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From Fiction to Science

ARE YOU LIVING IN A COMPUTER SIMULATION?

BY NICK BOSTRON

Published in /

GREG EGAN

I'his paper argues that at least one of the following propositions is true: (1) the
human species is very likely to go extinct before reaching a “posthuman™ stage:

any posthuman civilization is extremely unlikely to run a significant number
of simulations of their evolutionary history (or variations thereol); (3) we are
almost certainly living in a computer simulation. It follows that the beliel that
there is a significant chance that we will one day become posthumans who run
ancestor-simulations is [alse, unless we are currently living in a simulation. A
number of other consequences of this result are also discusser

NTRODUCTION

Many works of science [iction as well as some forecasts by serious technologists and
futurologists predict that enormous amounts of computing power will be available in the
future. Let us suppose for a moment that these predictions are correct. One thing that later
enerations might do with their super-powerful computers is run detailed simulations of
NV their forebears or of people like their forebears. Because their computers would be so
powerful, they could run a great many such simulations. Suppose that these simulated

people are conscious (as they would be if the simulations were sulficiently fine-grained
and il a certain quite widely accepted position in the philosophy of mind is correct). Then
it could be the case that the vast majority of minds like ours do not belong to the original
race but rather to people simulated by the advanced descendants of an original race. It is
then possible to argue that, if this were the case, we would be rational to think that we are
likely among the simulated minds rather than among the original biological ones
I'herefore, il we don’t think that we are currently living in a computer simulation, we are

Beyond space, time, eternily - the ultimate creation dream

not entitled to believe that we will have descendants who will run lots of such simulations
of their forebears. That is the basic idea. The rest of this paper will spell it out more
carefully
Apart form the interest this thesis may hold for those who are eng

futuristic speculation, there are also more purely theoretical rewards. The argument
provides a stimulus for formulating some methodological and metaphysical questions,
and it suggests naturalistic analogies to certain traditional religious conceptions, which
some may [ind amusing or thought-provoking

T'he structure of the paper 1s as follows. First, we formulate an assumption that we

) o nd 1
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Atoms to airplanes

New structures technolegies, developed across Boeing, are helping
accelerate product development sy il seil

atoms to airplanes
jeling an airplane
computationally from a molecular level up to the full-scale,
complete airfram
One important goal of this w e chy y
- -apability of the carbon
the weight

rk because we're able to rapidly assess

: 9
hundreds of polymer candidates in a matter of weeks—a process
that might take years in a lab,” Schneider said. “We're also able
to quickly determine their performance in large-scale laminated
structures and screen for the best-performing candidates. This
opens the door to huge cost savings i the future.”

Work such as this demonstrates the benefits to Boeing
generated by the company's enterprisewide approach to making

DECEMBER 2009-JANUARY 2010 / BOEING FRONTIERS

s in key areas such as structures, a term
airframe components of airplanes
ucts. C aviation design i
biity and safety—all depend on the quality
planning that drives structures engineering.
ong been a leader in structures technology, and
1t the enterprise h

them. The challenge today is to increase the company’s competi-
tive edge by investing in research that generates maximum ber
for Boeing's range of products, both commercial and miltary.
That's why, in 2008, the company created its Enterprise Tec!
nology Strategy (ETS), which takes a coordinated, *One Company
approach to technology development. The strategy is built
around eight technology areas, or domains, that support
Boeing's many business programs and can create a sustainable
technical competitive advantage that heips the company grow.



From Digital Twin to Industrial Metaverse Industrial Metaverse

Whole-System DT

Immersive DT

Digital Twin
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A massively scaled and interoperable network of real-time
rendered 3d virtual worlds that can be experienced
synchronously and persistently by an effectively unlimited
number of users with an individual sense of presence and
with continuity of data, such as identity, history, entitiements,
objects , communications and payments ”

Matthew Ball, The Metaverse




SIEMENS

A virtual world in which we can interact
in real time with photorealistic, physics-
based digital twins of our real world. We
believe digital twins are the building

blocks for the Metaverse.

=" Microsoft

Industrial Metaverse enables humans and Al
to work together to design, build, operate,
and optimize physical systems using digital
technologies.

(W={a[e)"/e M 2024 Lenovo Internal. All rights reserved.

