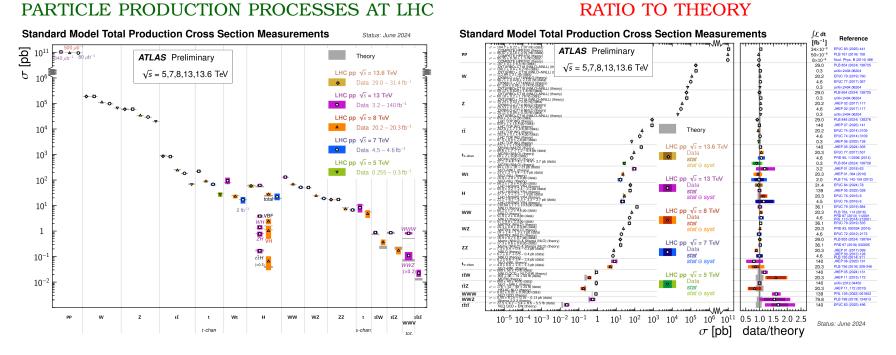
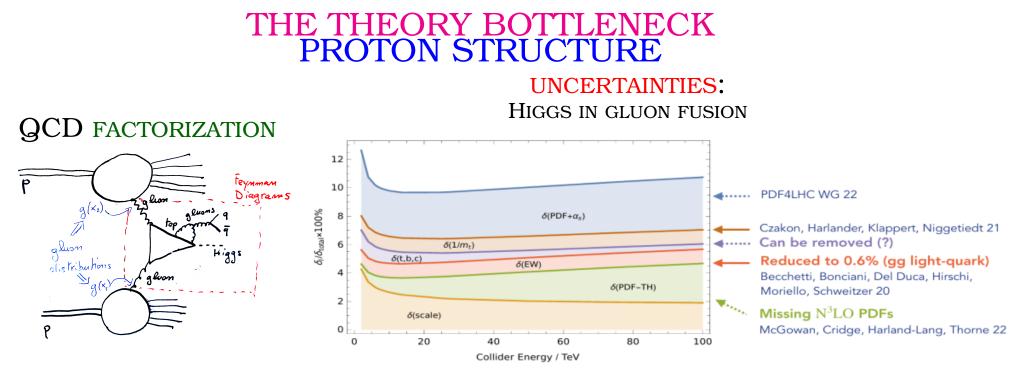


MACHINE LEARNING PRECISION HIGH-ENERGY PHYSICS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

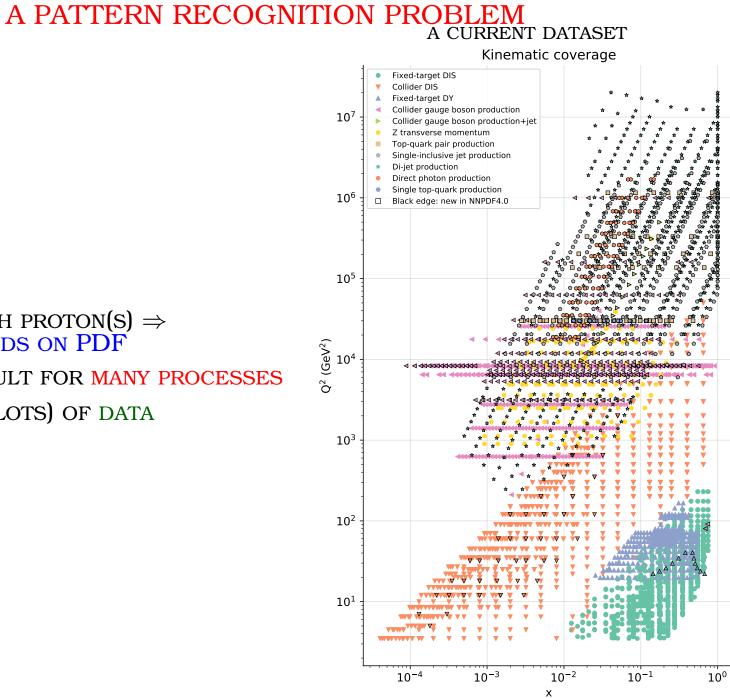


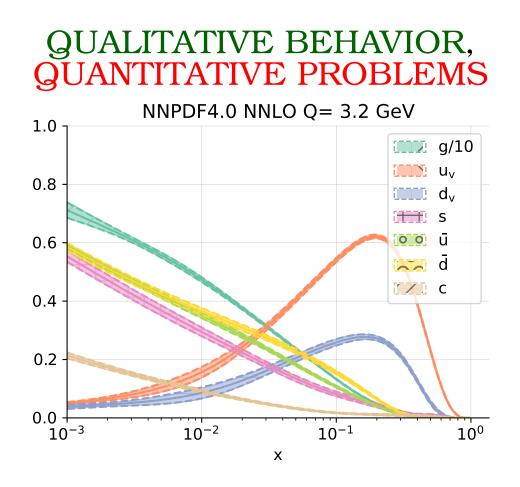
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA


