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Black holes and quantum gravity

Most fundamental puzzles in quantum gravity are related to black holes:

Breakdown of GR near curvature singularities

Hawking, Penrose

Information loss inherent to black hole evaporation

Hawking

Microscopic interpretation of black hole entropy:

S =
AH
4G

+ . . . ?
= log dmicro

String theory has allowed us to reproduce the Bekenstein-Hawking entropy
(and beyond) from microstate counting

Strominger, Vafa + . . .



Microstate counting of supersymmetric AdS black holes

We will discuss the microstate counting of AdS black holes in the controlled setup
of supersymmetric holography

Holography allows us to study quantum gravity in AdS space via a dual CFT

Use AdS/CFT to address the microstate counting problem

Black hole = ensemble of states
AdS/CFT

= ensemble of states
in quantum gravity in the dual CFT

Remarkable progress in last years reproducing the BH entropies of AdS black holes

Benini, Hristov, Zaffaroni 15

Cabo-Bizet, Cassani, Martelli, Murthy 18; Choi, Kim, Kim, Nahmgoong 18; Benini, Milan 18



Precision holography

Goal of this talk: discuss how this match can be improved to account for
subleading contributions in the large-N expansion (precision holography)

Focus on supersymmetric AdS5 black holes

Gutowski, Reall; Kunduri, Lucietti, Reall

Chong, Cvetic, Lu, Pope

CFT: Cardy-like limit works at finite N → corrected entropy and charges

Bulk: match CFT predictions by adding higher-derivative terms in Lbulk

Anomalies will guide us in this endeavour; crucial role in this story

→ First steps towards exact quantum black hole entropy



Further motivations to study higher-derivative gravity

Resolution of the horizon of small black holes via α′ corrections

Major historical role in string theory: finite microscopic entropy but singular
horizon in supergravity ⇒ SBH = 0?

SBH 6= log dmicro

Puzzle expected to be solved by α′ corrections [Sen 95] , still under debate...

Dabholkar 05 + ... ; Cano, AR, Ramı́rez 18 + ... + Massai, AR, Zatti 23

Intriguing connections to the string/black hole correspondence, swampland
arguments (species scale), etc. Chen, Maldacena, Witten; Vafa+ ; Lust, Dvali, Gómez



Further motivations to study higher-derivative gravity

EFT corrections to Kerr Endlich, Gorbenko, Huang, Senatore 17; Cano, AR 19

Higher-derivative terms capture generic modifications of the gravitational
interaction at low energies

How is the Kerr solution modified? Deviations wrt to GR from GWs data?

Theoretical prejudices against this possibility recently argued not to be correct
for near-extremal black holes... Horowitz, Kolanowski, Remmen, Santos
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Summary of relevant AdS5 black holes

AdS5 black holes of minimal supergravity:

I General (thermal) solution: depends on 4 parameters ↔ E,QR, J1, J2

Chong, Cvetic, Lu, Pope

I BPS limit with J1 6= J2: depends on 2 parameters ↔ QR, J1, J2 + constraint

Chong, Cvetic, Lu, Pope

I BPS limit with J1 = J2 ≡ J : depends on 1 parameter ↔ QR, J + constraint

Gutowski, Reall

Multi-charge AdS5 black holes of matter-coupled supergravity:

I More general (thermal) solution: depends on 3 + n parameters ↔ E,QI , J

→ only known for the U(1)3 model: CIJK ∼ |εIJK |, n = 2

Chong, Cvetic, Lu, Pope

I BPS limit with J1 = J2 ≡ J : depends on 1+ n parameter ↔ QI , J + constraint

→ only known when the scalar manifold is a symmetric space

CIJKCJ(LMCPQ)K =
1

27
δI(LCMNP )

Kunduri, Lucietti, Reall



Counting BPS states: the superconformal index

Consider a N = 1 SCFT on the spatial manifold S3 and a supercharge Q satisfying
the commutation relations

