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Introduction

Interaction basis

⇒ gauge interactions are diagonal

⇒ mass terms are not diagonal

−LY = Y ijd Q̄
i
LHd

j
R + Y iju Q̄

i
LH̃u

j
R + h.c.

Mass basis

⇒ Yukawa couplings are diagonal

⇒ The CKM matrix is the remnant of the diagonalisation

Lcc ∝ ūiLγµdjLW+
µ Vij

Non-diagonal Yukawa

CKM matrix
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The CKM matrix

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



• The CKM is a unitary matrix

• The elements associated with the first and second families are better determined

• How do we determine the other elements?

nuclear β decays

K → π`ν̄

b→ c`ν

b→ u`ν

ν + d→ c+ `
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The unitarity triangles

• The CKM is parametrised by three mixing angles and one CP-violating phase

⇒ We can determine the not-so-precise elements from the most precise ones

• Unitarity is essential to assess whether there are any deviations that could hint at
BSM physics

• Useful to use the Wolfenstein parametrisation

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

Unitarity: VudV ∗ub + VcdV
∗
cb + VtdV

∗
tb = 0
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2 11. CKM quark-mixing matrix

Figure 11.1: Sketch of the unitarity triangle.

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles in

a complex plane, of which the ones obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (11.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are exactly

(0, 0), (1, 0), and, due to the definition in Eq. (11.4), (ρ̄, η̄). An important goal of
flavor physics is to overconstrain the CKM elements, and many measurements can be
conveniently displayed and compared in the ρ̄, η̄ plane.

Processes dominated by loop contributions in the SM are sensitive to new physics,
and can be used to extract CKM elements only if the SM is assumed. We describe such
measurements assuming the SM in Sec. 11.2 and 11.3, give the global fit results for the
CKM elements in Sec. 11.4, and discuss implications for new physics in Sec. 11.5.

11.2. Magnitudes of CKM elements

11.2.1. |Vud| :

The most precise determination of |Vud| comes from the study of superallowed 0+ → 0+

nuclear beta decays, which are pure vector transitions. Taking the average of the twenty
most precise determinations [8] yields

|Vud| = 0.97425 ± 0.00022. (11.7)

June 18, 2012 16:19
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The Unitarity triangles
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Theoretical overview and prospects for CKM matrix and CP violation from UTfit Mauro Valli
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Figure 1: State-of-the-art UT analysis in the SM implementing all the most relevant constraints in the (⇢̄, ⌘̄)
plane. Contour regions are shown at the 95% probability. Further details on the fit are reported in Table 1.

exemplified in Figure 1. Using all the most informative constraints in order to determine the apex
of the UT in the (⇢̄, ⌘̄) plane as precise as possible, we actually reach 3% precision in the inference
of CP violation, namely:

( ⇢̄ = 0.160 ± 0.009 , ⌘̄ = 0.346 ± 0.009 ) SM fit , (1)

with the other Wolfenstein parameters determined to be: � = 0.2251 ± 0.0008, A = 0.828 ± 0.010.
It is remarkable that the determination of the UT angles ↵, � and � allows for the same level of
precision in constraining CP violation from weak interactions in the SM:

( ⇢̄ = 0.159 ± 0.016 , ⌘̄ = 0.339 ± 0.010 ) angles . (2)

We observe that such a bound on CP violation still holds at the 6% level when one restricts the
UT fit only to CP-conserving observables, and marginally improves with the addition in the fit
of the observable "K, parametrizing CP violation from the mixing in the neutral kaon system, see
Figure 2. In Table 1 we report all the key observables for the SM global fits, with the measurements
adopted in the analysis, the mean and standard deviation of the posterior from the full fit, and the

15 Marcella Bona

 Unitarity Triangle update

 Some interesting configurations 

Sides and eK

 r = 0.173 ± 0.012
 h = 0.374 ± 0.018 

“Tree only”
 r = ±0.163 ± 0.024
 h = ±0.356 ± 0.027

→ reference
   for model
   building

Angles only
 r = 0.159 ± 0.016
 h = 0.339 ± 0.010 

CP conserving
constraints
 r = 0.171 ± 0.013
 h = 0.363 ± 0.022 
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Figure 2: Determinations of the SM UT using partial information from the constraints available.
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The CKM status in 2024

“. . . there is a general consistency, at the percent level, between the SM predictions
and the experimental measurements. Thus in order to discover new physics effects a

further effort in theoretical and experimental accuracy is required.”