PHYSICS IN THE AI ERA

PISA, SEPTEMBER 26, 2024

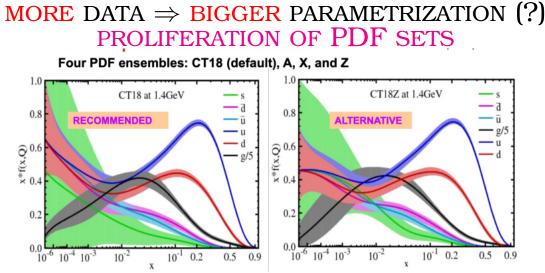
PRECISION HIGH-ENERGY PHYSICS


- production rate predicted over ~ 10 orders of magnitude
- TYPICAL ACCURACY APPROACHING PERCENT
- LOOKING FOR DEVIATIONS


(R. Röntsch, Les Houches 2023)

• PARTON DISTRIBUTIONS (PDF) "PROBABILITY" TO PULL OUT A PROTON CONSTITUENT

- IMPOSSIBLE TO COMPUTE AT PRESENT
- DOMINANT SOURCE OF UNCERTAINTY

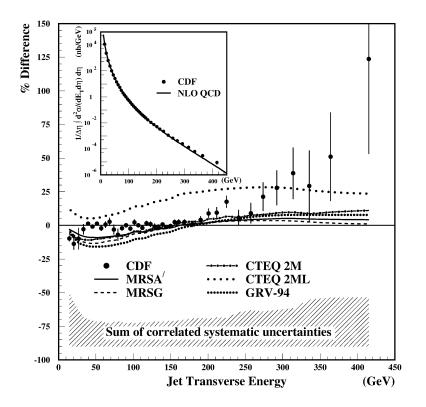

- COLLISION WITH PROTON(S) \Rightarrow RESULT DEPENDS ON PDF
- COMPUTE RESULT FOR MANY PROCESSES
- COMPARE TO (LOTS) OF DATA

- A SET OF PROBABILITY DISTRIBUTIONS OF PROBABILITY DISTRIBUTIONS
- FULL (INFINITE DIMENSIONAL) COVARIANCE MATRIX
- MUST BE DETERMINED FROM FINITE SET OF DISCRETE DATA

DO WE REALLY NEED MACHINE LEARNING? ALTERNATIVE: A MODEL-DEPENDENT APPROACH PARAMETRIZATIONS

- CTEQ5 2002: $xg(x, Q_0^2) = A_0 x^{A_1} (1-x)^{A_2} (1+A_3 x^{A_4})$
- MRST-HERALHC 2005: $xg(x, Q_0^2) = A_g x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g x^{0.5} + \gamma_g x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} (1-x)$
- CT18: $g(x, Q = Q_0) = x^{a_1 1} (1 x)^{a_2} \left[a_3 (1 y)^3 + a_4 3y (1 y)^2 + a_5 3y^2 (1 y) + y^3 \right];$ $y = \sqrt{x}; a_5 = (3 + 2a_1)/3.$

 The CT18 family of PDFs includes LHC data available up to 2018, i.e. mostly 7 and 8 TeV data


• CT18 is the primary PDF; CT18A includes the ATLAS 7 TeV W/Z data (excluded from CT18 due to very poor fit); CT18X includes scale to simulate effects of low x resummation for DIS; CT18Z includes both effects

- CT18As (new) allows a more flexible parametrization for strange
- CT18As_Lat (new) adds lattice constraint

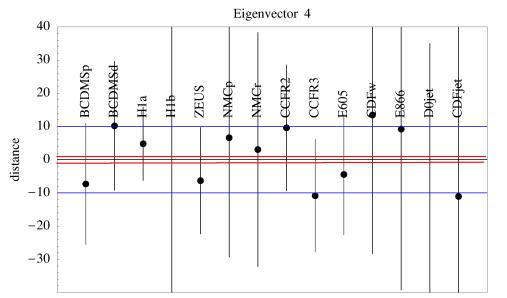
(J. Huston, PDF4LHC 11/2023)

MORE DATA \Rightarrow BIGGER UNCERTAINTIES (!)

