White paper organization

5.1 Detector Concept

5.1.1 Charged Particle Identification at SuperB

5.1.2 BABAR DIRC

5.2 Barrel PID at SuperB

- 5.2.1 Performance Optimization
- 5.2.2 Design and R&D Status

5.3 Forward PID at SuperB

- 5.3.1 Motivation for a Forward PID Detector
- 5.3.2 Forward PID Requirements
- 5.3.3 Status of the Forward PID R&D Effort

References

Comment:

- We should use as much material from the White paper as possible.

X.1. Summary of Physics Requirement and	
Detector Performance goals	
X.1.1. Physics requirements	Cincinnati, Maryland
X.1.2. Detector concept	SLAC
X.1.3. Charged Particle Identification	Cincinnati, Maryland
X.2. Particle Identification Overview	
X.2.1. Experience of BaBar DIRC	SLAC, LAL
X.2.2. Barrel PID: Focusing DIRC (FDIRC)	SLAC
X.3. Projected Performance of FDIRC	
X.3.1. Reconstruction	LAL + others
X.3.2. MC Simulation	
- Fast simulation	Cincinnati
- Full simulation	Maryland
X.3.3. Effect of Background on performance	Maryland, SLAC
X.4. The Barrel FDIRC Detector Overview	
X.4.1. Detector layout	SLAC, Padova, Bari
- Overall figures	
X.4.2. Impact on other systems	SLAC, Padova, Bari
X.4.3. Mechanical support	SLAC, Padova, Bari
X.4.4. Photodetectors	,
- Photon Detector choice	SLAC, Trieste, Bari
- Modularity: packing fraction	SLAC, Padova, Bari
- Photon detector mechanical support	SLAC, Padova, Bari
- Optical coupling of detectors to FBLOCK	SLAC, Padova, Bari
- Temperature requirements	SLAC, Padova, Bari
- Rates and aging issues in H-8500 PMTs	SLAC, Trieste
- Magnetic shield of H-8500 PMTs	SLAC, Padova, Bari

- Prediction of number of photoelectrons per ring

Task written by:

SLAC

X. Topics for PID in TDR

X.4.5. FDIRC Mechanical Design

- Description of BaBar bars, bar boxes	SLAC
- Fused silica optics: New Wedge and FBLOCK	SLAC
- Gluing Wedge to Bar Box Window	SLAC
- Gluing FBLOCK to Bar Box Window	SLAC
- Radiation damage of optical components	SLAC

Fbox: Mechanical support of the Fused silica optics
Support of Fbox in the SuperB magnet
Padova, Bari, SLAC
Padova, Bari, SLAC

- Bar box storage at SLAC SLAC

BaBar support structure and new FDIRC
Background shielding to protect electronics & detectors
Bar box shipment to Italy
SLAC, Padova
SLAC, Padova, Bari

X.4.6. Electronics readout, HV and LV

- FDIRC electronics (Amp/TDC/ADC)	LAL
-----------------------------------	-----

Motherboard
Support services
HV power supplies
LV power supplies
LAL, Padova, Bari, SLAC
LAL, Padova, Bari, SLAC
LAL, Padova, Bari, SLAC

X.4.7. Laser calibration system

- Optics of calibration	SLAC, Maryland
- Laser and fiber optics choice	SLAC, Maryland

X.4.8. Integration issues

- Background shield and access to detector maintenance	SLAC
- Earthquake analysis of FBLOCK & bar box structure	Padova
- PMT protection (large backgrounds, helium)	SLAC, Bari

X.4.9. DAQ and computing

- Capling and Access LAL, Padova, Bai	- Cabling and Access	LAL, Padova, Bar
---------------------------------------	----------------------	------------------

X.4.10. FDIRC R&D Results until now

- Test beam results from the 1-st FDIRC prototype	SLAC
- CRT test results from the 1-st FDIRC prototype	SLAC

- Scanning setups to test H-8500 PMTs and Electronics SLAC, Maryland, Trieste, Bari, LAL

X.4.11. Ongoing FDIRC R&D

- Experience with the final FDIRC prototype in CRT SLAC, Padova, Bari

X.4.12. System Responsibilities and Management

- Management structure	SLAC, LAL, Padova, Bari
- Institutional breakdown by task	SLAC, LAL, Padova, Bari

X.4.13. Cost, Schedule and Funding Profile

- Budget SLAC, Padova, Bari, LAL, Trieste, Maryland

- Schedule and Milestones SLAC, Padova, Bari, LAL,

Trieste, Maryland

- Critical path items SLAC, Padova, Bari, LAL,

Trieste, Maryland

X.5. Forward option

X.5.1. Introduction

Physics motivation
Outline of FTOF detector technology
LAL, SLAC

X.5.2. Committee recommendation Maryland

General comments:

- We are asked to provide explicit names of editors for individual chapters. Therefore we are asked for colunteers to be able to convert institution assignments in red into names.
- Total page count should probably be less than ~ 30 pages, judging from what was done for BaBar. Out of that we probably should have 3-4 pages for Forward section. (White paper had ~ 10 pages for PID)
- We should have the plan available by the London meeting.