However, there are tensions which (in my opinion) require even more urgent attention

• Violation of unitarity in the first row

• The Vcb/Vub puzzle
0.960 0.965 0.970 0.975

0.220

0.222

0.224

0.226

0.228

Vud

V
us

[2208.11707]

[2212.03894]
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The Vcb saga



How do we extract Vcb?

Inclusive processes:

• We start from a well determined initial hadronic state and we sum over all
possible hadronic final states

Exclusive processes

• We resolve the hadronic final state

• More data available

Requires predictions for observables related to hadronic decays
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The theory drawback

b

c

W

ℓ

νℓ

Introduction and Motivation

Beam energies at B-Factories
tuned to produced B pairs
through e+e` ! ˇ(4S)! B —B.

B(ˇ(4S)! B —B) ı 96%.

Semileptonic B decays used to
extract CKM matrix elements
jVcbj, jVubj

Two approaches to measure
semileptonic B decays:

I Exclusive: a specific final state is
reconstructed (e.g. B ! ı‘⌫)

I Inclusive: All B ! Xq‘⌫ final
states within a region of phase
space are reconstructed.

‰ 3� discrepancy between inclusive
and exclusive measurements.

C. Beleño Exclusive B ! Xu‘⌫ decays ICHEP 2016 2/9

Fundamental challenge to match
partonic and hadronic descriptions

µpartonic = mb µhadronic = ΛQCD
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The long-standing Vcb puzzle

9/35



The long-standing Vcb puzzle

B → D(∗)`ν̄
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The long-standing Vcb puzzle

B → D(∗)`ν̄
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The long-standing Vcb puzzle

B → D(∗)`ν̄

B → π`ν̄

Λb → pµν̄/Λb → Λcµν̄, Bs → Kµν/Bs → Dsµν̄
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Why we need a better determination of Vcb?

• The value of Vcb has a major impact on flavour observables like B(Bs → µ+µ−)
or εK

• A resolution of the puzzle is central given the perspective sensitivities at Belle II
and LHCb
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Main challenges for the future

• Data are one of the most important ingredient

⇒ Belle and Belle II exhausted their available datasets, but Belle II is taking data
according to the foreseen expectations

⇒ LHCb started producing results, but we don’t have data yet that we can use for
phenomenological analysis

• From the theory point of view, progress has been done but more is needed

⇒ We need to reconcile different approaches

⇒ How do we estimate uncertainties and how can we go beyond the current status?
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Inclusive decays



Theory framework

• Missing higher-order terms limit the prediction 

•  

• Assess theoretical uncertainties 

• Reduce impact of theory correlations

αs(μs), mkin
b (μWC), mc(μc), μ2

G(μg)

Why higher order corrections?

4

0 2 4 6 8

0.78

0.80

0.82

0.84

0.86

0.88

0.90

mb/2 ≤ μs ≤ 2mb

MF, Schönwald, Steinhauser,  Phys.Rev.D 104 (2021) 016003, JHEP 08 (2022) 039.

p →

p + k2 ↘

k1 ↗

b

!

ν̄!

c

Γsl = G2
Fm5

b Aew
192π3 |Vcb |2

× (X0(ρ) + αs

π
X1(ρ) + ( αs

π )
2

X2(ρ) + ( αs

π )
3

X3(ρ) + …)

M. Fael | Belle II Physics Week 2023 2 Nov. 2023

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉
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Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉

∑
n,i

1
mn

b
Cn,iOn+3,i
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• The Wilson coefficients are calculated perturbatively

• The matrix elements 〈B(p)|On+3,i|B(p)〉 are non perturbative

⇒ They need to be determined with non-perturbative methods, e.g. Lattice QCD

⇒ They can be extracted from data

⇒ With large n, large number of operators

∑
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1
mn

b
Cn,iOn+3,i
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Theory framework for B → Xc`ν̄

Double expansion in 1/m and αs

Γsl = Γ0f(ρ)
[
1 + a1

(αs
π

)
+ a2

(αs
π

)2

+ a3

(αs
π

)3

−
(

1

2
− p1

(αs
π

)) µ2
π

m2
b

+
(
g0 + g1

(αs
π

)) µ2
G(mb)

m2
b

+ d0
ρ3
D

m3
b

− g0
ρ3
LS

m3
b

+ . . .
]

• The coefficients are known

• µ2
π(µ) = 1

2mB
〈B|b̄v(i ~D)2bv|B〉µ µ2

G(µ) = 1
2mB
〈B|b̄v i2σµνGµνbv|B〉µ

⇒ No Lattice QCD determinations are available yet

• Use for the first time of α3
s corrections [Fael, Schönwald, Steinhauser, ’20]

• Ellipses stands for higher orders

⇒ proliferation of terms and loss of predictivity
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How do we constrain the hadronic parameters?