WHAT HAPPENED IN THE PREHISTORY DISCOVERY PHYSICS 1995

- HUGE DATA-THEORY **DISCREPANCY**
- **COMPOSITE QUARKS**???
- BAD MODELING!

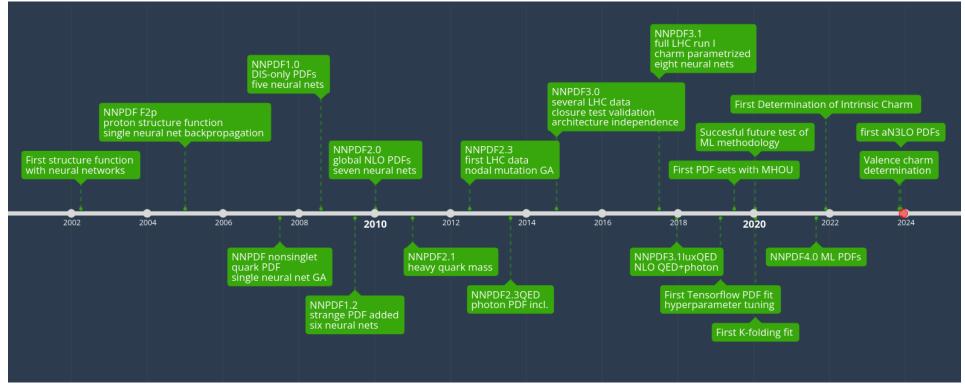
BETTER MODELING \Rightarrow NO DISCREPANCY FINAL RESULTS (1998)


WHAT STILL HAPPENS TODAY "TOLERANCE UNCERTAINTIES"

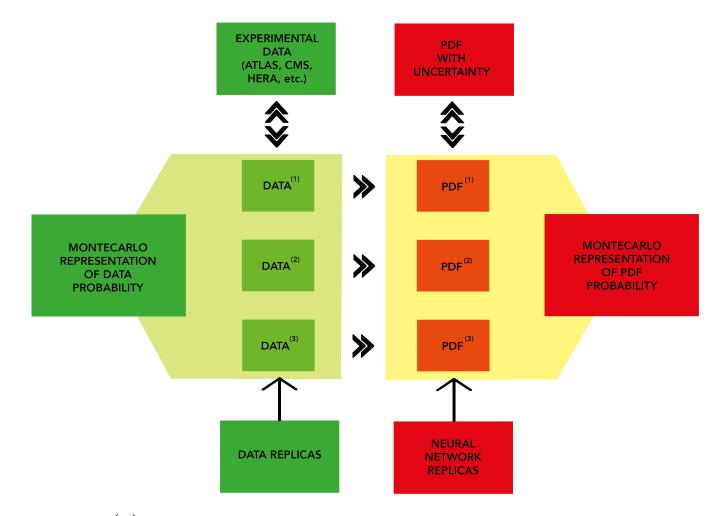
MSHT PDFS (2020)

