
Open Policy Agent as authorization engine
in the Grid middleware

Federica Agostini

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Workshop sul Calcolo nell’INFN, Palau, 20 - 24 maggio 2024

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OPEN POLICY AGENT

Open Policy Agent (OPA) is an open-source authorization engine

OPA is based on an high-level declarative language (rego) that allows the
definition of policies as code

● rego is designed for expressing policies over complex hierarchical
data structures

○ great performance thanks to this optimization

A service which needs to take a policy decisions can query OPA with
arbitrary structured data (e.g., JSON) as input

● OPA evaluates the query input against policies and optionally data
● OPA decision is not limited by simple allow/deny answer, but can

generate arbitrary structured data as output

Query inputDecision

Client request

OPA
engine

https://www.openpolicyagent.org/docs/latest/

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Query input

Structured
data used by

policies
(optional)

Decision

Rego policies

OPA playground

Query inputDecision

Client request

OPA
engine

https://play.openpolicyagent.org/

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

This link can be used to
share the versioned
configuration among

developers

curl example on how to
query the policies
hosted on the OPA

remote server

In our use cases, we
used to own the OPA

server which runs with
local configurations

(rego and data)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OPA PROFILING and TESTING

opa eval command allows to evaluate a Rego query

The --profile option can be used to profile the policies

Some further option can be used to manipulate the output
and show statistical informations

OPA also provides a framework that one can use to
write tests

opa test command (plus further optional parameters)
allows to run tests, expressed as standard rego rules
prefixed with test_

https://www.openpolicyagent.org/docs/latest/cli/#opa-eval
https://www.openpolicyagent.org/docs/latest/policy-performance/#profiling
https://www.openpolicyagent.org/docs/latest/policy-testing/

Integration of OPA
into GRID middleware

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

INTEGRATION OF OPA WITH GRID MIDDLEWARE
The StoRM Tape REST API

● it is the StoRM implementation of the WLCG Tape REST API, which allows to recall files stored on tape
● OPA is used in this deployment for authorization based on X509/VOMS proxies or JWT tokens
● only specific DNs, FQANs and scopes are allowed to submit the request

The INDIGO IAM service

● IAM Scope Policies provide a mechanism to control access to OAuth scopes
● OPA evolves the current IAM PdP logic – e.g. policies are applied to users/groups as in IAM, but also to clients
● the policies definition (on data file) is backward compatible with IAM

The StoRM Webdav service

● it supports WLCG JWT scope based authorization, together with a finer-grained authorization engine
● OPA will replace the current PdP logic, making it also more compliant with the WLCG JWT Profile
● it can potentially be used by any storage service which aims to apply the storage scope rules expressed by

WLCG JWT profile

https://baltig.infn.it/cnafsd/storm-tape
https://docs.google.com/document/d/1Zx_H5dRkQRfju3xIYZ2WgjKoOvmLtsafP2pKGpHqcfY/edit#heading=h.ozszs1lr7q93
https://github.com/indigo-iam/iam
https://indigo-iam.github.io/v/current/docs/reference/api/scope-policy-api/
https://github.com/italiangrid/storm-webdav
https://italiangrid.github.io/storm/documentation/sysadmin-guide/1.11.22/references/storm-webdav-conf#fine-grained-authorization
https://zenodo.org/records/3460258

Query
inputDecision

Client request

OPA
engine

{
 "scope": {
 "read": [

 "storage.stage:/*",
 "storage.read:/*"

],
 "write": [

 "storage.stage:/*"
]
 },
 ...
}

OPA authorization example of a stage bulk-request
submission done with an allowed JWT (i.e. based on
write scopes)

In order to read/write one needs to
have one of this list of allowed
scopes

POST /api/v1/stage
allow if {
 input.method == "POST"
 input.path == "/api/v1/stage"

 true in [write_scopes_allowed,
 voms_fqans_allowed]
}

has allowed WLCG
scopes?