NVIDIA

Industrial Metaverse enables industrial
companies of all sizes to create closed-loop
digital twins with real-time performance
data, ideal for running simulations and
Al-accelerated processes for advanced
applications such as autonomous factories
that rely on intelligent sensors and
connected devices.

sme”

A systematic discipline that combines
hardware [...] data conversions through
analytics/machine learning, time histories
through cyber-infrastructure, cognition

through human-machine interface, and
configuration through the Metaverse.

IndustrialMetaverse.org

A real-time, persistent simulation space that
is the sum of all virtual worlds, digital twins,
and augmented reality that connects digital
economic assets and infrastructure on a

global scale in the industrial and commercial
setting.

COSMOTECH

The Industrial Metaverse enables the
creation of digital twins of places, processes,
real-world objects, and the humans who
interact with them.




Connected whole-system digital twin with functionalities
to interact with the real system in its environment,
allowing decision makers to better understand the past
and forecast the future.”

Arthur D. Little



Anatomy of the Metaverse

Services, Games,
Shopping, Events, more

— Experience
Ad Network, Socials,
: Rating, Stores, Agents
Design and edit tools, Discover
Assets Markets, &——
Platforms
- Creator Economy

Spatial Computing —— Game Engines,
Multitasking Ul, Geospatial

loT, Microservice, Coherence, AR/VR/MR

Blockchain, NFTs

Mobile, BCI, Haptic, Voice,
Gesture

5G/6G, WiFi 6, Cloud,
7nm to 1.4 nm, XPUs,
Edge Computing, Storage
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Thien Huynh-The et al. “Artificial Intelligence for the Metaverse: A Survey” arXiv:2202.10336v1 [cs.CY] 15 Feb 2022



Metaverse System Model
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The natural habitat of Al is in the
virtual world.”

Dr. Michael Grieves
- Intelligent digital twins and the development and management of complex systems =
\
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The Intertwined Nature of Metaverse and Al

Sensors/loT/Sim
Uses

Digital Twin/Metaverse
S ENE 7 &"ﬂ" A
- ﬁo‘;ﬂ&v i ; ‘L' : e

Creates/
Operates/
Monitors

Validates
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Al value for the Metaverse

Services, Games,

I;g[]sc()ar:ial()l:]z 2tet . Shopping, Events, more
Assistance
Experience
Ad Network, Socials,
. Rating, Stores, Agents
Recommendation @ - Discover

Design and edit tools,

.—|— Creator Economy ® Assets Markets,
Content Generation Platforms

— Spatial Computing TN Game Engines,
Multitasking Ul, Geospatial
Coherence, AR/VR/MR

Compute Speed-up &

loT, Microservice,

Smart Contracts &—————— Blockchain, NFTs

Mobile, BCI, Haptic, Voice,

Inclusivity&Intuitivity R e

5G/6G, WiFi 6, Cloud, 7nm to

Al ops, MLops 1.4 nm, XPUs, Edge Computing
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How Today’s Al is Shaping Tomorrow’s Possibilities

3D Modeling & Visualization
} , =SNG T

Decentralized Computing Network Optimization Confidential Al Solutions

Human-Machine Physically Accurate Realistic Interactive
Interactivity Simulations Virtual Entities
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How Today’s Al is Shaping Tomorrow’s Possibilities

3D Modeling & Visualization Decentralized Computi
! ' NN 5 %

ng Network Optimization Confidential Al Solutions

Human-Machine Physically Accurate Realistic Interactive
Interactivity Simulations Virtual Entities
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Advances in Neural Rendering and Mesh Generation

PixeINeRF
(2021)

novel view synthesis and sin

pixeINeRF: Neural Radiance Fields from One or Few Images
Alex Yu Vickie Ye Matthew Tancik

by 33:3, ﬁ"ﬁﬂﬂt\n’

ascene prior, enabling i to perform novel view synthesis in
afeed-forward manner from a sparse set of views (as few as
one). Leveraging the volume rendering approach of NeRF,
our model can be trained directly from images with no ex-
plicit 3D supervision. We conduct extensive experiments
on ShapeNet benclmarks for single image novel view syn-
thesis tasks with held-out objects as well as entire unseen
categories. We further demonstrate the flexibilisy of pixel-
NeRF by demonstrating it on multi-object ShapeNet scenes
and real scenes from the DTU dataser. In all cases, pix-
eINeRF outperforms current state-of-the-art baselines for
image 3D reconstruction.
For the video and code. please visit the project website

Instant Ngp

(2022)

Neuralangelo
(2023)

Magic3D
(2023)