	e-vector	+ t	+ T	Most constraining data set	— t
	1	3.71	3.75	ATLAS 7 TeV high prec. W,Z	4.76
	2	3.12	3.33	NuTeV $\nu N \rightarrow \mu \mu X$	2.85
	3	2.48	2.58	NuTeV $\nu N \rightarrow \mu \mu X$	4.07
	4	3.61	3.60	CMS 8 TeV W	2.93
	5	2.64	3.00	ATLAS 7 TeV high prec. W,Z	2.72
	6	5.22	5.46	ATLAS 8 TeV double dif Z	5.01
	7	4.07	4.37	NMC/ F_L	2.90
nts	8	3.90	3.50	LHCb 2015 W,Z	3.90
	9	5.48	5.59	LHCb 2015 W,Z	3.73
	10	3.55	3.58	BCDMS $\mu p F_2$	4.87
	11	3.06	2.91	DØ W asym.	4.83
	12	1.42	1.71	DØ W asym.	3.40
	13	3.87	4.10	CMS asym. $p_T > 25, 30 \text{ GeV}$	4.38
	14	1.36	1.50	E866/NuSea <i>pd</i> / <i>pp</i> DY	3.67
	15	5.53	5.89	E866/NuSea <i>pd / pp</i> DY	3.17
	16	1.89	0.52	E866/NuSea pd/pp DY	5.64
	17	2.51	2.54	E866/NuSea <i>pd</i> / <i>pp</i> DY	2.69
	18	1.80	1.88	DØ W asym.	2.47
	19	2.47	2.18	CMS 8 TeV W	1.37
	20	1.82	2.22	DØ W asym.	4.69
	21	4.41	5.36	ATLAS 8 TeV $Z p_T$	4.68
	22	3.49	3.23	DØ W asym.	3.04
	23	1.84	2.43	ATLAS 8TeV sing dif $t\bar{t}$ dilep	4.96
	24	0.99	1.23	E866/NuSea pd/pp DY	4.61
	25	2.01	1.35	DØ W asym.	2.77
	26	2.25	2.51	NuTeV $\nu N x F_3$	2.06
	27	2.83	3.65	ATLAS 8 TeV $t\bar{t}$, dilepton	2.64
	28	1.74	1.92	DØ W asym.	2.65
	29	2.57	2.85	CMS 7 TeV $W + c$	1.79
	30	4.76	3.92	CCFR $\nu N \rightarrow \mu \mu X$	2.25
	31	2.79	4.81	ATLAS 7TeV high prec W, Z	2.07
	32	2.57	4.27	CCFR $\nu N \rightarrow \mu \mu X$	2.58

FIRST PDFS WITH UNCERTAINTIES (2002) one sigma & ten sigma intervals for typical covariance matrix eigenvalue