We need information from kinematic distributions

  (GeV/c)e
*BE

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

E
n

tr
ie

s
 p

e
r 

0
.1

 G
e

V
/c

0

200
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600

800

1000

Belle

2 3 4 5 6 7 8
q2

th [Gev2/c4]

0

1

2

3

4

5

6

(q
2

q2
)2

[(G
eV

2 /c
4 )

2 ]

L dt = 62.8 fb 1
Belle II

Measurement
Xc Model

• Traditional method: Extract the hadronic parameters from moments of kinematic
distributions in El and MX

• New idea: Use q2 moments to exploit the reduction of free parameters due to
RPI [Fael, Mannel, Vos, ’18, Bernlochner et al, ’22]

• Measurements of branching fractions are needed and are at the moment quite old

• Can we do it on the lattice? [Gambino, Hashimoto, ’20, ’23, Hashimoto, Jüttner, et al, ’23]
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Global fit

mkin
b mc µ2

⇡ µ2
G ⇢3

D ⇢3
LS 102BRc`⌫ 103|Vcb| �2

min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3. Global fit results with and without the q2 moments from Belle/Belle II for µs = mkin
b /2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].
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Figure 4. Results for the central moments including the theory uncertainty bands (green) and the
parametric uncertainty from the results of the fit performed in this paper (blue). The combined
errors are not shown.

moments with q2
cut = {3.0, 4.5, 6.0, 7.5} GeV2. We have checked that the fits are very stable

with respect to the choice of the subset of cuts to be included. We use the correlations
between Belle and Belle II data that were employed in [20].2 We see in Table 3 that there is
excellent agreement among the various fits, with a small downward shift of µ2

⇡ and ⇢3
D (and

consequently of Vcb) with respect to the results of [12]. The uncertainty on ⇢3
D is reduced

significantly, but this reflects in only a small reduction of the final uncertainty on |Vcb| from
5.1⇥10�4 to 4.8⇥10�4. This is mostly due to the relevance of the theoretical uncertainties.
The analogue of Fig. 3 with the parameters resulting from the fit including Belle and Belle
II data is presented in Fig. 4. We observe a clear reduction of the parametric uncertainty,
mostly due to the improved determination of ⇢3

D.
We have performed a number of other fits, changing the scales and selecting different

2We are grateful to the authors of [20] for sharing their covariance matrices.
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[MB, Capdevila, Gambino, ’21, Finauri, Gambino, ’23]
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About QED effects in inclusive decays

Why do we care about QED Effects?

• We want to match the theory description with the experimental measurements
that are always affected by photon emissions

• The MC PHOTOS accounts for QED effects, reporting results which can be
compared with the non-radiative theory predictions

• PHOTOS knows only about real emission and obtains the virtual part by
normalisation

dΓ

dzdx
= F (0)(ωvirtual + ωreal)⇒

∫
dx(ωvirtual + ωreal) = 1

Are virtual corrections under control?
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Leading contributions
1. Collinear logs: captured by splitting functions

∼ αe
π

log2

(
m2
b

m2
e

)

2. Threshold effects or Coulomb terms

∼ 4παe
9

3. Wilson Coefficient

∼ αe
π

[
log

(
M2
Z

µ2

)
− 11

6

]
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Branching ratio

• The total branching ratio is not affected by large logs due to KLN theorem

• The large corrections are from the Wilson Coefficient and the threshold effects

0.0 0.2 0.4 0.6 0.8

-40

-20

0

20

y

f(1
) (y

)

Figure 5. Comparison of the complete O(↵) corrections (4.16) to the electron energy spec-
trum (green curve) in b ! ce⌫ and the corresponding LL approximation (red curve). In the former
case also the uncertainty of our numerical phase-space integration is indicated (green band). The LL
approximation using L̄c/e instead of L̄b/e is displayed as well (dotted red curve). See the main text
for additional details.