[J1,Q] = [J2,Q] =
1

2
Q , [QI ,Q] = −rIQ

where QI , with I = 1, . . . , n+ 1, are linear combinations of the superconformal
R-charge and n Abelian flavour charges

The field theory quantity of interest for us is the superconformal index I
(supersymmetric part. funct. on S1

β × S3)

I = Tr eπi(1+n0)F e−β{Q,Q}+ω1J1+ω2J2+ϕIQI

Kinney, Maldacena, Minwalla, Raju; Romelsberger

Supersymmetry implemented via (n0 = ±1 in this talk)

ω1 + ω2 − 2rIϕ
I = 2πin0



The multi-charge Cardy-like limit of the index

The black hole saddle can be isolated by taking a Cardy-like limit

Cassani, Komargodski; Choi, J. Kim, S. Kim, Nahmgoong + ...

In the flavoured case the expression for the Cardy-like limit of the index is

− log I =
kIJKϕ

IϕJϕK

6ω1ω2
− kIϕ

I ω
2
1 + ω2

2 − 4π2

24ω1ω2
+ . . .

ω1 + ω2 − 2rIϕ
I = ±2πi

Fully controlled by anomalies:

kIJK = TrQIQJQK kI = TrQI

For holographic SCFTs:

kIJK = k
(0)
IJK + k

(1)
IJK + . . . kI = 0 + k

(1)
I + . . .



Black hole entropy via Legendre transform

Extremization principle: (I ≡ − log I − . . . )

S = ext{ω1,ω2,ϕ,Λ}

[
−I − ω1J1 − ω2J2 −ϕIQI −Λ

(
ω1 + ω2 − 2rIϕ

I − 2πi
)]

− ∂I

∂ωi
= Ji + Λ , − ∂I

∂ϕI
= QI − 2rIΛ , ω1 + ω2 − 2rIϕ

I = 2πi

Hosseini, Hristov, Zaffaroni; Cabo-Bizet, Cassani, Martelli, Murthy

I = I
(
ωi, ϕ

I
)

can be written as an homogeneous function of degree 1 ⇒

S = 2πiΛ|ext

Λ satisfies a polynomial equation with real coefficients depending on the charges
QI and angular momenta Ji

ImS = 0 ⇔ (Λ2 +X)(rest) = 0 ⇒ condition on QI and Ji



Field theory predictions: universal case

The universal case is recovered by setting QI = rIQR for all I’s:

Condition on QI and Ji:

[3QR + 4 (2 a− c)]
[
3Q2

R − 8c (J1 + J2)
]

= Q3
R + 16 (3c− 2a) J1J2+ 64a (a− c)

(QR + a)(J1 − J2)2

Q2
R − 2a(J1 + J2)

Corrected BPS entropy

S = 2π
√
X = π

√
3Q2

R − 8a(J1 + J2)−16 a(a− c)
(J1 − J2)2

Q2
R − 2a(J1 + J2)

Cassani, AR, Turetta 22

a, c are the Weyl anomaly coefficients:

a =
3

32
(3kRRR − kR) , c =

1

32
(9kRRR − 5kR)



Flavoured case: assumptions

The Legendre transform can be implemented under suitable assumptions on the
anomaly coefficients: Cassani, Papini 19; Cassani, AR, Turetta 24

k
(0)
IJK satisfies the ‘magic property’

k(0)IJKk
(0)

J(LMk
(0)

PQ)K =
4

9
a

(0)δI(Lk
(0)

MPQ)

Relation between cubic and linear coefficients

kIJK = k
(0)
IJK + k(IrJrK)

The latter condition is satisfied quite generally by N = 1 quiver theories with
gauge group SU(N)ν describing D3-branes probing the tip of a Calabi-Yau cone:

kI = −ν rI



Field theory predictions: flavoured case

J1 = J2 ≡ J case Cassani, AR, Turetta 24

Black hole entropy:

S = 2π

√
p1+

ν

12

[
2a(0) + 5p2 −

2p1 (p1 − p2
2 + 2Jp2)

a(0) (p1 + J2)

]
Non-linear constraint among the charges:

p0 − p1p2 =
ν

6

[
5

2

(
p1 + p2

2

)
+ a

(0) (p2 − J) +
p1 (p2 − J)

(
p1 + p2

2

)
a(0) (p1 + J2)

]
where

p2 = −12k(0)IJKrIrJQK − 2a(0)

p1 = 6k(0)IJKrIQJQK − 4a(0)J

p0 = −k(0)IJKQIQJQK − 2a(0)J2



Application to C3/Zν orbifold theories

Motivation: embeddings in string/M-theory of dual AdS5 BHs only known for
type IIB on S5 or S5/Γ orbifolds, dual to SU(N) N = 4 SYM or the C3/Γ
orbifold theories

Choosing a ‘democratic’ basis such that rI = 1
2

for I = 1, 2, 3, the ‘t Hooft
anomalies are given by

kIJK =
νN2

2
|εIJK | −

ν

8
, kI = −ν

2
, I = 1, 2, 3

The exact superconformal R-symmetry is R = 2
3

(Q1 +Q2 +Q3) and the Weyl
anomaly coefficients are

a =
νN2

4
− 3ν

16
, c =

νN2

4
− ν

16



Application to C3/Zν orbifold theories

Black hole entropy:

S = 2π

√
Q1Q2 +Q2Q3 +Q1Q3 − 4 aJ+

2(c− a)

3a

U(1, 2, 3) + U(2, 3, 1) + U(3, 1, 2)

Q1Q2 +Q2Q3 +Q1Q3 − 4 aJ + J2

U(1, 2, 3) ≡ [Q1Q2 − J(Q3 + 2a)] (Q1 −Q2)2

Non-linear constraint:

[Q1 +Q2 +Q3 + 2(2a− c)] (Q1Q2 +Q2Q3 +Q3Q1 − 4cJ)−Q1Q2Q3 − 2(3c− 2a)J2

+
2(c− a)

3a

T (1, 2, 3) + T (2, 3, 1) + T (3, 1, 2)

Q1Q2 +Q2Q3 +Q1Q3 − 4aJ + J2
= 0 ,

T (1, 2, 3) ≡ [(3Q1 + 3Q2 − 2Q3 − 2J)Q3 − 6aJ ] (Q1 +Q2 + 2a)(Q1 −Q2)2



Higher-derivative supergravity

Given the field theory predictions, we aim at matching them holographically

The first step is to identify the gravity theory accounting for the corrections →
include higher-derivative terms

Possible strategies:

Consider higher-derivative terms directly in ten or eleven dimensions

Effective approach: construct a higher-derivative 5D effective action that
matches the (corrections to the) ‘t Hooft anomalies holographically

2nd approach boils down to supersymmetrization of the Chern-Simons terms

kIJKε
µνρσλF IµνF

J
ρσA

K
λ and kIε

µνρσλRµναβRρσ
αβAIλ



Higher-derivative supergravity

Procedure followed to obtain the four-derivative theory:

Start from off-shell supergravity and add the relevant four-derivative invariants

Integrate out the auxiliary dofs → effective action for the propagating dofs

Main features of the theory:

U(1)R FI gauging gI → non-trivial scalar potential; no hypers nor tensor mult.