has allowed
FQANs?OR

A policy for POST requests
to the stage endpoint has
been defined

{
 “allow”: “true”
}

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

EXAMPLE OF OPA INTEGRATION INTO THE STORM TAPE REST API DEPLOYMENT

{
 "method": "POST",
 "path": "/api/v1/stage",
 "access_token":
"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ..."
}

The JWT contains within its scopes a
storage.stage:/

1

2

3

4

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

EXAMPLE OF OPA QUERY FROM INDIGO IAM SERVICE

Query
inputDecision

Client request

OPA
engine

[
 {
 "actor": {
 "id": "1234",
 "name": "all-users",
 "type": "group"
 },
 "matchingPolicy": "PATH",
 "rule": "DENY",
 "scopes": [
 "storage.read:/protected"
]
 }
]

{
 "denied_scopes": [
 "storage.read:/protected/file"
],
 "filtered_scopes": [
 "openid"
],
 "matched_policy": [
 0
],
 "matched_policies_by_scope": {
 "storage.read:/protected/file": [
 {
 "group": "DENY"

},
 ...
}

{
 "actor": {
 "groups": [
 "1234"
],
 "subject": "999"
 },
 "scopes": [
 "openid",
 "storage.read:/protected/file"
]
}

IAM performs a POST
request with
information about who
requested the token
and which scopes
wants to receive

A list of
allowed
scopes is
returned to
IAM,
together with
other
information

A query to OPA took ~130 ms to parse 10k
policies, which in IAM reached the client
timeout !

1

2

3

IAM policies are
provided as data
object. The format can
be both the current
supported JSON and
a new extended
format

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Query
inputDecision

Client request

OPA
engine

{
 "webdav_hosts": [
 "https://webdav.example"
]
 "read_methods": [
 "HEAD",
 "GET",
 "OPTIONS",
 "PROPFIND"
],
 ...
}

A list of read, create
and modify WebDAV
operations matching
the input method will
result in permissions
according with the
token scopes

{
 "allow": true,
 "allowed_read_operation": true,
 "audience_is_present": true,
 "mandatory_claims_are_present": true,
 "resource": "/pippo/pluto",
 "token_scopes": [
 "openid",
 "storage.read:/pippo"
],
 "wlcg_groups_are_present": true
}

The answer from OPA is an
allow/deny. StoRM Webdav does not
need to make further checks, just
honour the request

{
 "exists": "true",
 "method": "GET",
 "token": {
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "scope": "openid storage.read:/pippo",
 "wlcg.groups": [
 "/indigo-iam"
],
 ...
 },
 "uri": "https://webdav.example/pippo/pluto"
}

StoRM WebDAV knows if the
resource (uri) to which the
client wants to access exists,
thus sends this information to
OPA, together with the
received header

PoC OF OPA QUERY FROM STORM WEBDAV 1

2

3

Use case of a client request to StoRM Webdav
willing to read the resource /pippo/pluto

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

USEFUL REFERENCES

● Open Policy Agent documentation
○ OPA Policy testing
○ OPA Policy performance
○ OPA Playground

● Integration with OPA: source code
○ StoRM Tape REST API deployment
○ INDIGO IAM-OPA integration
○ Compliance with WLCG JWT Profile

● Examples of OPA playgrounds
○ StoRM Tape REST API deployment
○ INDIGO IAM-OPA integration
○ Compliance with WLCG JWT Profile

https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/policy-testing/
https://www.openpolicyagent.org/docs/latest/policy-performance/
https://play.openpolicyagent.org/
https://baltig.infn.it/cnafsd/storm-tape-ts/-/tree/master/assets/opa?ref_type=heads
https://baltig.infn.it/fagostin/iam-opa-integration
https://baltig.infn.it/fagostin/opa-for-wlcg
https://play.openpolicyagent.org/p/cbVNdyfn4P
https://play.openpolicyagent.org/p/bHQKJmF6t9
https://play.openpolicyagent.org/p/xzP0b52pyM