evaluated at the scale µ. For the input parameters used before, we find

��(1)(µ) =
↵

⇡


ln

✓
µ2

m2
b

◆
+ 5.516(14)

�
, (4.19)

where the coefficient of the logarithm is exact while the quoted numerical coefficient has
as indicated an uncertainty of around 0.3% which is associated to our MC phase-space
integration. Combining (4.2), (4.18) and (4.19), one finds to O(↵) that

�

�(0)g(⇢)
= 1 +

↵

⇡


ln

✓
M2

Z

m2
b

◆
� 11

6
+ 5.516(14)

�

= 1 + 1.43% � 0.44% + 1.32% = 1 + 2.31% ,

(4.20)

where in the second line we have dropped the quoted uncertainty but given the numerical
results of the individual O(↵) terms as well as their sum. The first observation to make is
that the renormalisation scale dependence has cancelled between the O(↵) corrections to the
Wilson coefficient and the virtual contributions to the matrix element

�
cf. (4.2) and (4.7)

�

leaving behind the EW logarithm first computed in [3]. In fact, it is interesting to note that
this logarithm represents about 60% of the total O(↵) correction in (4.20). Comparing the
result (3.6) with (4.20) one furthermore observes that the ⇡2-enhanced terms calculated
in Section 3 provide about 80% of ��(1)(mb), i.e. the complete O(↵) contribution to the
matrix element of (4.1). Hence, the complete O(↵) correction to the total decay width
of b ! ce⌫ is well approximated by the sum of the EW logarithm and the ⇡2-enhanced
threshold effects, which are both scale- and scheme-independent.

The relevant quantities used in the experimental analyses are the branching ratio of
B ! Xce⌫, the electron energy spectrum and its moments with a lower cut Ecut on the

– 15 –

• Large shift of the branching ratio of the same order of the current error on Vcb

• How do we incorporate in the current datasets?

• Moments are less sensitive because they are normalised

[Bigi, MB, Gambino, Haisch, Piccione, ’23]

Wilson Coefficient Threshold effects
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Global fit + QED

• Implementation of QED corrections are analysis dependent

• BaBar provides branching fractions with and without radiation

Rnew
QCD = ζQEDR

Babar
QCD

⇒ ζQED accounts for the misalignment between the corrected BaBar results and the
results from the full O(αe) computation

mkin
b mc(2 GeV) µ2

⇡ µ2
G(mb) ⇢3

D(mb) ⇢3
LS BRc`⌫ 103|Vcb|

4.573 1.090 0.453 0.288 0.176 �0.113 10.62 41.95
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4. Results of the updated fit in our default scenario (µc = 2 GeV, µb = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1

GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�2

min = 40.3 and �2
min/dof = 0.544.

4 Summary and outlook

The recent measurements of the q2-moments by Belle and Belle II [18, 19] has opened
new opportunities for the study of inclusive semileptonic B decays. In this paper we have
presented the results of a new calculation of the moments of the q2 spectrum in inclusive
semileptonic B decays that includes contributions up to O(↵2

s�0) and O(↵s⇤
3
QCD/m3

b). In
particular, we have reproduced many of the results presented in Refs. [15, 30] and computed
for the first time the BLM corrections O(↵2

s�0) to the q2-moments. If we employ the results
of the default fit of [12] as inputs, our predictions for the central moments of the q2 spectrum
are in excellent agreement with Belle II data [19], while there is a mild tension with Belle
data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q2-moments in the global fit confirms the above picture. The
q2-moments lower slightly the value of ⇢3

D(mb) by half a � and that of |Vcb| by a fraction
of a �, decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51 to
0.47 ⇥10�3, respectively. Because of its correlation with ⇢3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [39]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.2%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.95 ± 0.27exp ± 0.31th ± 0.25�) ⇥ 10�3 = (41.95 ± 0.48) ⇥ 10�3 . (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D⇤`⌫ [41–44], but agrees well with the very recent Belle II result

– 17 –

• The central value shifts slightly

• Belle II data are needed to understand how to apply the correction

• Can we go beyond scalar QED?

