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INTRODUCTION:
Track reconstruction problem with

hybrid QGNN
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Scientific motivation

• The high-energy physics experiments at the 
LHC are already dealing with a huge number of 
particle tracks from the detectors, that need to 
be reconstructed

• With the High Luminosity LHC upgrade the 
number of proton-proton interactions per 
event will increase by a factor of 3-5 (140-200 
collisions per beam crossing)

• A speedup in track reconstruction is mandatory



Laura Cappelli 22 May  2024 4

The track reconstruction problem

• An event in the LHC detectors corresponds to a particle 
beam crossing
• Thousands of particles are spawned, producing hits when they 

interact with the detector layers

• The average number of primary collisions per event is called 
pileup

• Given a set of hits, the goal of track 

reconstruction is to assign labels to 

each of them
• Perfect classification: all hits from a 

particle (and only those hits) share the 

same label

• The result is a track that connects all the 

hits belonging to the same particle
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Graph Neural Networks

• A possible research direction is using Machine Learning
• A GNN is an optimizable transformation on all attributes of the graph (nodes, edges, global 

context) that preserves graph symmetries (permutation invariances)

• Global approach in contrast with the classical local approach

Global attributes

Vertex attributes

Edges attributes

• Several groups are testing this approach with more or less promising results (e.g.

EXATrkX collaboration) 

https://exatrkx.github.io/
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Hybrid quantum GNN

• Working with the CERN Quantum Technology Initiative, we are 
exploring a hybrid approach
• The aim is to see if there could be a quantum advantage (e.g. using 

parametric quantum circuits as GNN’s layers)
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The quantum circuit

• The quantum layer consists of:
• An Information Encoding Circuit (IEC)

• stores classical data into quantum states using angle encoding

• A Parametrized Quantum Circuit (PQC)

• rotates the input states in the Hilbert space depending on the angle parameters of the gates

• generates entanglement between the qubits

• Measurement of the final state

• The PQC parameters are trained to minimize the global loss function

0

0

0

0



Which technologies can we use?
Which hardware?
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Quantum ML frameworks

• Most vendors are developing their own ecosystem

• Three main technologies for implementing Quantum ML Python applications:

• INFN has signed an agreement with CERN to use IBM quantum hardware
• The agreement has just expired on the 15 May 2024

• INFN is one of the main developers of
• Open source full stack API for quantum simulation and quantum hardware control
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• Google ecosystem includes:
• open source quantum framework for building algorithms on the NISQ era 

processors

• Libraries:

• Third Party Extensions: Pennylane, Alpine Quantum Technologies (trapped ion device), Pasqal
(neutral atom)

• Documentation with ready-to-use tutorials

• VMs to run code on quantum simulator 

• Our experience:
• We have run tests on local simulator since the “original” code is written in Cirq + TFQ 

• We didn’t choose Google because we don’t have access to Google HW

qsim TensorFlow Quantum Open Fermion
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• IBM ecosystem includes:
• open source SDK for working with quantum computers, both at the quantum 

circuits level and at higher level libraries

• quantum hardware computing time: 10 min/month free plan vs. 600 min/month premium plan

• Documentation and learning tools (e.g. the composer)

• Slack channel to connect the community

• Drawback:
• Qiskit 1.0.0 release out in February 2024

• Before that, a new release every month (quite 
unstable developing phase, even for the 
documentation)

• IBM doesn’t provide functionality for ML

• for QML it is necessary to integrate Qiskit with 
a third-party ML library (pyTorch is suggested)
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• We have implemented the hybrid NN with Qiskit + pyTorch

Our experience with IBMQ

Hyperparameters

Hid dim 4

N. iters 3

Circuit ID 10

N. Qubits 4

N. Layers 3

Computing time of 1 epoch with 1 graph for training and 1 

graph for validation

(best case 10 min: ~450 sec training, ~ 150 sec validation)

A training of the quantum network, with 50 training graphs and 50 validation 

graphs, for 10 epochs. The training takes about 25 hours per epoch

• Some issues we have encountered:
• Poor support for QML

• Very slow backpropagation with TorchConnector

• Several tests with

• different backpropagation algorithms

• different simulators on both CPU and GPU         
(using NVIDIA cuQuantum SDK)