Bkp

StoRM Tape REST API: deployment

14

OPA Authz
server

NGINX

G
P

FS

policy
(REGO)

data
(JSON)

StoRM API
service

 db

GEMSS

TSM

StoRM Tape REST API

The StoRM Tape REST API relies on external components for authN/Z

● NGINX → authentication
● OPA → authorization

JWT token issued by INDIGO IAM

VOMS proxy

Basic authentication

HTTPs communication

HTTP communication

From CHEP 2023
poster session

/stage

/release

/archiveinfo

/recalltable

https://indico.jlab.org/event/459/contributions/11360

OPA role in the StoRM Tape deployment

● Open Policy Agent (OPA) is an open-source
authorization engine that

○ unifies policy enforcement across the stack
○ is based on an high-level declarative

language
○ allows the definition of policies as code

● Deployed and tested at INFN-CNAF for
authorization with X509/VOMS or JWT

● It seems flexible enough to replace other
authorization engines

○ e.g. Argus

15

Request with data input
(any JSON value)

OPA decision
(any JSON value)

client request

https://www.openpolicyagent.org/docs

OPA role in the StoRM Tape deployment: example

16

Request with data input
(any JSON value)

OPA decision
(any JSON value)

client request

GET /api/v1/stage/<id>
allow if {
 input.method == "GET"
 glob.match("/api/v1/stage/*", ["/"], input.path)

 any([read_scopes_allowed, voms_fqans_allowed, certificate_dn_allowed])
}

has allowed
WLCG scopes?

has allowed
FQANs?OR has allowed

DN?OR

{
 "method": "GET",
 "path": "/api/v1/stage/9a8e34bd-73fe-4b43-9139-1c5f6711577c",
 "client_s_dn": "CN=test0,O=IGI,C=IT"
}

{
 "allowed_dn": [
 "CN=John Doe jhondoe@infn.it,O=Istituto Nazionale di Fisica
Nucleare,C=IT,DC=tcs,DC=terena,DC=org",
 "CN=test0,O=IGI,C=IT"
],
 …
}

OPA role in the StoRM Tape deployment: example

17

{
 “allow”: “true”
}

{
 "method": "GET",
 "path": "/api/v1/stage/9a8e34bd-73fe-4b43-9139-1c5f6711577c",
 "client_s_dn": "CN=test0,O=IGI,C=IT"
}

{
 "allowed_dn": [
 "CN=John Doe jhondoe@infn.it,O=Istituto Nazionale di Fisica
Nucleare,C=IT,DC=tcs,DC=terena,DC=org",
 "CN=test0,O=IGI,C=IT"
],
 …
}

GET /api/v1/stage/<id>
allow if {
 input.method == "GET"
 glob.match("/api/v1/stage/*", ["/"], input.path)

 any([read_scopes_allowed, voms_fqans_allowed, certificate_dn_allowed])
}

has allowed
WLCG scopes?

has allowed
FQANs?OR has allowed

DN?OR

IAM Scope Policy

IAM Scope policies provide a mechanism to control access to OAuth scopes (documentation).

A scope policy defines:

● a rule that determines the behaviour of the policy
○ PERMIT or DENY

● a scopes selector, i.e. a set of scopes for which the policy applies
○ e.g. storage.read:/cms

● a scope matchingPolicy used to determine the scope matching algorithm
○ EQ, PATH or REGEXP

● an account or group selector, used to determine for which user account or group of accounts the policy
should apply

Order matters: the account-level policies are applied first, then group-level policies are applied
and finally policies that are not bound to any specific account or group are applied

18

https://indigo-iam.github.io/v/current/docs/reference/api/scope-policy-api/

Example of IAM scope policies
https://wlcg.cloud.cnaf.infn.it/iam/scope_policies

(requires Admin privileges)

compute scopes
allowed only to
wlcg/pilot
group

storage
scopes allowed
only to
wlcg/xfer
group

19

https://wlcg.cloud.cnaf.infn.it/iam/scope_policies

How OPA policies evolves current IAM PDP logic

● Policies definition (on data file) is backward compatible with IAM

○ but a more readable policies definition based on the entity to whom the policy is applied is supported
○ actor.type can be “subject” or “group”

