

The computing of the precision Muon g-2 Experiment at Fermilab

Workshop sul Calcolo nell'I.N.F.N. Palau – 20 May 2024

Paolo Girotti (INFN Pisa)

on behalf of the Muon g-2 collaboration

Outline

- Muon g-2 in a nutshell
- The computing of g-2
- Infrastructure and production
- Challenges and solutions

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- The magnetic moment of the muon is proportional to the g-factor
- g encodes all the possible virtual interactions between the muon and the magnetic field
 - With no virtual quantum interactions, g=2

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- The magnetic moment of the muon is proportional to the g-factor
- g encodes all the possible virtual interactions between the muon and the magnetic field
 - With no virtual quantum interactions, g=2
 - Considering the entire Standard Model, **g=2.002331...**

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- The magnetic moment of the muon is proportional to the g-factor
- g encodes all the possible virtual interactions between the muon and the magnetic field
 - With no virtual quantum interactions, g=2
 - Considering the entire Standard Model, g=2.00233183...

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- The magnetic moment of the muon is proportional to the g-factor
- g encodes all the possible virtual interactions between the muon and the magnetic field
 - With no virtual quantum interactions, g=2
 - Considering the entire Standard Model, g=2.00233183620(86)

Aoyama et al. (2020) https://doi.org/10.1016/j.physrep.2020.07.006

P. Girotti | Muon g-2 Experiment

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- The magnetic moment of the muon is proportional to the g-factor
- g encodes all the possible virtual interactions between the muon and the magnetic field
 - With no virtual quantum interactions, g=2
 - Considering the entire Standard Model, g=2.00233183620(86)
 - Is there something else?

Aoyama et al. (2020) https://doi.org/10.1016/j.physrep.2020.07.006

Muon g-2 Experiment

- Measurement of the Muon anomalous magnetic moment at 140 ppb
- Results published in 2021 & 2023
 - Final one expected in 2025
- $>5\sigma$ tension with 2020 theory prediction

Experimental principle

- Beam of polarized muons in a storage ring
- In magnetic field, the muon spin precesses slightly faster than its cyclotron frequency

$$\underline{\vec{\omega}_s} = -\frac{ge\vec{B}}{2m} - (1 - \gamma)\frac{e\vec{B}}{m\gamma} \qquad \underline{\vec{\omega}_c} = -\frac{e\vec{B}}{m\gamma}$$

If we do the difference we get...

Experimental principle

- Beam of polarized muons in a storage ring
- In magnetic field, the muon spin precesses slightly faster than its cyclotron frequency

$$\underline{\vec{\omega}_s} = -\frac{ge\vec{B}}{2m} - (1 - \gamma)\frac{e\vec{B}}{m\gamma} \qquad \underline{\vec{\omega}_c} = -\frac{e\vec{B}}{m\gamma}$$

If we do the difference we get...

$$\vec{\omega}_a = \underline{\vec{\omega}_s} - \underline{\vec{\omega}_c} = -\left(\frac{g-2}{2}\right)\frac{e\vec{B}}{m} \equiv -\underline{a_\mu}\frac{e\vec{B}}{m}$$

- This "anomalous" precession frequency is proportional to g-2 and to the magnetic field
- $\omega_{\underline{a}}$ is entirely due to the virtual interactions between the muon and the field
- Measure ω_a and B → obtain a_u

Main detectors

- 24 Electromagnetic calorimeters
 - 1296 channels digitized at 12 bit
- 2 Tracker stations
 - 2048 channels
- Calorimeter SiPMs sampled at 800 Mhz
 - 1.5 TB/s of istantaneous data rate
 - Online GPU-based trigger for pulse detection → 50 ns waveforms
 - ~1 TB / hour of raw data stored

Big data

- 16 muon bunches every 1.4 s
- \sim 2000 muon decays over 700 µs
- $\sim 2 \times 10^4 \, \text{s}^{-1}$ decay detection rate
- 1 raw file (2GB) produced every ~7 s
- Six years of running
 - \rightarrow ~10 PB of raw data (~5x10⁶ files)
 - → Simulation ~2 PB

	Raw	Reconst ructed	Nfiles [x10³]
Run1	1.1 PB	0.3 PB	166
Run2	0.6 PB	0.6 PB	204
Run3	1.2 PB	1.3 PB	447
Run4	2.1 PB	2.4 PB	863
Run5	3.1 PB	3.4 PB	1286
Run6	1.9 PB	1.5 PB	595
Total	10 PB	9.5 PB	3500

Data reconstruction

Start: Sun Nov 14 10:43:44 2021 Running time: 1h06m52s **Online** Fraction of data Events[/s] Data[MB/s 16.0 136.939 DAQ and DQM Instantaneous plots T Method, all calos Raw 12000 **►** Nearline 10000 data All data Minimal calibration Results in ~30' bokeh 250 300 time [clock ticks]