Angjoo Kanazawa
UC Berkeley

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MULLER, NVIDIA, Switzerland
ALEX EVANS, NVIDIA, United Kingdom
CHRISTOPH SCHIED, NVIDIA, USA|

der photorealistic novel views. it is often impractical as it

~ ALEXANDER KELLER, NVIDIA, Germany Q
=) SoiNaRF N
(o] https://nvlabs.github.io/instant-ngp {?r]
> 3 second 13 ceconds 40 seconds a
P =
_~ o
— - 4
- @)
(U Figure 1: NeRF from one or few images. We prese /',
o representation from 3 sngle (10p)or few posed images (botiom). PixeNeRF can b trined on & set of mali-view imges, sllowing it 0 e
8 rate plausible novel view synthesis from very few input imagy 2
= ralization capabilities ard performs poarly when oy theee input views are available (bottom ri &
) " >
> Abstract 1. Introduction Q
S o)
N We propose pixelNeRF, a learning framework that pre- We study the problem of synthesizing novel views of a =
—dicts a continuous newral scene representation conditioned  scene from a sparse set of input views. This long-standing S
O on one or few inpur images. The existing approach for  problem has recently seen progress due to advances in dif- e
< constructing neural radiance fields (27] involves optimiz-  ferentisble neural rendering [27, 20, 24, 40]. Across these S
O ing the representation 1o every scene independently, requir-  approaches. a 3D scene is represented with a neural net- o
—  ing many calibrated views and significant compute time work. which can then be rendered into 2D views. Notably, [ tesin single GPU for mutiple tasks In Gigapinel image we represent 3 gigapinel image by [
S Werake a sep towans resolvin these shortcomings by in. the recent method neural radiance fields (NeRF) [27] has el ek SOF e s Ammm.:,.u., 530 pce s st gt 20 st Nl e mhm];wki’\‘\‘::u: ks
* troducing an architecrure that conditions @ NeRF on im-  shown impressive performance on novel view synthesis of i o e et e v i el v
L2 age inpuis in a fully comvolutional manner. This allows a specific scene by implicitly encoding volumetric density “Aicient implementation .,wmn. ‘henefite apid traning, high duabty, and simphcity. Our encodin e e e e A
P< the network to be trined across multple scenes 10 learn and color through a neursl network. While NeRF can ren- ki oyl e ey eiab e e, oy gl o i =

and men
ing pixeINeRF. a leaming framework that enables predict-

e & e Carabar o o ST Neural graphics prisitve,pacameteized by flly conpected newal et achiectretht i trivial 1o parllelize on modern GPUS We everage this
requires a large number of posed images and a lengthy per- joeks, can b costly to tran and evabuate. We reduce this cost withaversatie  parallelism by implementing the whle system using fully-fused CUDA ker
scene optimization. priuery
. ifing quabty. thus significantly reducing the mumber of fostng point  We achiee & combined speedup of several oders of magaitude, cnabling
In this paper. we address these shortcomings by propos- wrpicks e d s ] specdup e =

ry access operations. 2 small ncural etwork i augmened
st b bl of bl et vecor: whose vaucs a op

training of high-qualty neural graphics peimitives in a matter o seconds,
rendering intens of milliseconds a a resalution of 1920x1080.

ing NeRFs from one or several images in a feed-forward
manner. Unlike the original NeRF network, which does not

allowsthe network to disambiguate hash collsions, makng foe »simple

CCS Concepts - Computing methodologies — Masstvely paralel algo-
nthms, Vectar

image features aligned to each pixel as an input. This im-
conditioning allows the framework o be trained on a

make use of any image features, pixeINeRF takes spatial Rt ~--~r‘7<-m

i o Ao Kelr, VIDIA Berl,  codings, Hashing

Additional Key Words and Phrases: Lmage Synthesi, Neural N

works, E

ik o Cltaogh

3PUs, Parallel Computation, Function Approximation

set of multi-view images. where it can learn scene prioes

contrast. NeRF is unable to generalize and performs poorly

when few input images are available, as shown in Fig. 1.

Rendering Time (ms)

t0 perform view synthesis from one or few input views. In Y i o e S e
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Thomas Maller, Alex E 4 Alcxander Keller. 2022,
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PixelNeRF
10-30 per pixel <1 per pixel

Neuralangelo: High-Fidelity Neural Surface Reconstruction

Zhaoshuo Li'?  Thomas Miller'  Alex Evans'  Russell H. Taylor’  Mathias Unberath®
Ming-Yu Liu'  Chen-Hsuan Lin'
INVIDIA Research

ohns Hopkins University

ngel

3D surface
reconstruction

urface reconstruction from RGB imag

fidelity 3D s neural volume
or depth Shown n he

¢ s an extracted 3D mesh of 4 courthouse.