■ a “subject” identifies a user or client entity

○ actor.id identifies the uuid of the subject, or group

● Added client policies for the use case of client_credentials grant (no user is involved)

○ clients are identified by actor.type=subject && actor.id=<client-uuid>
○ it has same priority as account (i.e. it applies before group entity or policies not bounded to any entity)

● REGEXP matching algorithm has been removed

○ we never saw it used in production, and
○ regexps could be dangerous

20

OPA hierarchical data structure

● the dot notation is used to
descend through the hierarchy,
in order to access the
requested variable

● all values generated by rules
can be queried via the global
data variable

● input is a reserved, global
variable which binds data
provided in the query

$ curl http://localhost:8181/v1/data | jq .result
{
 "default_decision": "rules",
 "policies": [

{
 "actor": {
 "id": "1234",
 "name": "/indigoiam",
 "type": "group"
 },
 "description": "Deny storage scopes to indigoiam group",
 "matchingPolicy": "PATH",
 "rule": "DENY",
 "scopes": [
 "storage.read:/",
 "storage.create:/",
 "storage.modify:/"
]

},
...

}

OPA reorders the rego packages (with variables and rules), data/policies, tests and
configuration within a data object

21

Current project folder tree

opa
├── config.yaml
├── policies
│ └── data.json
├── rules
│ ├── entity_matching
│ │ └── entity_matching.rego
│ ├── entity_type.rego
│ ├── policy_evaluation_order.rego
│ ├── policy.rego
│ └── scope_matching.rego
└── test

├── entity_matching
│ └── entity_matching.rego
├── entity_type.rego
├── policy_evaluation_order.rego
├── policy.rego
└── scope_matching.rego

One rego file per
operation

One test file per
rego file

Policy entity matcher
(based on
actor.id/type)

Contains OPA configuration: default decision,
authentication to OPA, enable caching results, etc.

A list of policy objects

Source code

22

https://baltig.infn.it/fagostin/iam-opa-integration

Update the policies

$ curl https://opa.test.example/v1/data/policies -k -XPATCH -H "Content-Type:
application/json-patch+json" -d '[{"op": "add", "path": "-", "value": {
 "actor": {
 "id": "1234",
 "name": "client-credentials",
 "type": "subject"
 },
 "description": "Deny access to admin scopes to client 1234",
 "matchingPolicy": "EQ",
 "rule": "DENY",
 "scopes": [
 "iam:admin.read",
 "iam:admin.write"
]
 }
}]'

OPA supports the JSON Patch operation to update a document, as for RFC 6902.
For instance, in order to upload a policy which denies access to IAM admin scopes to the
client identified by 1234, one should submit the following request:

Now, the client-vetting policy
is appended to the previous
ones

https://www.openpolicyagent.org/docs/latest/rest-api/#patch-a-document
https://datatracker.ietf.org/doc/html/rfc6902

Query OPA

$ curl http://localhost:8181 -s -d@assets/opa/input-example.json | jq
{
 "denied_scopes": [

"storage.modify:/slash/",
"storage.read:/cms/pippo",
"storage.read:/slash/pippo"

],
 "matched_policy": [
 0
],
 "filtered_scopes": [

"compute.read:/slash/pippo",
"openid",
"wlcg.groups:/pippo"

],
 …
}

{
 "actor": {
 "subject": "30559491-17b8-4bc8-84b6-7825fb7c89e5",
 "groups": [
 "1234"
]
 },
 "scopes": [
 "openid",
 "compute.read:/slash/pippo",
 "storage.read:/slash/pippo",
 "storage.read:/cms/pippo",
 "storage.modify:/slash/",
 "wlcg.groups:/pippo"
]
}

input-example.json

A simulation of IAM call-out to OPA can be done with curl

IAM performs a
POST request with
JSON-formatted
input data

24

Testing

OPA also provides a framework that one can use to write tests

● tests are expressed as standard Rego rules where the rule name is prefixed with test_
● the with keyword can be used in tests to replace the data document or called functions with mocks
● run tests with: opa test <file-or-directory>

