

FLUKA MC for FOOT: the case of gamma de-excitations [some unexpected changes in MotherID]

Gamma de-excitation of nuclei: what is changed

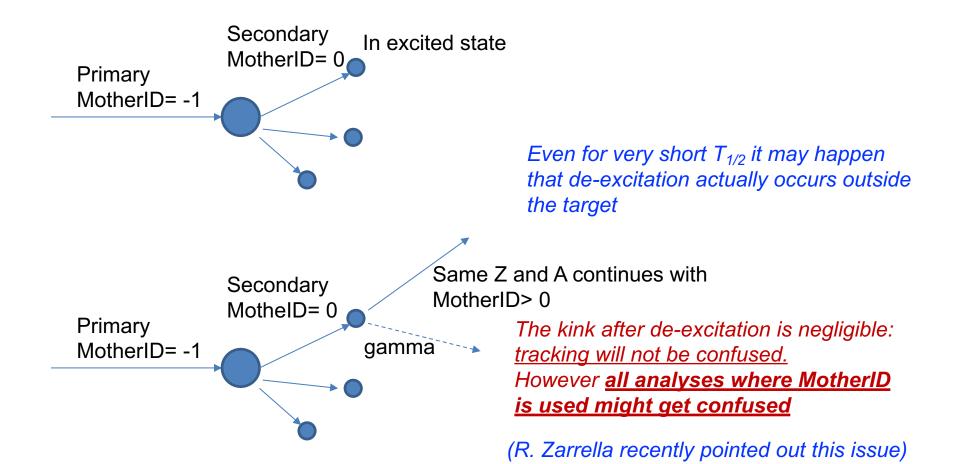
Until version 2020:

De-excitation of excited nuclear states is performed "instantaneously" during a nuclear interaction (i.e. in the same place where interaction occurs)

```
 □Drawback 1: at high energy (eg LHC or CR energies) even ps/fs mean lives correspond to measurable decay distances:
 □LHC Pb-Pb (γ≈2500): 1 ns → 750 m!, 1 ps → 0.75 m
 □CR, 1-100 PeV/n (γ≈10<sup>6</sup>-10<sup>8</sup>): 1 ps → 0.3 – 30 km!, 1 fs→ 0.3 - 30 m, often excited nuclei can interact even before de-exciting!!
 □Drawback 2: at "therapy" energies, Doppler broadening of both target/projectile emitted γ lines is overestimated:
 □Target like: ¹6O, E~0.1 MeV/n: 1 ps → 4.4 μm, R ≈ 3 μm, many excited states will decay at rest □Projectile like: ¹2C, E~150 MeV/n: 1 ns → 15 cm, 1 ps → 150 μm
```

Since version 2021:

By default excited nuclei with measurable/known mean life will not de-excite during the nuclear interaction which produced the excited state, but rather will fly until decay according to the level mean life


Old behaviour was justified by very short half-times. Examples of gamma-decays:

		•	J	•		
Isotope	E* (MeV	$\mathbf{T}_{1/2}(\mathbf{s})$		Isotope	E* (MeV)	T _{1/2} (s)
⁷ Be ^{1*}	0.43	1.33 10 ⁻¹³		1502*	5.24	2.25 10 ⁻¹²
¹⁰ B ^{1*}	0.72	7.07 10 ⁻¹⁰		1506*	7.28	4.90 10 ⁻¹³
¹⁰ B ^{3*}	2.25	1.48 10-12		1602*	6.13	1.84 10-11
¹⁰ B ^{4*}	3.59	1.02 10-13		1607*	8.87	1.25 10 ⁻¹³
¹⁰ C ^{1*}	3.35	1.07 10-13		¹⁷ O ^{1*}	0.87	$1.79 \ 10^{-10}$
¹¹ C ^{4*}	6.34	7.62 10 ⁻¹⁴		1702*	3.06	8.00 10 ⁻¹⁴
				¹⁸ O ^{1*}	1.98	$1.94 \ 10^{-12}$
¹² C ^{1*}	4.44	4.22 10 ⁻¹⁴		1802*	3.55	1.72 10-11
12C3*	3.85	8.60 10 ⁻¹²		1803*	3.63	9.60 10-13
14C2*	6.59	3.00 10 ⁻¹²				
14C3*	6.73	6.60 10 ⁻¹¹				

<u>Isomers do not decay in flight</u>: isomers are currently decayed only when at rest, since "isomers" in Fluka are defined as excited states with $T_{1/2} > 1 \mu s$, usually this is a very good approximation, unless for very large set-ups

Problem in our simulation

- The FOOT MC output is built constructing an indexing method invented "ad hoc" to retrieve the history of particles in one event, and is managed by UpdateCurrentParticle routine(*) (see Simulation/ROUTINES)
- It has a "complex" logic (complex=contorted...) which sometimes fails to recognize if, after an interaction vertex, a particle (or nucleus) remains the same or if has to be considered a new particle (this is artificial, the physics meaning of that is sloppy...)
- MotherID is invented there (it is not a concept existing in FLUKA!)
- We realize now that gamma de-excitation is one of the cases that brings UpdateCurrentParticle in confusion: MotherID is changed...

Solutions for next simulations

- . Trying to touch and correct UpdateCurrentParticle is dangerous...
- The old behaviour can be restored giving a proper directive to FLUKA:

PHYSICS -1.0 INFLDCAY

 The new behaviour was important for people working on gamma prompt monitoring in hadrontherapy. It is probably not important for FOOT

To be discussed:

- Which are the situations in which the new behaviour may cause problems? (Marco is pointing out the case of efficiency evaluation)
- Do we prefer to restore the old behaviour in out FOOT simulations?
 Let us think a bit if there any drawback

The suppression of in-flight de-excitation does not solve the issue of mother-id change

Along their path from target to TW, our secondary particles F (fragments) have a probability to perform an inelastic interaction (according to the nuclear physics terminology) with a nucleus of air or other material outside the target:

$$F + N \rightarrow F' + N^*$$
 or $F + N \rightarrow F'^* + N$ or $F + N \rightarrow F'^* + N^*$

In all these cases a gamma de-excitation will occur (with of course the exception of He)

Then it is irrelevant if the in-flight de-excitation is activated or not: the gamma will be attributed to F, which is going to change its total kinetic energy be few MeVs, and the mother-id will be changed

Maybe we can avoid this just by switching off gamma transport, but we are not 100% sure. Still to be tested