[Finauri, Gambino, ’23]
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Exclusive decays



Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi
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Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi

scale ΛQCD
independent

Lorentz structures

form factor
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Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi

Form factors determinations

• Lattice QCD

• QCD SR, LCSR

Form factors parametrisations

• HQET (CLN + improvements) ⇒ reduce
independent degrees of freedom

• Analytic properties → BGL

scale ΛQCD
independent

Lorentz structures

form factor

only points at specific
kinematic points

data points needed
to fix the coefficients
of the expansion
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The z-expansion and unitarity

• in the complex plane form factors are real
analytic functions

• q2 is mapped onto the conformal complex
variable z

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

• q2 is mapped onto a disk in the complex z
plane, where |z(q2, t0)| < 1

Fi =
1

Pi(z)φi(z)

ni∑
k=0

aikz
k

ni∑
k=0

|aik|2 < 1

Im(z)

Re(z)

semileptonic

region

subthreshold
resonances

q2
min

q2
max

q2 = t+

[Boyd, Grinstein, Lebed, ’95, Caprini, Lellouch, Neubert, ’98]

[Alternative method: 2105.02497 and following]
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The Heavy Quark Expansion in a nutshell

The HQE exploits the fact that the b and c quarks are heavy

• Double expansion in 1/mb,c and αs

• The HQE symmetries relate B(∗) → D(∗) form factors

• At 1/mb,c drastic reduction of independent degrees of freedom

With current precision we know we have to go beyond the 1/mb,c order and we use
the following form

Fi =
(
ai + bi

αs
π

)
ξ +

ΛQCD

2mb

∑
j

cijξ
j
SL +

ΛQCD

2mc

∑
j

dijξ
j
SL +

(
ΛQCD

2mc

)2∑
j

gijξ
j
SSL

• Total of 10 independent structures to be extracted from data

• We use the conformal mapping q2 7→ z(q2) to include bounds and have a
well-behaved series
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[MB, Gubernari, Jung, van Dyk, ’19]
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B → D∗ after 2021

Comparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )

• FNAL/MILC’21

• HQE@1/m2
c

• Exp (BGL)

• JLQCD prel

• HPQCD’23

Compatible. Slope?

• Deviation HPQCD-BGJvD

• FNAL/MILC close to HPQCD

• Deviation wrt experiment
(RHFLAV

2 (1) = 0.853(17))

Requires further investigation!

• JLQCD “diplomatic” 6 / 14

• FNAL/MILC ’21
• HQE@1/m2

c

• Exp data (BGL)
• JLQCD ’23
• HPQCD ’23

• Are the Lattice QCD datasets compatible?

• What’s the source of the discrepancy with HQET? [MB, Harrison, Jung, ongoing]

• Why are experimental data so different from LQCD data?

Comparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )

• FNAL/MILC’21

• HQE@1/m2
c

• Exp (BGL)

• JLQCD prel

• HPQCD’23

Compatible. Slope?

• Deviation HPQCD-BGJvD

• FNAL/MILC close to HPQCD

• Deviation wrt experiment
(RHFLAV

2 (1) = 0.853(17))

Requires further investigation!

• JLQCD “diplomatic” 6 / 14
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Can we combine the LQCD results?

• A combined fit to all possible LQCD data is possible in the BGL approach

• How does it compare with data?

• New Belle and Belle II datasets available!

• How can we extract Vcb?

[MB, A.Jüttner, in preparation]

PRELIMINARY!
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Vcb from JLQCD and Belle II data

• With JLQCD results and Belle II datasets Vcb is flat throughout the bins

• The combination needs to account for correlations

• The statistical procedure to do it has to be carefully defined

[MB, A.Jüttner, in preparation]

[See also:2310.03680]

PRELIMINARY!
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Comparison with kinematic distributions
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Input: Experiment BelleII 23 exp, Lattice JLQCD 23 lat, (Kf , KF1 , KF2 , Kg) = (2, 2, 2, 2)

|Vub|exp+lat = 0.04108(63), (p, ¬2/Ndof , Ndof) = (0.27, 1.13, 40)
|Vub|lat (AIC) = 0.04034(89)

• Fits are all acceptable

• Theory and Experiment agree on the shapes

[MB, A.Jüttner, in preparation]

PRELIMINARY!
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What can we learn from the HQE?
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⇒ V and A1 drive the Vcb determination and they are quite well compatible

[MB, J. Harrison, M. Jung, in preparation]
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HQE with lattice only

−15 −10 −5 0 5 10

q2 [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A

0
(q

2
)

EOS v1.0.11BGJvD

LQCD B → D∗

HPQCD 2023

GKvD 2018

FNAL/MILC 2021

JLQCD 2023

−15 −10 −5 0 5 10

q2 [GeV]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
12

(q
2
)