Figure 1. We pres:
rendering,

euralangelo, 3 framework foe hi
even without auxilsry data such as segmentai

Abstract 1. Introduction

Neural surface reconstruction h

erfu for recovering den:

been shown 10 be pow- 3D surface reconstruction sims to recover dense geomet-

3D surfaces via image-based neu- ric scene structures from multiple images observed at differ-

ral rendering. However, current methods struggle o recover  eng viewpoints [7]. The recovered surfaces provide structural
detailed structures of real-world scenes. To address the  information useful for many downstream applications, such
issue, we present Neuralangelo. which combines the rep- as 3D asset generation for augmentedivirtual/mixed real-
resentation power of multi-resolution 3D hash grids with ity or cnvironment mapping for autonomous navigation of

neural surface rendering. Two key ingredients enable our ap- robotics. Photogrammetric surface reconstruction using
proach: (1) numerical gradients for computing higher-order  monocular RGB camera is of particular interest, as it equips
users with the capability of casually cre; ital twins of
optimization on the hash grids controlling different fevels of  the real world using ubiquitous mobil
details. Even withour awiliary inputs such as depth, Neu-
ralangelo can effectively recover dense 3D surface structures
from mudti-view images with fidelity significantly surpass-
ing previous methods, enabling detailed large-scale scene
recanstruction from RGB video captures.

derivatives as a smoothing operation and (2) coarse-to-fine

devices.

Classically, multi-view stereo algorithms [0, ,39]
had been the method of choice for sparse 3D reconstruc-
tion. An inherent drawback of these algorithms, however, is
their inability to handle ambiguous observations, e.g. regions
with large areas of homogeneous colors. repetitive texture

Magic3D: High-Resolution Text-to-3D Content Creation

Chen-Hsuan Lin®  Jun Gao® Luming Tang®  Towaki Takikawa®
Xun Huang ~ Karsten Kreis ~ Sanja Fidler'

ohui Zeng"
Ming-Yu Liu'  Tsung-Yi Lin

NVIDIA Corporation

Abstract

DreamFusion { 3] has recently demonstrated the wiilisy
of a pre-trained text-to-image diffesion model to optimize
Neural Radiance Fields (NeRF} [25], achieving remarkable
text-10-30 synthesis results. However, the method has two in-
herent limitations: (a) extremely stow optimization of NeRF
and (b} low-resolutio
leadi
time. In this paper, we

image space supervision on NeRF,
low-quality 3D models with a long processing

dress these limitations by utilizing @

two-stage optin

zation framework. First, we oblain a coarse
model using a low-resolution diffiesion prior and accelerate
with a sparse 3D hash grid structure. Using the coarse repre-
sentation s the initialization, we further optimize a textured
30> mesh model with an efficient differentiable renderer in-
ucting with a high-resolution latent diffusion model. Our
‘method, dubbed Magic3D, can create high quality 3D mesi
models in 40 minutes, which is 2x faster than DreamFu-
sion (reportedly taking 1.5 hours on average), w
achieving higher resolution. User studies show 61.7% raters
to prefer our approach over DreamFusion. To
the im

ile also

conditioned generation capabilities, we provide

wsers with new ways 1o control 3D synthesis, opening up new
avenutes 1o various creative applications

L Introduction

3D digital content has been in high demand for a variety
of applications, including gaming. entertainment, architec-
ture. and robotics simulation, It is slowly finding its way into
vintually every possible domain: retail, online conferencing,
virtual social presence, education, erc. However, creating
professional 3D content is not for anyone — it requires
immense artistic and aesthetic training with 3D modeling ex-
pertise. Developing these skill sts takes a significant amount
of time and effort. Augmenting 3D content creation with
natural language could considerably help democratize 3D
content creation for novices and turbocharge expert artists

- cqual comtrbution

s melibls

om/Labs/di

Image content creation from text promps [,

has seen significant progress with the advances of diffusion
models [13., 43, 4] for generative modeling of images. The
e large-scale datasets compising billions
of samples (images with text) scrapped from the Internet
and massive amounts of compute. In contrast, 3D content
generation has progressed at a much slower pace. Existing
3D object generation models [1,0. 19] are mostly categorical.
A trained model can only be used to synthesize objects for a

key enablers

single class, with early signs of scaling to multiple classes
shown recently by Zeng er al. [19). Therefore, what a user
can do with these models is extremely limited and not yet
seady for artistic creation. This limitation s largely due to the
lack of diverse large-scale 3D datasets — compared to image
and video content, 3D content is much less accessible on the
Internet. This naturally raises the question of whether 3D
neration capability can be achieved by leveraging powerful
text-to- aerative models.