• Tests on quantum hardware are slower

• Queue time, data exchange, …



Laura Cappelli 22 May  2024 13

• PennyLane is a cross-platform Python library by 
Xanadu for programming quantum computers
• connects quantum computing to some ML frameworks, 

such as NumPy’s autograd, JAX, PyTorch, and TensorFlow, 
making them quantum-aware

• implements the differentiable programming paradigm

• backend-independent: circuits can be run on various kinds 
of simulators or hardware devices without making any 
changes

• integrated with external hardware (e.g. IBM’s Qiskit, 
Google’s Cirq, Rigetti’s Forest, …)

• implements a simulator that offloads quantum gate calls to 
the NVIDIA cuQuantum SDK

• Global community (documentation, blog, forum, 
support, …)
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• To run on IBM’s backends:
• Pennylane with pyTorch doesn’t improve the 

training time

• Pennylane with JAX was the game changer

• is a Python library for accelerator-
oriented array computation designed for 
high-performance numerical computing and 
large-scale machine learning
• We use Flax to implement the NN

• From the 10 min Qiskit’s best case, JAX and 
Pennylane take 30 sec for one epoch of 1 
training and one validation graph on Qiskit
simulator backend

Our experience with Pennylane
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Chosen frameworks

• Summary of the frameworks we have chosen:
• Data is stored in Jax format

• The Neural Network is defined in Flax

• Quantum circuits are implemented in Pennylane

• The backend for the training is the IBM Qiskit-aer
simulator called by Pennylane, but the goal is to run 
inference on IBM quantum hardware



FIRST GOAL:
hybrid network scalability tests

on quantum hardware
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Dataset and preprocessing

• Goal of preprocessing:
• select events with pileup 10, 50, 100, 150 and 200

• prepare the data to feed the model

• We use the TrackML Challenge dataset
• Collection of thousands of simulated events with pileup 200

• Each event is a set of hits, so we need to build the associated graph structure

• An event is coded as a graph where:
• Nodes are hits in a detector layer

• Edges are track segments

• Connections between hits in adjacent layers can be 
seen as candidate edges

• The network should learn to recognize true 
and fake edges

https://www.kaggle.com/competitions/trackml-particle-identification/overview
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Training

• We have trained the network to perform scalability tests
• graphs of pileup 10, 50, 100, 150 and 200

• 35 training graphs and 10 validation graphs

• Noiseless local simulator: jax-pennylane default backend

Loss on pileup 50 and 200 Accuracy on pileup 50 and 200
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Inference

• We have run the tests on 10 graphs with 
different backends:
• Noiseless Qiskit and Pennylane simulators

• Noisy Qiskit and Pennylane simulators

• Noiseless Pennylane simulator fixing a model of 
pileup 50

• IBM’s quantum hardware (IBM_Osaka)

pileup

Accuracy on 

noisless simulator

(training model 

to match pileup)

Accuracy on 

noisless simulator

(training model 

on pileup 50)

Accuracy on noisy 

simulator 

Accuracy on 

quantum 

hardware*

(IBM Osaka)

10 0.96 0.96 0.96 0.94

50 0.85 0.85 0.85 0.80

100 0.79 0.79 0.75 0.59

150 0.80 0.76 0.80 -

200 0.74 0.74 0.74 -

*Test set reduced due to issues in QPU time and resources availability



Summary
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Summary

• Finding the optimal combination of tools for QML projects is strictly related to the 
available hardware
• QC frameworks are still in a development phase, as the quantum hardware

• On quantum hardware:
• the inferred accuracies of the hybrid QGNN show a decrease compared to those obtained on 

noisy simulators 

• the execution time is still too long to allow training

• The inferred accuracies show that we could train model on small pileup and run 
tests using bigger pileup

• Further developments of our work could include the exploration of different 
encoding schemes, quantum circuits based on expressivity, and GNN 
architectures…

… Checking how QC frameworks will evolve!
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Thank you for your attention



BACKUP
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The network
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The network
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The network

1 2
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The network

1

2

3
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The network
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Track efficiency

• Track efficiency is computed as:

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑟𝑎𝑐𝑘𝑠
Correctly = 70% of correctly identified edges

pileup
Particles 

detected
Track efficiency*

10 46 0.94

50 206 0.77

100 420 0.59

150 668 0.44

200 804 0.36
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Network’s errors
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