Two couplings αλI and αλ̃IJK controlling four- and two-derivative corrections:

Leff ⊂ R+
1

4
C

(α)
IJKε

µνρσλF IµνF
J
ρσA

K
λ +αλIX

IXGB +
αλI

2
εµνρσλRµναβRρσ

αβAIλ

C
(α)
IJK ≡ CIJK−6αλ(IgJgK) + αλ̃IJK



The four-derivative minimal supergravity action

L = c0R+ 12c1g
2 − c2

4
F 2 − c3

12
√

3
εµνρσλFµνFρσAλ

+ λ1α

(
XGB −

1

2
CµνρσF

µνF ρσ +
1

8
F 4 − 1

2
√

3
εµνρσλRµναβRρσ

αβAλ

)

XGB ≡ RµνρσRµνρσ − 4RµνR
µν +R2 is the Gauss-Bonnet invariant

Two-derivative corrections parametrized by ci = 1 + αg2δci:

δc0 = 4λ2 , δc1 = −10λ1 + 4λ2 , δc2 = 4λ1 + 4λ2 , δc3 = −12λ1 + 4λ2

Cassani, AR, Turetta 22



Higher-derivative corrections to black hole thermodynamics

Do corrections to black hole thermodynamics agree with the field theory predictions?

How do we compute them? Several strategies can be followed:

Solve the corrected EOMs and then compute the thermodynamics;
doable for asymptotically-flat black holes, seems hopeless for AdS ones...

Cano, Chimento, Meessen, Ort́ın, Ramı́rez, AR, Zatti, 2018-2022

Find corrected near-horizon geometry and compute Page charges;
useful both for asymptotically flat and AdS black holes (closely related to Sen
formalism)

Extract the thermodynamics via evaluation of the Euclidean on-shell
action; this is the shortest and most effective strategy. No need to know the
corrected solution

Reall, Santos 19



Euclidean quantum gravity

The grand-canonical partition function Z
(
β,Ωi,Φ

I
)

is computed by the
Euclidean path integral with (anti-)periodic boundary conditions

Z
(
β,Ωi,Φ

I
)
' e−I(β,Ωi,Φ

I)

I
(
β,Ωi,Φ

I
)

should then be identified with β×(grand-canonical potential),
leading to the quantum statistical relation

I = βE − S − βΩiJi − βΦIQI

Gibbons, Hawking

Because of the master formula of the AdS/CFT correspondence:

I
(
β,Ωi,Φ

I
)

= − logZCFT

(
β,Ωi,Φ

I
)



Matching the Cardy regime of the index: universal case

Take general solution with J1 6= J2, impose supersymmetry and evaluate I

→ complicated expression in terms of the parameters of the solution

In terms of the right variables, ωi ≡ β(Ωi − Ω∗
i ), ϕ ≡ β (Φ− Φ∗):

I =
2π

27G
[1− 4(3λ1 − λ2)α]

ϕ3

ω1ω2
+

2πα

3G
λ1ϕ

ω2
1 + ω2

2 − 4π2

ω1ω2

→ matches CFT prediction after using the holographic dictionary:

kRRR =
4π

9G
[1− 4 (3λ1 − λ2)α] kR = −16παλ1

G

It improves the match of Cabo-Bizet, Cassani, Martelli, Murthy 18 to subleading
order in the large-N expansion



Results in the universal case: entropy and charges

Entropy and charges from I(β,Ω,Φ): Cassani, AR, Turetta 22

BPS entropy

S = π

√
3Q2

R − 8a(J1 + J2)−16 a(a− c)
(J1 − J2)2

Q2
R − 2a(J1 + J2)

(also: Bobev, Dimitrov, Reys, Vekemans 22)

Non-linear constraint among the charges

[3QR + 4 (2 a− c)]
[
3Q2

R − 8c (J1 + J2)
]

= Q3
R + 16 (3c− 2a) J1J2+ 64a (a− c)

(QR + a)(J1 − J2)2

Q2
R − 2a(J1 + J2)

In perfect agreement with field theory predictions!