Recently, DreamFusion [*1] demonstrated its remarkable
ability for text-conditioned 3D content generation by uti-
lizing a pre-trained text-to-image diffusion model [ 3] that
mages as a strong image prior. The diffusion
model acts as a critic to optimize the underlying 3D repre-
sentation. The optimization process ensures that rendered
es from a 3D model. repeesented by Neural Radiance
Fields (NeRF) [25), match the distribution of photorealis-
tic images across different viewpoints, given the input text
prompt. Since the supervision signal in DreamFusion oper-
¥ low-resolution images (G4 x G4), DreamFusion
cannot synthesize high-frequency 3D geometric and texture
details. Due t the use of inefiicient MLP architectures for
the NeRF representation. practical high-resolution synthesis
may not even be possible as the required memory footprint
and the computation budget grows quickly with the resolu-
tion. Even at a resolution of 64 x (4, optimization times are
in hours (1.5 hours per prompt on average using TPUVA)

senerates

ates on v

In this paper, we present a method that can synthesize
highly detailed 3D models from text prompts within 4 re-
duced computation time. Specifically, we propose a coarse-

Instant NGP

Neuralangelo
~100-500 per pixel

Scene Complexity

High

Medium-High Very High

Photorealism

No/ Limited

Yes Yes

Real-time Capability No

Yes No

Lenovo
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“Instant Neural Graphics Primitives with a Multiresolution Hash Encoding” Thomas Miiller et al. ACM Transactions on Graphics (SIGGRAPH), July 2022a
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Towards Real-Time Physically Accurate Simulations

Cell-average non-orthogonality angle (LAPLACIAN)  Cell-average non-orthogonality angle (SMARTSIM)
0.0 100200300 473

0.0 10.020.030.0 47.1

n ¢",
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i TP

Approximating mesh-motion Laplacian mesh
motion solver in OpenFOAM with MLP

confour gt of UMogriude

contout gkt of UMogriude

0.00

Using CNN to Solve Euler-Lagrange, Momentum
Transfer, and Incompressible RANS Equations
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Gen Al

Al / ML
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Simulating high energy physics calorimeter detector
outputs with 2D GAN

Video generation models as general purpose
simulators of the physical world?
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Tensors Reshape Compute Architectures

HPC Viz / Render Edge/Client

TLLLL oo T I
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Al-optimized Portfolio from Model Development to Inferencing
80+ new and enhanced Infrastructure platforms — Pocket to Cloud, Edge to Core

Data Management

Solutions

High Performance File System (w/WEKA)
Object Storage Solutions (w/Cloudian)