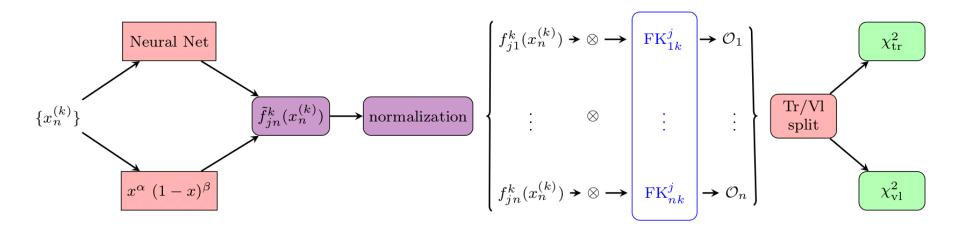

vs best value and uncertainty from individual experiments

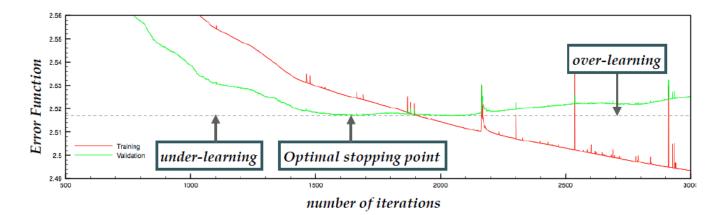
A COOKBOOK RECIPE


- UNCERTAINTIES RESCALED BY "TOLERANCE" $T \sim 4 \div 10$
- DETERMINED FROM SPREAD OF BEST-FIT FROM DIFFERENT DATA

PROTON STRUCTURE AS A ML PROBLEM NNPDF

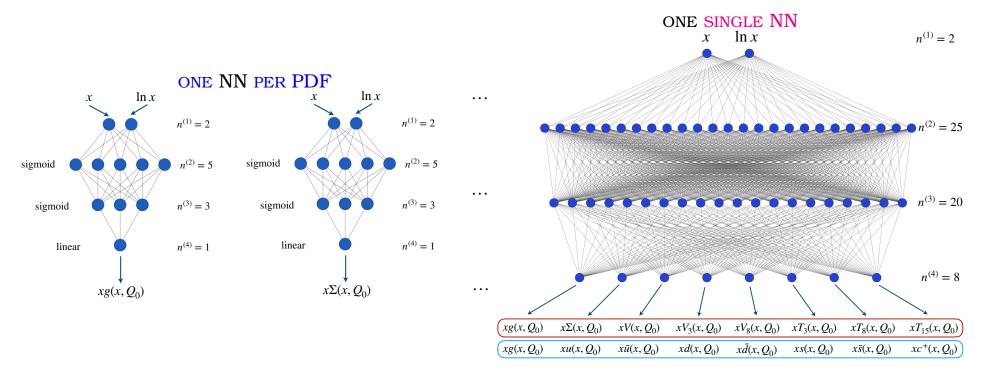
PROBABILITY REGRESSION


REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

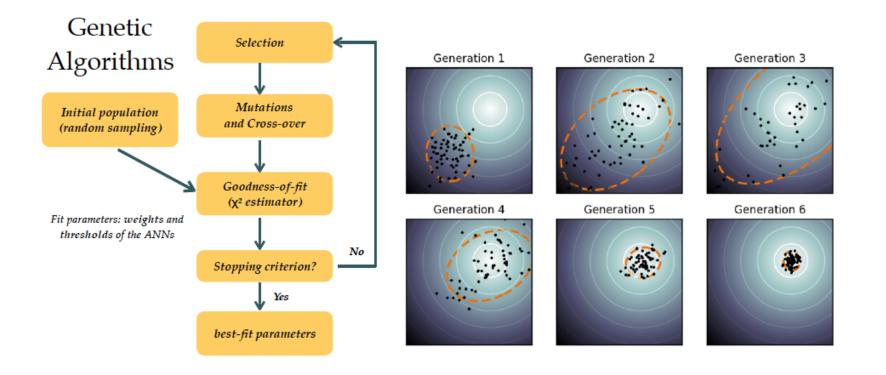


FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{\text{rep}}$

CROSS-VALIDATED LEARNING

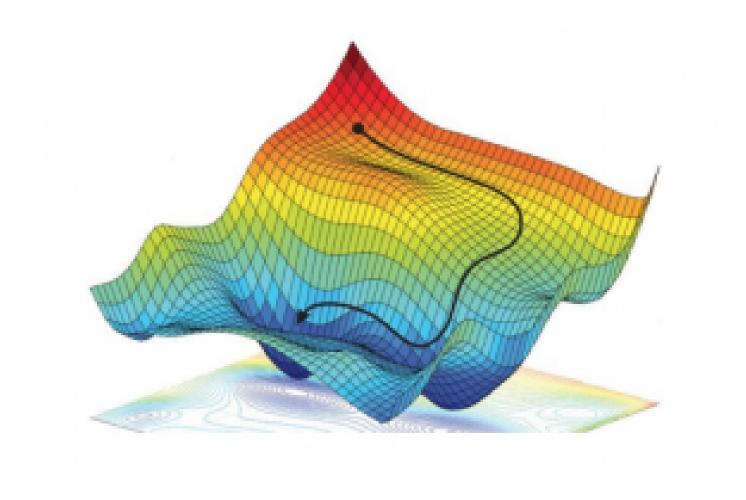

- MODEL PARAMETERS DETERMINED BY LOSS MINIMIZATION THROUGH GRADIENT DESCENT
- RANDOM TRAINING-VALIDATION SPLIT, LOSS TO TRAINING DATA MINIMIZED
- STOP TRAINING IF VALIDATION LOSS GROWS FOR A WHILE (PATIENCE)
- LOWEST VALIDATION LOSS OPTIMAL LEARNING FIT

- HOW MANY INPUTS?
- HOW MANY INDEPENDENT NNS?


WHICH MODEL? NEURAL NETWORKS ACTIVATION FUNCTION

• LINEAR ACTIVATION \Rightarrow MULTILINEAR REGRESSION

• + NONLINEAR PROFILE
$$\Rightarrow$$
 UNIVERSAL INTERPOL.
- sigmoid $F(x) = \frac{1}{1+e^{-x}}$
- arctan $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$
- RELU $F(x) \begin{cases} 0; & x < 0 \\ x; & x > 0 \end{cases}$

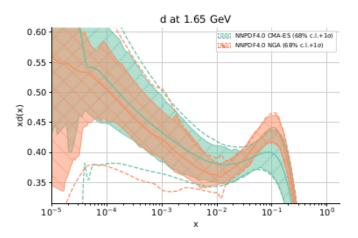

WHICH LEARNING? GENETIC ALGORITHMS

- BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER
- SELECTION OF THE FITTEST

WHICH LEARNING? GRADIENT DESCENT

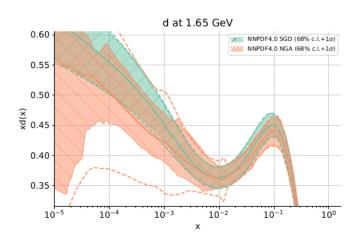
- BASIC IDEA: COMPUTE GRADIENT OF LOSS W.R. TO PARAMETERS
- SELECT DIRECTION OF DESCENT

