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How to simulate neuronal networks

How can we simulate a neuronal network?
Among the most popular we have:

Spiking neural networks (SNN), with point-like neurons having a
time-dependent spike emission.

Neuron state variable: membrane electric potential. 0 E
Example (spiking neuron): leaky integrate-and-fire neuron model ” Cul_ [Val®) ‘g
(LIF) Ve T4 :
Firing-rate-based networks, with point-like neurons. Higher ‘ v

level of abstraction wrt spiking networks, similarities with ANNs. / \

W
Neuron state variable: firing rate. /\

u
Example (network design): feed-forward network. ‘ ‘ ‘ ‘

dv
T,— = —V +% u)
dt activation function



Large-scale SNN models: the cortical microcircuit

o . 2
The cortical microcircuit model is made up of 77000 LIF J

neurons and 3 - 108 connections.

The model architecture lays on anatomical and physiological Q
data and represents Tmm? of cerebral cortex.

It reproduces the spiking activity of the brain cortex
according to electrophysiological observations.

This model is used to create larger networks representing
different regions of the brain.
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Potjans and Diesmann, Cerebral Cortex, 24(3), 2014



NEST GPU: a GPU-based simulator fFor SNN

NEST (NEural Simulation Tool) is one of the most reliable SNN simulators. ne St : :
NEST GPU is the GPU-based simulator of the NEST Initiative. initiative

We validated NEST GPU by performing simulations of models such as
the cortical microcircuit.  golosio et al., Front. Comput. Neurosci., 15:627620, 2021

Golosio et al., Appl. Sci., 13,9598, 2023
[ X )
Tiddia et al., Front. Neuroinform., 16:883333, 2022 neSt LU

CPU-based simulator

We are able to exploit multi-GPU systems, with the possibility of simulating
millions of neurons and billions of synapses in a relatively low simulation time

(spanning from <1 to ~10 times the biological time simulated). nest:: gpu
Optimization in progress to take advantage of the modern supercomputers, NEST GPU is a result of active
like LEONARDO, with thousands of GPUs available. collaboration between:

Uni Cagliari & INFN, Sezione di Cagliari
INFN, Sezione di Roma 1 (APE Lab)
INM-6, Jiilich Research Center



Validation and performance evaluation
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How to model short-term plasticity

Neurotransmitter
M Replenishment

! Neurotransmitter
§ Replenishment

How can we model a synaptic mechanism?

Synaptic Effic: Further )
Decrease i

An example we worked on: short-term plasticity

Presynaptic Spike™
Short-term plasticity model modulated the synaptic Neéjggag"e s < ©
efficacy taking into account the dynamics of Resﬁng?ynapse AT A . A
neurotransmitters and presynaptic calcium.
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Moraitis et al., IEEE Nanotechnol Mag, 12(3), 2018

Y

u
x : (normalized) amount of neurotransmitters ready
3 . to be released from the synaptic vesicles
F

dx L= . . . . .
| & % = - Y _uz d(t-tsp) u : (normalized) presynaptic calcium concentration
™ - D U: baseline value of u

U - .
(;J = T—u +U (1 —u )3d(t-tsp) Synaptic efficacy modulated by u(t)x(t)
dt F



Synaptic theory of working memory

Working Memory (WM) is a cognitive process able to hold and Maintenance rehearsal

manipulate information for a short time. It is fFundamental for (”m‘“ﬂ?

speech, visual and spatial processing.

It is observed in the prefrontal cortex (PFC) during delay response e 2 WORKING el LONG-TERM
tasks. Attention MEMORY Encoding MEMORY
The Synaptic Theory of Working Memory posits that a mechanism i K@W i

of short-term synaptic facilitation leads to information maintenance Unrehearsed Some information is
in both synaptic and spiking form, with spiking activity functional for information is lost lost over time

synaptic facilitation upkeep.  Mongillo et al.,, Science, 319, 2008

Working Memory  swmem—efp spiking activity +

activity-silent mechanism

short-term plasticity?




Working memory spiking network model

Network of excitatory and inhibitory neurons.
STP-modulated connectivity.

Excitatory neurons are organized in groups, and neurons
belonging to the same group are connected with potentiated
connections. Other excitatory connections have lower synaptic
efficacy.

The model is able to describe many features related to
working memory network dynamics.

It explains the activity-silent related observations and the
measurements of average rate in the prefrontal cortex during
WM tasks.
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Structural synaptic plasticity

Activity-related changes Homeostatic changes

Structural plasticity describes the

mechanisms of connection creation,
consolidation and erasure (or pruning). high
activities
new spines

.« . dendrite
It can be activity-related or .
h omeosta tIC Fauth and Tetzlaff, Front. Neuroanat., 10:75, 2016 elongated

dendrite

In particular, synaptic pruning and ow
connection reorganization are acHvities
fundamental mechanisms for learning new spines

. . . . . (possibly silent)
and neural circuits optimization.

spines

Fauth and Tetzlaff, Front. Neuroanat., 10:75, 2016

Question: can we estimate the impact
of structural plasticity in learning?

Dendritic spines




The firing rate model

Feed-forward network with two neuron populations, — p_ Comtoxua 2,
as described in Tiddia et al., arXiv:2307.11735 [g-bio.NC] A T
We developed a theoretical framework alongside simulations in C++,  towreteresime
with which we estimated the impact of structural mechanisms in Pr P
learning and the differences in memory capacity with and without Y Y
these mechanisms. . - L
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-.:-:.j RN w/ noise
Poster . ‘ T patterns : ) : Patterns
#adv For more details about the model for learning e ——

through structural plasticity, you can find a
poster!

A framework for studying the impact of structural plasticity on
learning in firing-rate-based neuronal networks

Presenter: Luca Sergi
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Outlook

% Simulation technology for neuroscience is advancing
to fully exploit next era supercomputers to perform
simulations of large networks of neurons and with
higher level of detail

> With NEST GPU, we aim to exploit MPI-GPU

clusters such as LEONARDO to perform Th a n k yO U FO r yo U r

very-large-scale simulations

% Developing network models at single neuron a tte n tl O n !

resolution helps us to estimate the impact of low level
processes in high-level cognitive mechanisms

> Ouraim s to provide reliable synapse and
network models to study the impact of the
synaptic correlates of high-level cognitive
processes such as memory and learning
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