DSS-G / Spectrum Scale
DM7100F DE6600
DM5100 DE6600

ML & Data Analytics

Data Science Workstation

Edge NEW P3 Tower
NEW P3 Ultra Mobile

NEW P3 Tiny P16 Gen1
Desktop P16 Gen2
NEW PX P16v Gen1
NEW P7 P1 Gen5

P620 P1 Gen6

NEW P5

Lenovo

Deep Learning Training HGX

Liquid Cooling Training

4-socket 2-Socket ST650 V3 Intel SR680a V/3 8-GPU HGX zgggg"’\l\m SR780a 8-GPU HGX
SR850 V2 SR650 V2 e SR670/75 V3 4-8x PCle SR685V38-GPUHGX = g
SR850 V3 Intel  SR650 V3 Intel m SR670/75 V3 4-GPU HGX R
SR860 V2 SR655 ST sl ol ol o : /,'{\
SR860 V3 Intel  SR655 V3 AMD i NN
SR665 g | N / &*
SR665 V3 AMD a1
ThinkSystem
ThinkPad with Neural Edge Al Appliances
Processing Units
ThinkPad X13s Gen1 — 15 TOPS Caniiad Clients ThinkAgile ~ ThinkAgile  ThinkAgile
ThinkPad Z13 Gen2 — 11 TOPS N SE10, SE10-1 MX Systems  HX Systems VX Systems
. NEW SE350 V2 M90 g Nutart v
ThinkPad 216 Gen2 — 11 TOPS (Microsoft) (Nutanix) (VMware)
) NEW SE360 V2  SE30 g MX3330iE HX1330 VX3331
ThinkPad T14s AMD Gen4 — 11 TOPS SE450 e s
ThinkPad T14 AMD Gen4 — 11 TOPS N e : MX3330-H HX1331 VX3530-G
ThinkPad T16 AMD Gen2 — 11 TOPS N/ MX3331-F HX2330 VX7531
ThinkPad X13 AMD Gen4 — 11 TOPS Al Aopli 2 MX3331-H HX2331
ppliance MX3530-F HX3330 -
SETO MX3530-H  HX3331 - ,
Panorama _ MX3531-F HX5530 “
MX3531-H HX5531
Lenovo Lengvo

ThinkStation
W=13(e)"/e | 2024 Lenovo. Al rights reserved.

ThinkPat

ThinkEdge

ThinkAgile
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Challenges ahead

J

Scalability Security &
& Energy Efficiency Privacy

\

Compute & Storage
Optimization

Lenovo 2024 Lenovo Internal. Al rights reserved.

P

Interoperability
& Standards

m

Ethic & Regulations
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Lenovo E2E — OVX Infrastructure Solutions
Through Collaboration with NetApp and NVIDIA

N
]

o e |

Lenovo 2023 Lenovo

Physics Materials Path-Tracing

Archiecture, - Enulactumg
Engineenng, Construction Entertainment Product Development

Simulation

.

Game
Development

- RTX Renderer

NVIDIA
Enterprise
Support

App AlPod ™




The benefits of MV tech application embrace all industries.

Automotive

Energy

Infrastructure

Retail

Science

Fast-Track Industrial Factory
Planning

Developing Custom
Applications for Factory
Planners

Accelerating Fusion Reactor
Design and Development
Reducing Downtime and
Unplanned Maintenance
Optimizing Wind Farm Design
and Electricity Generation

Lenovo 2024 Lenovo Internal. Al rights reserved.

Transforming Telco Network
Planning and Operations
Simulating and Optimizing
Autonomous Railway Networks
Testing and Optimizing 5G
Deployment

Autonomous
Warehouse Robots
Retail Layout
Optimizing Distribution
Center Throughput

Accelerating Carbon Capture
and Storage

Visualizing High-Resolution,
Global-Scale Climate Data
Accelerating Climate
Research

Visualizing Molecular
Dynamics

Brain Digital Twin
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Industrial Metaverse

Are we there yet?

Takeaways:

Evolving DT
Concept

Lenovo

Metaverse-Ready
Infrastructure

Challenges

Future Trends

2024 Lenovo. All rights reserved.

The extended and enhanced use of digital twins is at the core of the Industrial Metaverse. Al applications can
speed up 3D asset creation and prototyping while providing more intelligent capabilities to DT

Integrating Al into the HPC framework for the Industrial Metaverse unlocks new capabilities, driving innovation
and efficiency in high-fidelity rendering and physical simulations.

The key technologies for achieving extended whole-system digital twins are not yet mature, but advances in Al,
edge computing, and cloud infrastructure are rapidly closing the gap.

Key issues include security, scalability, latency, costs, skill gaps, and
regulatory compliance (including Al and data governance)

Accelerators mem bw will keep increasing, Al eats HPC, Raytracing engine will be integrated into Al
superchips (i.e.: NVIDIA DGX) or Viz card will start employing DGX-like architectures
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A glimpse of the transformative power of Metaverse and Al J=

Design

Towards an Industrial Metaverse = _syeicos

Additive Manufacturing
| Process Optimization | =
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|
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Data Architecture Upgrades Needed for Al, GenAl and Industrial
Metaverse

lllustrative data architecture L] Gen Al exensions, with Gen Al exensions, with
mature tooling/solutions novel/emerging tooling/solutions

Data sources |Dataingestion | Data repositories Data services ‘ Data

Structured Batch data Relational ISR | [ Data API endpoints and API || SOnsumption

data sources ||| integration Database metadata stores management Advanced

t . AR analytics
g:ts'at;mt:g:: Et\rw:nn Graph database | Vector database Access data (structured and | S has
L Ll UL Document- (chunking, indexing, unstructured data) ‘ e

|| intelligence

‘ oriented and creating
‘ database embeddings) Prompt engineering and report-
- : - « Integrate endpoints of !9
Processing data model ontologies Gen Al