EOS v1.0.11BGJvD

LQCD B → D∗

HPQCD 2023

GKvD 2018

FNAL/MILC 2021

JLQCD 2023

−15 −10 −5 0 5 10

q2 [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
0
(q

2
)

EOS v1.0.11BGJvD

LQCD B → D∗

LQCD B → D(∗)

HPQCD 2023

GKvD 2018

FNAL/MILC 2021

JLQCD 2023

−15 −10 −5 0 5 10

q2 [GeV]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
12

(q
2
)

EOS v1.0.11BGJvD

LQCD B → D∗

LQCD B → D(∗)

HPQCD 2023

GKvD 2018

FNAL/MILC 2021

JLQCD 2023

⇒ Motivates a joint B → D(∗) LQCD analysis

[MB, J. Harrison, M. Jung, in preparation]
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Predictions
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HFLAV

RD(∗) =
B(B → D(∗)τ ν̄)

B(B → D(∗)`ν̄)

• The predictions for RD(∗) change quite drastically combining different datasets

• The combined B → D(∗) fit yield values in between the HQE and the B → D∗

only fit
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B → D

• Belle+Babar data and HPQCD+FNAL/MILC Lattice points

0.00 0.01 0.02 0.03 0.04 0.05 0.06
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0.9
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1.3

form factors f+HzL Hupper plotL and f0HzL Hlower plotL

|Vcb| = (40.49± 0.97)× 10−3

[Bigi, Gambino, ’16]
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Pheno Status 1

• The inclusive determination is solid

• No evident issues for B → D

• Spread between inclusive and exclusive up to 3− 4σ

• Work in progress for the theory predictions of B → D∗ to understand the various
tensions

⇒ Do we have to correct for QED?

• New experimental data are available are under scrutiny
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Pheno status 2

0.2 0.3 0.4 0.5
R(D)

0.2
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0.3

0.35

0.4

R
(D

*)

HFLAV SM Prediction
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68% CL contours

World Average
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Average
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• New Lattice QCD results point to larger values for RD∗

⇒ Difference in the slopes is crucial and has to be understood

• No change in RD, where Lattice QCD results, LCSRs, HQET and experimental
data agree very well with each other
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Other open problems

• The QED issue is present also for exclusive modes

⇒ One calculation available for B → D only

⇒ The B → D∗ case is much more involved

⇒ How do we reconcile the threshold effects between the exclusive and the inclusive?

B(B → Xc`ν) = B(B → D`ν) + B(B → D∗`ν) + B(B → D∗∗`ν) + . . .

• The exclusive Vcb from B → D∗ is roughly determined by one form factor which
agrees quite well in different determinations

⇒ Even with more precise LQCD data this won’t be resolved if not made worse by
smaller uncertainties

• Concerning the inclusive determination, new branching fractions measurements
are welcome

⇒ Can LHCb have a say concerning Bs → Xc`ν̄ and Λb → Xc`ν̄?
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Conclusions

• Vcb is a fundamental parameter that drives predictions for many processes

• At the current status, there is a significant difference between inclusive and
exclusive determinations

• The inclusive determination is solid, different datasets yield very compatible
results, the only caveat is the branching fraction measurement

• The exclusive determination is more messy

⇒ New Lattice QCD determination disagree among themselves and with experimental
data

⇒ The solution is not clear yet, work in progress in many directions

⇒ This is a combined theory+experimental problem, only synergy between
communities can shed light on this puzzle
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Appendix



B → D(∗) form factors

• 7 (SM) + 3 (NP) form factors

• Lattice computation for q2 6= q2
max only for B → D

• Calculation usually give only a few points

• q2 dependence must be inferred

• Conformal variable z

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

• t+ = (mB +mD(∗))2 pair production threshold

• t0 < t+ free parameter that can be used to minimise |zmax|

• |z| � 1, in the B → D case |z| < 0.06
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The HQE parametrisation 1

• Expansion of QCD Lagrangian in 1/mb,c + αs corrections
[Caprini, Lellouch, Neubert, ’97]

• In the limit mb,c →∞: all B → D(∗) form factors are given by a single
Isgur-Wise function

Fi ∼ ξ
• at higher orders the form factors are still related ⇒ reduction of free parameters

Fi ∼
(

1 +
αs
π

)
ξ +

ΛQCD

2mb
ξiSL +

ΛQCD

2mc
ξiSL

• at this order 1 leading and 3 subleading functions enter

• ξi are not predicted by HQE, they have to be determined using some other
information
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The HQE parametrisation 2

• Important point in the HQE expansion: q2 = q2
max

• At this point Luke’s Theorem applies: the subleading corrections vanish for some
form factors

• The leading Isgur-Wise function is normalised: ξ(q2 = q2
max) = 1

• Problem: contradiction with lattice data!