- Full calibration extracted and applied
- Multiple reconstruction techniques
- Produced on grid

Offline

Results in ~1 year

Calibration

Full-production -

Pre-production

DOC

FIFE environment

- Fabric for Frontier Experiments toolkit for data management and job submission
- SAM: metadata and datasets
- <u>Samweb</u>: SAM management and job progress visualization
- <u>FTS</u>: file detection, transfer and interface to SAM
- <u>IFDH</u>: high speed file transfer protocols
- <u>Jobsub</u>: job submission and scheduler for HTCondor
- <u>POMS</u>: production management
- Grafana: monitoring

The FIFE Project at Fermilab: Computing for Experiments https://doi.org/10.22323/1.282.0176

Software

- We use **art** framework
 - Highly modular
 - Made for HEP physics
 - Seamless transition between simulation and real data
- ROOT/C++ based
- Version-controlled codebase
 - Hosted by Redmine
 - Now moved to GitHub
- Calibration constants stored on **PostgreSQL** conditions database
 - Based on Interval Of Validity

Ne RSC

Simulation

- Beam dynamics, detector acceptance, accurate field modeling
- Several simulation packages for the various parts of the

beamline and the storage ring

- MARS (Proton target)
- BMAD (beamlines & g-2)
- CPU intensive
- <u>G4beamline</u> (beamlines)
- <u>Gm2ringsim</u> (injection & g-2)
- COSY (g-2 storage ring)
- Seamless interface between art and Geant4 developed by g-2
- Precision tracking over 200 km (up to 5000 turns in g-2 ring)
- Making use of HPC computing @NERSC
 - Many production completed with 10 B events

~30 PFLOPS Cray XC40 machine

Production workflow

- Gain calibration of calorimeters is extracted from the data itself
 - Need to reconstruct the calorimeter data twice
- Pre-production: minimal reconstruction to extract calibrations
- Full-production: full reconstruction of calibrated data and DQC
- Rolling production over 85 datasets

Data staging

- Disk storage at Fermilab can't hold all the data all the time
- First production step is to <u>pre-stage</u> the dataset
 - Typical dataset size: ~100k files, ~200 TiB
- Fermilab provides a common 7 PB disk pool shared by all experiments
 - Became a bottleneck for our production

Data staging

- Disk storage at Fermilab can't hold all the data all the time
- First production step is to <u>pre-stage</u> the dataset
 - Typical dataset size: ~100k files, ~200 TiB
- Fermilab provides a common 7 PB disk pool shared by all experiments
 - Became a bottleneck for our production
- <u>Dedicated</u> 1 → 1.4 → 2 PB GM2 read pool for prestaging raw files
 - Dedicated to production first, dedicated to analysis now
- Careful manual prestage scheduling
- Depending on infrastructure load, 3-6 days to prestage 200 TB of data from tape to disk

Running on GRID

- Production jobs run on HTC Grid
 - FermiGrid and OSG
 - 5000 reserved slots (1 thread, 2
 GB) for g-2
 - Data I/O is handled by SAM, IFDH and FTS

POMS

- Excellent management service with GUI
- Automatic slicing of dataset, sequential stages, recovery of failed jobs and submission scheduling
- Addition: hybrid "gm2shifter" account with limited powers

Challenges

- Storage: 10 PB of data on tape
 - Dedicated disk cache to avoid competition with other experiments
 - Prestaging scheduling
- Computation: 10⁸ CPU hours, 5x10⁶ files
 - Parallelize reconstruction as much as possible
 - Code efficiency to use < 2 GB memory
 - Improved dataset slices and submission frequency to reduce overhead and maximize grid occupancy
- Management and workforce:
 - Collaboration-wide shifters
 - POMS and automatized recovery and post-processing scripts

Challenges

Accuracy and reliability:

- Multiple validation checks at several production steps
- Periodic version-controlled software releases
- Computing intensive simulation:
 - Moved some of it to HPC supercomputers

Analysis

- Reduced ROOT trees/hists for analyzers
- Reduced art skims → stored on cache
- Institution-owned workstations and diskservers
- Slow reconstruction turnaround
 - Run-6 pre-production completely automatized and ran in parallel with data taking

Conclusions

- The Muon g-2 Experiment is a relatively small-sized experiment,
- All statistics contributes to the precision measurement → Big data to be processed and handled
- Data grew considerably from first to last run
 - Production improvements increased speed by factor 5
- Production is now complete
- Writing computing paper, expected preprint by end of year
- Final physics paper expected next year!

Dataset	N° of files	Size [TB]	Production time [days]	Rate [files/day]	Days after run ended
Run-2	267152	563	129	2071	750
Run-3	538622	1066	122	4415	794
Run-4	992005	1953	111	8937	550
Run-5	1453853	2838	141	10311	305
Run-6	748724	1760	106	7063	74

Thank you for listening!

