Networking For Gen Al

Marco Redaelli – Datacenter Sales

DCLTechnologies

- Gen Al Networking Intro
- AI/ML Fabrics
- IB or Ethernet for GPU Back-End?
- Design best practice
- Nvidia Competitive

Evolution of Compute

What makes AI Networking unique?

- GPU to GPU
 Communication Drives
 higher bandwidth flows
- Bursty traffic
- Links are saturated in Micro-seconds
- Training jobs run for long periods
- Tail latency impacts job completion time

OCP Keynote by Alexis Bjorlin at 2022 Global Summit

Gen Al Workloads

AI Training – Optimization - Data Parallelism

- Data Parallelism
 - Large data batches are divided into multiple mini-batches
 - Training performed in parallel across GPUs using mini-batches
- Without optimization, the first stage network waits for computation to complete, and during the second stage, computation waits while communication is ongoing.
- Interleaving optimization enables efficient utilization of Compute and Network Resources. Communication can commence immediately after the completion of the L3 backward pass.

Data Parallelism Optimization by Interleaving

Gen AI Traffic Patterns

- Large volume of data exchanged.
- Traffic exhibits a diverse set of patterns.
- quasi-periodic with peaks and valleys
- Highly ordered and predictable (training)
- Heterogenous
 - Large flows (gradient, weight exchange)
 - Small flows (Ctrl)

Gen AI Traffic Patterns (presented by Meta at OCP 2023 keynote)

Ref: https://www.youtube.com/watch?v=dTeEwG2Bx-k

AI/ML Fabrics

How Networking For Gen AI is different?

DC "Classical" Network

□ 2 Network Fabric @25G

Design with oversubscription

3 Network Fabric @400G & @100G
"GPU Backend" not oversubscribed

GPU Backend" not redundant

GenAl Infrastructure Building blocks – Compute Backend (GPU) Fabric

 Objective: GPU to GPU connectivity to execute an AI/ML training or inference job. This fabric is where GPUs are going to perform hyper-parameter optimizations

Fabric Highlights

- Dedicated fabric for GPU <-> GPU communication.
- Model training and inferencing traffic
- Ethernet solutions evolving as a preferred choice
- Performance approaching InfiniBand specs
- Each GPU-Server will have 8x400G or 8x(2x200G) connectivity to leaf switches.
- NIC is connected to GPU & CPU
- Software Requirements :

Lower latency

High Radix switches

Lower tail latency

GenAl Infrastructure Building blocks – Frontend Fabric

Storage Fabrics

- **Objective:** Storage fabric provides access to large-scale shared storage infrastructure. This storage is used as a shared resources for GPUs to communicate hyper-parameters during AI/ML training or inference jobs
- Fabric Highlights
 - Fabric for GPU to storage server communication.
 - Typically, 25G/100G connectivity with <u>ethernet solutions</u>

In-band/Access Management

- **Objective:** This fabric is used to distribute the AI/ML jobs on to the Data Center back-end network on GPU. In-band Management prioritizes, batches, and provides/allocates the necessary resources (GPUs, Storage, Network) for AI/ML applications.
- Fabric Highlights
 - Fabric for managing the AI/ML jobs assignment on GPUs
 - Typically, 25G/100G connectivity with <u>ethernet solutions</u>
 - Multitenancy use-cases

GenAl Infrastructure Building blocks – OOB Use case

- **Objective:** OOB Fabric provides management for GPU/Storage servers, Ethernet / InfiniBand switches, appliances (firewall, load balancer) etc.
- OOB network on server use iDRAC interface to read temperature/thermals, CPU/GPU utilization, miscellaneous sensor information.
- 1G <u>ethernet</u> connectivity solution with basic L2/L3 features

Bringing it ALL together – Al fabric

Back-End (GPU Fabric) has most demanding requirements for raw performance, lossless attributes and lowest latency

Front-End fabrics support application traffic, storage access and connection to the general network

OOB Mgmt Network for administration and fabric management

Delivering Ethernet Solutions across all use cases within Al

Network Fabrics for Gen Al Workloads

IB or Ethernet for GPU Backend?

Ethernet evolving to be the preferred choice for backend AI fabrics

- Market inflection points for Ethernets powered by AI fabrics
 - Availability of High Radix switching with next-Gen silicon technologies 64x400G (25.6T), 64x800G(51.2T), 102.4T...
 - Improved congestion monitoring, flow control, and Transport (RoCEv2) protocol availability in NOS
 - Community effort to drive Ethernet Standards Ultra Ethernet Consortium
 - Desire for **no-vendor lock-in** infrastructures
 - Silicon and supplier diversity
 - Lower Total Cost of Ownership (~3x lower)
 - Latency improvements with next Gen Silicon from 800ns to 200ns

GenAl Fabric requirements

- Data Intensive High Injection and Bisection Bandwidth
- High sustained traffic Links are saturated in Micro-second
- Low entropy flow identification for carrying RDMA Messages
- Lossless Network
- Tail Latency Sensitive Job Completion Time
- Drop and Order Sensitive
- Optimized Topologies
- Latency Important for Inferencing

Ethernet for GPU Backend : Server Side

- ✓ RoCE (RDMA over Converged Ethernet) enables RDMA (Remote Direct Memory Access) encapsulation over Ethernet. RoCE transport is fully supported by the Open Fabrics Software since OFED 1.5.1.
- ✓ InfiniBand natively supports RDMA encapsulation

→ RDMA encapsulation happen in the Network Card of the servers in hardware so no performance gap between Ethernet and IB

→ Application layer is not aware of the underlying encapsulation method

Ethernet for GPU Backend : Switch Side

GPU Fabric is not redundant

Max scale with Z9664F

What about my Datacenter Urbanization ?

Networking Criteria in Gen Al

Speed

The fastest the better

→ 400G Eth @ server
→ Manage "elephant" flow

D&LLTechnologies

Dynamic Load Balancing (DLB)

Problem statement

Dynamic Load Balancing (DLB)

Networking Criteria in Gen Al

Latency

Is switch latency affecting the global performance ?

→ Let's deep dive into switch latency impact …

DCLTechnologies

Latency in HPC and GPU context

D&LLTechnologies

How to improve latency?

Cut-Through Switching improves latency by 20% Cut-Through switching is already supported

For Z9664F :
□ Store and Forward latency : 946 ns → 1054 ns
□ Cut-Through latency : 709 ns → 867 ns

Z9864F latency should be around 400ns

Network Design Best Practice

"Rail" Design (Nvidia GPU only)

"Rail" design optimizes the GPU interconnect by leveraging "NVLink" feature available on Nvidia NIC that provides direct GPU-to-GPU communication path within the servers.

Building 8 separated network fabric for each "Rail" instead of a single fabric for all GPU ports

D&LLTechnologies

"Rail" Design with high scale

By leveraging "Rail" design, you can increase the max scale by 8 time !!

"Rail" Design for small / mid scale

A "Rail" design with a single switch per fabric can scale up to 64 XE9680 server / 512 GPU ports (400GE)

1 flow per link + single switch latency (instead of 3)

Dell PowerSwitch Portfolio (SONiC)

D&LLTechnologies