• 1/m2
c corrections have to be systematically included [Jung, Straub, ’18,

MB, M.Jung, D.van Dyk, ’19]

• well motivated also since αs/π ∼ 1/mb ∼ 1/m2
c

3/15



Comparison with kinematical distributions
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distributions

4/15



Fit stability

• BGL fit to Belle 2017 and 2018 data (yellow)

• HQE fit 2/1/0 (red)

• HQE fit 3/2/1 (blue)

• compatibily of HQE fit with data driven one

• 2/1/0 underestimates massively uncertainties

3/2/1 is our nominal fit
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HQET in a nutshell

• In HQET it is convenient to work with velocities instead of momenta

• Instead of q2 we use the dimensionless variable w = vB · vD∗

• When the B(b) decays such that the D∗(c) is at rest in the B(b) frame

vB = vD∗ ⇒ w = 1

• The brown muck doesn’t realise that anything changed

• At zero recoil, the leading IW function is normalized

ξ(w = 1) = 1
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BGL vs CLN parametrisations

CLN [Caprini, Lellouch, Neubert, ’97]

• Expansion of FFs using HQET

• 1/mb,c corrections included

• Expansion of leading IW function up to 2nd order in (w − 1)

BGL [Boyd, Grinstein, Lebed, ’95]

• Based on analyticity of the form factors

• Expansion of FFs using the conformal variable z

• Large number of free parameters
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Results: unitary bounds
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Unitarity Bounds

• If q2 � m2
b we can calculate Π(q2) via perturbative techniques ⇒ χ(0)

• Dispersion relations link Im
(
Π(q2)

)
to sum over matrix elements

jµ jν

q̄′

q

= i
∫
d4x eiqx〈0|T

{
jµ(x), j†ν(0)

}
|0〉 = (gµν − qµqν)Π(q2)

∑
i

|Fi(0)|2 < χ(0)

[Boyd, Grinstein,Lebed, ’95
Caprini, Lellouch, Neubert, ’97]

• The sum runs over all possible states hadronic decays mediated by a current
c̄Γµb

• The unitarity bounds are more effective the most states are included in the sum

• The unitarity bounds introduce correlations between FFs of different decays

• Bs → D
(∗)
s decays are expected to be of the same order of Bu,d → D

(∗)
u,d decays

due to SU(3)F simmetry
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How do we constrain the OPE parameters?
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• Lepton energy and hadronic invariant mass
distributions can be used to extract non
perturbative information

• Moments of the kinematic distributions

〈En` 〉 =

∫
E`>E`,cut

dE`E
n
`
dΓ
dE`

ΓE`>E`,cut

R∗ =

∫
E`>E`,cut

dE`
dΓ
dE`∫

dE`
dΓ
dE`

• Similar definition for hadronic mass moments

• The moments give access to the distribution, but not to the normalisation

• They admit an HQE as the rate

⇒ No O(α3
s) terms are known yet
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The inclusive case

• If wrt QCD the hadronic and leptonic system are separated, QED corrections mix
them

⇒ Defining fully inclusive observables is harder

⇒ Analogy with experiments is essential

• The OPE is still valid for the total decay width

• At the differential level, this is generally not true

⇒ Large contributions factorise wrt to tree-level

⇒ Useful to go beyond NLO
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Two calculation approaches
1. Splitting Functions(

dΓ

dy

)(1)

=
α

2π
L̄b/e

∫ 1−ρ

y

dx

x
P (0)
ee

( y
x

) (dΓ

dx

)(0)

• Correction vanishes for the inclusive branching fraction
• Suitable for evaluating O(α2) and O(α/mn

b ) corrections

2. Full O(α) corrections

• Access all corrections, not only the one that factorise

• Real corrections are computationally expensive

⇒ Cuba library employed to carry out the 4-body integration

⇒ Phase space splitting used to reduce the size of the integrands

log(m2
b/m

2
e) plus distribution
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Lepton Energy spectrum