○ all rules prefixed with test_ found in Rego are tested
○ add -v option for more verbosity
○ add --coverage option to also report coverage for the policies under test

$ opa test opa/ -v
opa/test/scope_matching.rego:
data.test.test_eq_matching: PASS (515.35µs)
data.test.test_eq_not_matched: PASS (513.561µs)
...
--
PASS: 55/55

25

https://www.openpolicyagent.org/docs/latest/policy-testing/

opa eval command allows to evaluate a Rego query.
The --profile option can be use to profile the policies

● --profile-sort option sorts the output by the total time the query has been computed, in
nanoseconds (this option includes --profile)

● --format=pretty enables the output as table format (default is JSON)
● --count=10 repeats the policy evaluation 10 time and enables statistics results
● etc.

Among other results, the output shows:
● NUM EVAL is the number of times an expression is evaluated
● NUM REDO is the number of times an expression is re-evaluated(redo)
● timer_rego_query_eval_ns is the total time OPA took to evaluate the query

OPA took ~130 ms to parse 10k policies, which in IAM was reaching the
oidc-agent timeout !

OPA profiling

26

https://www.openpolicyagent.org/docs/latest/cli/#opa-eval
https://www.openpolicyagent.org/docs/latest/policy-performance/#profiling

$ opa eval -i assets/opa/input-example.json -d opa/rules -d assets/opa/data-example.json
"data.rules.filtered_scopes" --profile-sort total_time_ns --format=pretty
[
 "openid",
 "wlcg.groups:/pippo"
]
+--------------------------------+---------+
| METRIC | VALUE |
+--------------------------------+---------+
timer_rego_data_parse_ns	10414
timer_rego_external_resolve_ns	790
timer_rego_load_files_ns	1502719
timer_rego_module_compile_ns	5217084
timer_rego_module_parse_ns	1261957
timer_rego_query_compile_ns	71675
timer_rego_query_eval_ns	2139581
timer_rego_query_parse_ns	75006
+--------------------------------+---------+	
+-----------+----------+----------+--------------+--+	
TIME	NUM EVAL
+-----------+----------+----------+--------------+--+	
434.803µs	42
411.276µs	42
384.679µs	42
100.568µs	7
90.184µs	7
89.251µs	7
77.387µs	14
76.434µs	7
71.61µs	7
65.831µs	7
+-----------+----------+----------+--------------+--+

OPA profiling
example

27

To do
Development:

● add audience policies:
○ e.g. the https://wlcg.cern.ch/jwt/v1/any audience can be obtained only by a certain group

● implement a real path algorithm to match path-parametric scopes

○ it is now just a prefix match of the requested scope
○ only scopes that matched a prefix plus "/" should be allowed
○ the rule matching the longest path wins

■ e.g. a policy on the storage.read:/home overrides the one defined for the storage.read:/
scope

Deployment:
● deploy a test IAM instance which supports OPA

○ deployment model is now only based on docker-compose and includes only OPA
○ play with OPA configuration (e.g. caching) to enhance performances

● decide which authentication mechanism apply to whom operates OPA (e.g. for adding policies)
○ OPA supports Bearer Authentication, Basic Authentication, etc.

28

Pros & counts

Pros

● very powerful tool !
● easy policy definition language – also for basic developers
● very fast, even without caching
● a lot of documentation
● OPA playground service very useful to start coding and sharing policies among colleagues
● used in industry
● very well maintained

Cons

● not so many examples in stack overflow for instance, and blogs just apply the
documentation

○ but, I have found many suggestion into GitHub issues
○ let’s start all together!

29

https://play.openpolicyagent.org/

