}$ determination and they are quite well compatible

HQE with lattice only

\Rightarrow Motivates a joint $B \rightarrow D^{(*)}$ LQCD analysis

Predictions

- The predictions for $R_{D^{(*)}}$ change quite drastically combining different datasets
- The combined $B \rightarrow D^{(*)}$ fit yield values in between the HQE and the $B \rightarrow D^{*}$ only fit

$$
B \rightarrow D
$$

- Belle+Babar data and HPQCD+FNAL/MILC Lattice points

$$
\left|V_{c b}\right|=(40.49 \pm 0.97) \times 10^{-3}
$$

Pheno Status 1

- The inclusive determination is solid
- No evident issues for $B \rightarrow D$
- Spread between inclusive and exclusive up to $3-4 \sigma$
- Work in progress for the theory predictions of $B \rightarrow D^{*}$ to understand the various tensions
\Rightarrow Do we have to correct for QED?
- New experimental data are available are under scrutiny

Pheno status 2

- New Lattice QCD results point to larger values for $R_{D^{*}}$
\Rightarrow Difference in the slopes is crucial and has to be understood
- No change in R_{D}, where Lattice QCD results, LCSRs, HQET and experimental data agree very well with each other

Other open problems

- The QED issue is present also for exclusive modes
\Rightarrow One calculation available for $B \rightarrow D$ only
\Rightarrow The $B \rightarrow D^{*}$ case is much more involved
\Rightarrow How do we reconcile the threshold effects between the exclusive and the inclusive?

$$
\mathcal{B}\left(B \rightarrow X_{c} \ell \nu\right)=\mathcal{B}(B \rightarrow D \ell \nu)+\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)+\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)+\ldots
$$

- The exclusive $V_{c b}$ from $B \rightarrow D^{*}$ is roughly determined by one form factor which agrees quite well in different determinations
\Rightarrow Even with more precise LQCD data this won't be resolved if not made worse by smaller uncertainties
- Concerning the inclusive determination, new branching fractions measurements are welcome
\Rightarrow Can LHCb have a say concerning $B_{s} \rightarrow X_{c} \ell \bar{\nu}$ and $\Lambda_{b} \rightarrow X_{c} \ell \bar{\nu}$?

Conclusions

- $V_{c b}$ is a fundamental parameter that drives predictions for many processes
- At the current status, there is a significant difference between inclusive and exclusive determinations
- The inclusive determination is solid, different datasets yield very compatible results, the only caveat is the branching fraction measurement
- The exclusive determination is more messy
\Rightarrow New Lattice QCD determination disagree among themselves and with experimental data
\Rightarrow The solution is not clear yet, work in progress in many directions
\Rightarrow This is a combined theory+experimental problem, only synergy between communities can shed light on this puzzle

Appendix

$B \rightarrow D^{(*)}$ form factors

- 7 (SM) +3 (NP) form factors
- Lattice computation for $q^{2} \neq q_{\max }^{2}$ only for $B \rightarrow D$
- Calculation usually give only a few points
- q^{2} dependence must be inferred
- Conformal variable z

$$
z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

- $t_{+}=\left(m_{B}+m_{D^{(*)}}\right)^{2}$ pair production threshold
- $t_{0}<t_{+}$free parameter that can be used to minimise $\left|z_{\max }\right|$
- $|z| \ll 1$, in the $B \rightarrow D$ case $|z|<0.06$

The HQE parametrisation 1

- Expansion of QCD Lagrangian in $1 / m_{b, c}+\alpha_{s}$ corrections
[Caprini, Lellouch, Neubert, '97]
- In the limit $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ form factors are given by a single Isgur-Wise function

$$
F_{i} \sim \xi
$$

- at higher orders the form factors are still related \Rightarrow reduction of free parameters

$$
F_{i} \sim\left(1+\frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \xi_{\mathrm{SL}}^{i}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \xi_{\mathrm{SL}}^{i}
$$

- at this order 1 leading and 3 subleading functions enter
- ξ^{i} are not predicted by HQE, they have to be determined using some other information

The HQE parametrisation 2

- Important point in the HQE expansion: $q^{2}=q_{\text {max }}^{2}$
- At this point Luke's Theorem applies: the subleading corrections vanish for some form factors
- The leading Isgur-Wise function is normalised: $\xi\left(q^{2}=q_{\text {max }}^{2}\right)=1$
- Problem: contradiction with lattice data!
- $1 / m_{c}^{2}$ corrections have to be systematically included
- well motivated also since $\alpha_{s} / \pi \sim 1 / m_{b} \sim 1 / m_{c}^{2}$

Comparison with kinematical distributions

Fit stability

- BGL fit to Belle 2017 and 2018 data (yellow)
- HQE fit $2 / 1 / 0$ (red)
- HQE fit $3 / 2 / 1$ (blue)

- compatibily of HQE fit with data driven one
- $2 / 1 / 0$ underestimates massively uncertainties

HQET in a nutshell

- In HQET it is convenient to work with velocities instead of momenta
- Instead of q^{2} we use the dimensionless variable $w=v_{B} \cdot v_{D^{*}}$
- When the $B(b)$ decays such that the $D^{*}(c)$ is at rest in the $B(b)$ frame

$$
v_{B}=v_{D^{*}} \quad \Rightarrow \quad w=1
$$

- The brown muck doesn't realise that anything changed
- At zero recoil, the leading IW function is normalized

$$
\xi(w=1)=1
$$

BGL vs CLN parametrisations

CLN

- Expansion of FFs using HQET
- $1 / m_{b, c}$ corrections included
- Expansion of leading IW function up to 2 nd order in $(w-1)$