• We compute bins in the lepton energy using the full O(α) calculation

• We compare them to the results given by the splitting functions

• The difference the two calculations for the lepton energy spectrum and obtain a
full analytic formula for the radiative corrections

⇒ Relatively small, easy-to-use formula to obtain branching fractions, lepton energy
moments w/o cuts
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4.2 Numerical results

In Figure 5 we display the complete O(↵) corrections (green curve and band) and the
corresponding LL approximation (red curve) computed in Section 2. The green curve
corresponds to an interpolation obtained by considering 40 different bins that cover the full
physical region of y 2 [2

p
r, 1�⇢+r], while the green band reflects the associated numerical

integration uncertainties. Relative to the total O(↵) corrections these uncertainties typically
amount to around 1%, except close to the zero of the depicted green curve. For the purpose
of this comparison, we have factored the Wilson coefficient out and set the renormalisation
scale µ equal to mb = mkin

b (1 GeV). We observe a relatively good agreement between the LL
terms and the complete O(↵) corrections to the electron energy spectrum of the partonic
b ! ce⌫ transition, especially in the hard part of the spectrum, where the LL approximation
is expected to work best, and where the differences amount to around 10% to 20%. Writing

f (1)(y) =
L̄b/e

2
f

(1)
LL (y) + �f (1)(y) , (4.16)

with f
(1)
LL (y) given in (2.8), we can use our numerical results for f (1)(y) to obtain a sim-

ple approximate expression for �f (1)(y). Employing ⇢ = 0.057 and r = 1.25 · 10�8 and
identifying again the renormalisation scale µ with mb = mkin

b (1 GeV), we find

�f (1)(y) =

"
� 2.04264 + 119.012y � 476.678y2 + 2034.14y3

� 4402.22y4 + 4505.93y5 � 1807.38y6

� 66.8251 (y � ymax) ln (ymax � y)

#
✓(ymax � y) ,

(4.17)

where ymax = 1 � ⇢ + r. This formula encodes the exact non-LL terms for the input pa-
rameters listed above with a relative accuracy of better than 1%. It is worth noting that
in Section 2 we have used mb as the hard scale in the logarithm L̄b/e as defined in (2.4).
This is a somewhat arbitrary choice because the hard scale is in fact of the order of the
energy released, i.e. of O(mb �mc), and using a scale lower than mb in the LL QED effects
might thus be more appropriate. To investigate this aspect, we also display in Figure 5
the electron energy spectrum obtained using L̄c/e instead of L̄b/e in the LL QED predic-
tion (dotted red curve). We observe a better agreement near the endpoint but not elsewhere,
suggesting that the terms beyond the LLs cannot be accounted for by a rescaling. Hereafter
we hence evaluate all LL QED corrections with our standard choice L̄b/e.

By direct integration over the full phase space, we also obtain a value of the O(↵)

effects in the total decay width of the partonic b ! ce⌫ process,

� = �(0)g(⇢)
��C(µ)

��2
h
1 + ��(1)(µ)

i
, (4.18)

where �(0) and g(⇢) are defined in (2.5) and (2.10), respectively. The correction ��(1)(µ)

represents the O(↵) contribution to the matrix element of the operator introduced in (4.1)

– 14 –

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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Comparison with data

• Babar provides data with and without applying PHOTOS to subtract QED
effects

⇒ Perfect ground to test our calculations

⇒ Not the same for Belle at the moment, could be possible for future analysis?
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• The moments, since they are
normalised, are not affected by the
large threshold corrections

• The agreement with BaBar is very
good

〈En` 〉 =

∫
E`>E`,cut

dE`E
n
`
dΓ
dE`

ΓE`>E`,cut

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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QED for exclusive decays

• For B0 → D+`ν̄, the threshold effects were calculated and are 1 + απ
[Ginsberg, ’66, De Boer, Kitahara, Nisandzic, ’18]

• For B0 → D∗+`ν̄, the threshold effects might have a different structure because
the hadronic matrix element is different

⇒ To verify explicitly

• Structure-dependent terms are unknown, but maybe something is doable in the
HQE?

• How do we reconcile the threshold effects between the exclusive and the
inclusive?

B(B → Xc`ν) = B(B → D`ν) + B(B → D∗`ν) + B(B → D∗∗`ν) + . . .
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