Direct match of the entropy

Wald’s entropy:

S = −2π

∫
H

d3x
√
γ Pµνρσnµνnρσ

Page electric charge:

QR = −
∫
H

(
?F − c3√

3
F ∧A− 2λ1α√

3
ΩCS

)

Angular momentum:

J =

∫
H
εµν

[
−2∇σPµνσρηρ + Pµνσρ∇σηρ +

1

2
ιηA

(
Fµν +

c3

3
√

3
εµνρσλAρFσλ

)]
Cassani, AR, Turetta 23



Direct match of the entropy

Cassani, AR, Turetta 23; Cano, David 24

Corrected near-horizon solution & previous formulae → corrected entropy and
charges

Perfect agreement with on-shell action method (modulo frame ambiguities in the
electric charge)

Microcanonical form of the entropy relying entirely on the near-horizon geometry

S = π

√
3Q2

R − 8a(J1 + J2)−16 a(a− c)
(J1 − J2)2

Q2
R − 2a(J1 + J2)



Asymptotically-flat black holes

Take gI → 0 limit of the supersymmetric on-shell action + linear constraint:

I =
π

G

CIJKϕ
IϕJϕK

ω2
+ − ω2

−
+

2π

G
αλIϕ

I 3ω2
+ + ω2

−

ω2
+ − ω2

−
, ω+ = ±2πi

Verify this for 3-charge black holes with ω− = 0 in the U(1)3 model

Cvetic, Youm

Identify supersymmetric non-extremal saddle:

E = Q1 +Q2 +Q3 ⇔ ω+ = ±2πi

→ on-shell action of this configuration agrees with the above prediction



Corrected entropy of the BMPV black hole

S can be obtained again via Legendre transform:

S =

√
CIJKQIQJ

(
QK+

18πα

G
λK

)
− π

4G
J2
−

(
1+

24πα

G

CIJKQIQJλK

CIJKQIQJQK

)

The constraint on QI and J± boils down to J+ = 0 (well known)

The static case reproduces the well-known shift on the charges

Prediction for the corrected entropy of the BMPV black hole



Summary of main results

Finite-N corrections to the entropy and charges of AdS5 black holes: CFT
predictions + holographic match in higher-derivative supergravity

Cardy regime of the index = supersymmetric on-shell action

I Universal case: checked in full generality

I Flavoured (multi-charge) case: checked for the U(1)3 model and for random

choices of the higher-derivative couplings λI , λ̃IJK

Evidence that complex saddles of asymptotically-flat BHs also compute an index

I Prediction for the corrected entropy of the BMPV black hole

General lessons

I There are a number of strategies that render the study of higher-derivative
corrections much more tractable

I In the holographic context: they allow us to extract valuable information beyond
the strict large-N limit and to perform precision tests of holography



Future directions

Final form the supersymmetric on-shell action strongly suggests one may be able
to derive it using topological arguments

I non-renormalization theorem (only CS terms contribute)?

I Equivariant localization seems the right tool for these purposes...

Benetti Genolini, Gauntlett, Sparks; Martelli, Zaffaroni

Several new lines of research in the asymptotically-flat case:

I Attractor mechanism of complex saddles

Boruch, Iliesiu, Murthy, Turiaci

I Gravitational index of the heterotic string and small black holes?

Chowdhury, Sen, Shanmugapriya, Virmani; Chen, Murthy, Turiaci

I Match with α′ corrections in string theory?

I Match with microstate counting of the BMPV black hole?

Maldacena, Moore, Strominger; Dabholkar, Gomes, Murthy, Sen; Murthy, Castro

I ...



THANKS



Supersymmetric on-shell action

Impose supersymmetry, keeping β finite, and then evaluate the on-shell action:

E = Ω∗1J1 + Ω∗2J2 + Φ∗IQI ⇔ ω1 + ω2 −
3√
2
gIϕ

I = ±2πi

ωi ≡ β (Ωi − Ω∗i ) ϕI ≡ β(ΦI − Φ∗I)

I becomes a function of ωi and ϕI , but not of β!

I =β
(
E − Ω∗1J1 − Ω∗2J2 − Φ∗IQI

)
− S − β (Ωi − Ω∗

i )Ji − β(ΦI − Φ∗I)QI

= − S − ωiJi −ϕIQI

→ expected to match the index in the Cardy-like limit
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