BGL

- Based on analyticity of the form factors
- Expansion of FFs using the conformal variable z
- Large number of free parameters

Results: unitary bounds

Unitarity Bounds

$$
=i \int d^{4} x e^{i q x}\langle 0| T\left\{j_{\mu}(x), j_{\nu}^{\dagger}(0)\right\}|0\rangle=\left(g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)
$$

- If $q^{2} \ll m_{b}^{2}$ we can calculate $\Pi\left(q^{2}\right)$ via perturbative techniques $\Rightarrow \chi(0)$
- Dispersion relations link $\operatorname{Im}\left(\Pi\left(q^{2}\right)\right)$ to sum over matrix elements

$$
\sum_{i}\left|F_{i}(0)\right|^{2}<\chi(0)
$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over all possible states hadronic decays mediated by a current $\bar{c} \Gamma_{\mu} b$
- The unitarity bounds are more effective the most states are included in the sum
- The unitarity bounds introduce correlations between FFs of different decays
- $B_{s} \rightarrow D_{s}^{(*)}$ decays are expected to be of the same order of $B_{u, d} \rightarrow D_{u, d}^{(*)}$ decays due to $S U(3)_{F}$ simmetry

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- Moments of the kinematic distributions

$$
\begin{aligned}
\left\langle E_{\ell}^{n}\right\rangle & =\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} E_{\ell}^{n} \frac{d \Gamma}{d E_{\ell}}}^{\Gamma_{E_{\ell}>E_{\ell, \mathrm{cut}}}}}{R^{*}}=\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}^{\int d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}}{}
\end{aligned}
$$

- Similar definition for hadronic mass moments
- The moments give access to the distribution, but not to the normalisation
- They admit an HQE as the rate
\Rightarrow No $\mathcal{O}\left(\alpha_{s}^{3}\right)$ terms are known yet

The inclusive case

- If wrt QCD the hadronic and leptonic system are separated, QED corrections mix them
\Rightarrow Defining fully inclusive observables is harder
\Rightarrow Analogy with experiments is essential
- The OPE is still valid for the total decay width
- At the differential level, this is generally not true
\Rightarrow Large contributions factorise wrt to tree-level
\Rightarrow Useful to go beyond NLO

Two calculation approaches

1. Splitting Functions

$$
\left(\frac{d \Gamma}{d y}\right)^{(1)}=\frac{\alpha}{2 \pi} \bar{L}_{b / e} \int_{y}^{1-\rho} \frac{d x}{x} P_{e e}^{(0)}\left(\frac{y}{x}\right)\left(\frac{d \Gamma}{d x}\right)^{(0)}
$$

- Correction vanishes for the inclusive branching fraction
- Suitable for evaluating $\mathcal{O}\left(\alpha^{2}\right)$ and $\mathcal{O}\left(\alpha / m_{b}^{n}\right)$ corrections

2. Full $\mathcal{O}(\alpha)$ corrections

- Access all corrections, not only the one that factorise
- Real corrections are computationally expensive
\Rightarrow Cuba library employed to carry out the 4-body integration
\Rightarrow Phase space splitting used to reduce the size of the integrands

Lepton Energy spectrum

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- We compute bins in the lepton energy using the full $\mathcal{O}(\alpha)$ calculation
- We compare them to the results given by the splitting functions
- The difference the two calculations for the lepton energy spectrum and obtain a full analytic formula for the radiative corrections
\Rightarrow Relatively small, easy-to-use formula to obtain branching fractions, lepton energy moments w/o cuts

$$
f^{(1)}(y)=\frac{\bar{L}_{b / e}}{2} f_{\mathrm{LL}}^{(1)}(y)+\Delta f^{(1)}(y)
$$

Comparison with data

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- Babar provides data with and without applying PHOTOS to subtract QED effects
\Rightarrow Perfect ground to test our calculations
\Rightarrow Not the same for Belle at the moment, could be possible for future analysis?

- The moments, since they are normalised, are not affected by the large threshold corrections
- The agreement with BaBar is very

$$
\left\langle E_{\ell}^{n}\right\rangle=\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}}} d E_{\ell} E_{\ell}^{n} \frac{d \Gamma}{d E_{\ell}}}{\Gamma_{E_{\ell}>E_{\ell, \mathrm{cut}}}}
$$ good

QED for exclusive decays

- For $B^{0} \rightarrow D^{+} \ell \bar{\nu}$, the threshold effects were calculated and are $1+\alpha \pi$
[Ginsberg, '66, De Boer, Kitahara, Nisandzic, '18]
- For $B^{0} \rightarrow D^{*+} \ell \bar{\nu}$, the threshold effects might have a different structure because the hadronic matrix element is different
\Rightarrow To verify explicitly
- Structure-dependent terms are unknown, but maybe something is doable in the HQE?
- How do we reconcile the threshold effects between the exclusive and the inclusive?

$$
\mathcal{B}\left(B \rightarrow X_{c} \ell \nu\right)=\mathcal{B}(B \rightarrow D \ell \nu)+\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)+\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)+\ldots
$$