Stream Gen Al preprocessing LLMs and knowledge graphs application
processing (closed Remove PIl information

« Preaggregate data for answering ) )
source, (if not done during

Batch questions (eg, prioritize data that :
processing support the most frequent questions open preprocessing)

and answers source,
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Prepare data to feed into LLM (eg, private)
file-format conversion, cleansing for - : Execute similarity search
data quality, and sensitive data handling) against vector database

Perform data retrieval to
include in prompt

Data and model governance

MDM' Data governance: data model ontologies, data transparency Al model governance: model transparency,
ML moda and quality, access policies, data product cards, data usage outcome monitoring, and model shift

governance by gen Al, data tagging

Control center “gateway”

DataOps MLOps/LLMOps 'LiveOps } ["FinOpsrl LLM gateway (traffic monitoring, request logging, credential management,
FinOps, model access, Pl protection)

. Source: Mckinsey
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Managing the transmission

=

DNN, Deep Transfer Learning and Federated Learning might be used for intelligent radio
resource allocation in 5G/6G networks while meeting a very low latency.

RL was leveraged to address the resource-slicing problem for enhanced mobile
broadband (eMBB) and uRLLC.

Efficient radio resource management with a distributed risk-aware ML approach to monitor
and manage the transmission of non-scheduled and scheduled uRLLC traffics.

Two advanced CNN architectures, namely MCNet and SCGNet, were designed in the
physical layer to automatically identify the modulation types of incoming signals

Online channel state information (CSI) prediction method was proposed a supervised
learning framework by combining CNN and LSTM, in which two-stage training mechanism
was deployed to improve the robustness and stableness of CSI estimation in practical 5G

wireless systems

An end-to end 3D CNN architecture named ST-3DNet was designed for data traffic
forecasting.

Lenovo 2023 Lenovo Internal. Al rights reserved.
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Evolution of Al and Metaverse

Virtual Reality (VR) and
Augmented Reality Headsets
Commercialization

From Rosenblatt’s Perceptron
to DL Revolution

1957 - 2006

1992 - 2003 2012

From Stephenson’s Snowcrash AlexNet and Variational
to Grieves’ Digital Twin Autoencoders

Lenovo 2024 Lenovo Internal. Al rights reserved.

ResNets and NLP
Breakthroughs

Remote Collaboration and
Telepresence Solutions

Virtual Travis Scott
Concert

2017

Transformer Architecture
and Language Models

GPT-3 and Self-
Supervised Learning

2020

Blockchain-Based Supply

Chain

Virtual real estate trading

Al-Powered Immersive
Technologies

2023

GenAl: LLMs, Stable

Diffusion, Sora and
more



Your OVX Journey

The OVX Solution is made of 4 main components

0 Hardware Component
0 Software Component

(J NVIDIA Professional Services

O Lenovo Professional Services

2023 Lenovo

+ |nfrastructure

OVX POD from 4 to 16 OVX servers
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+ infrastructure

32 OVX is a Scalable Unit (SU)
SUPERPOD is 1 or more SU
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Lenovo HPC Data Management Portfolio

Lenovo DSS-G NVMe storage

(AN
I
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Lenovo DE series

Lenovo DM/DG
series

Lenovo Ceph
solutions

-
)

Ubuntu




Lenovo ThinkSystem Enterprise Storage Array Portfolio

Efficient, secure solutions to maximize performance and value for Al and data intensive workloads

l(lll!llllllllllll‘llll['.2

.......................

i !'l'*w‘}l}l wuiv”v‘uw‘uu

ThinkSystem DE Series

ThinkSystem DG Series

ThinkSystem DM Series

Simplified data management
Entry to High performance block
Flash and Hybrid models

Easy to configure, manage, and
scale.

LenoVvo 2024 Lenovo. Al rights reserved.

Efficient all flash data consolidation
Unified File/Block/Object

All Flash at HDD economics
Secure hybrid cloud management

Integrated ransomware protection

Leadership flash performance
Unified File/Block/Object

Flash and hybrid models to
optimize performance and scale

Secure hybrid cloud management

Integrated ransomware protection
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Sustainability: Write Performance Efficiency
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