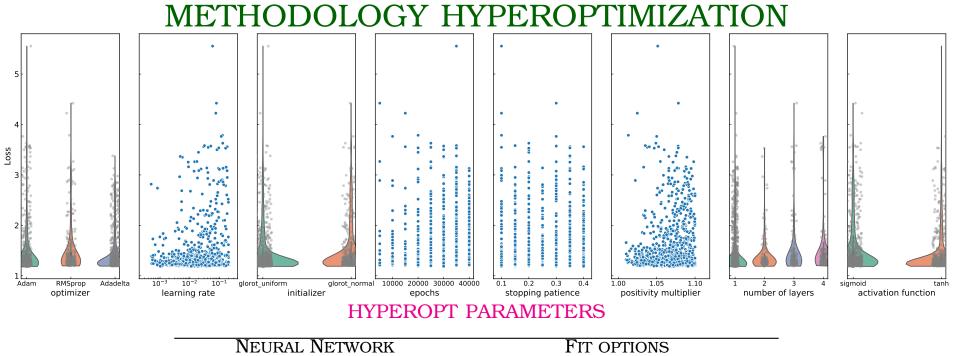
WHICH LEARNING? DESIDERATA


- FAST CONVERGENCE
- DO NOT STOP ON LOCAL MINIMA
- EXPLORE SPACE OF MINIMA (DEGENERATE CASE)

GENETIC ALGORITHMS

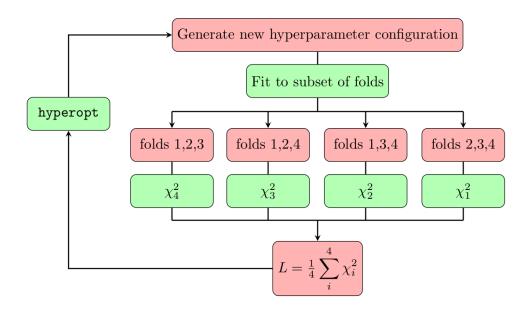
- DIFFERENT EPOCHS; VARIABLE MUTATION RATE
- **REWEIGHTING** DIFFERENT DATA CONTRIBUTIONS TO LOSS
- NODAL MUTATION
- COVARIANCE MATRIX ADAPTATION (CMA)


GRADIENT DESCENT

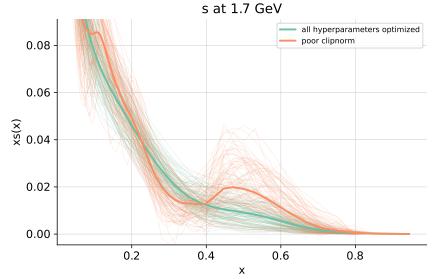

- GLOROT NORMAL/UNIFORM INITALIZATION
- ADAPTIVE GRADIENT / ADAPTIVE MOMENT
- STOCHASTIC GD
- BATCH GD

NAIVE GA VS. CMA

GA (NAIVE) VS GD (ADADELTA)

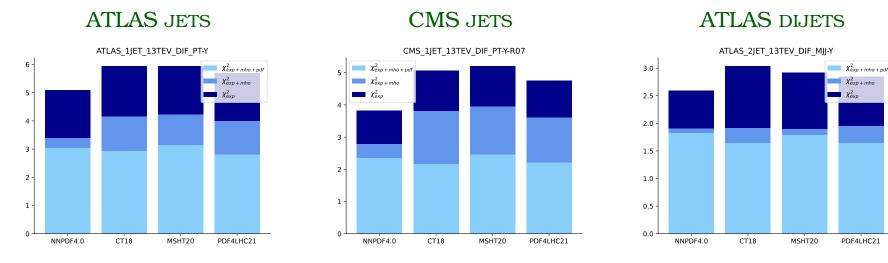


NEURAL NETWORK	FIT OPTIONS
NUMBER OF LAYERS (*)	Optimizer (*)
SIZE OF EACH LAYER	Initial learning rate (*)
DROPOUT	MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*)	Stopping Patience (*)
INITIALIZATION FUNCTIONS (*)	Positivity multiplier (*)


- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: K-FOLDING LOSS

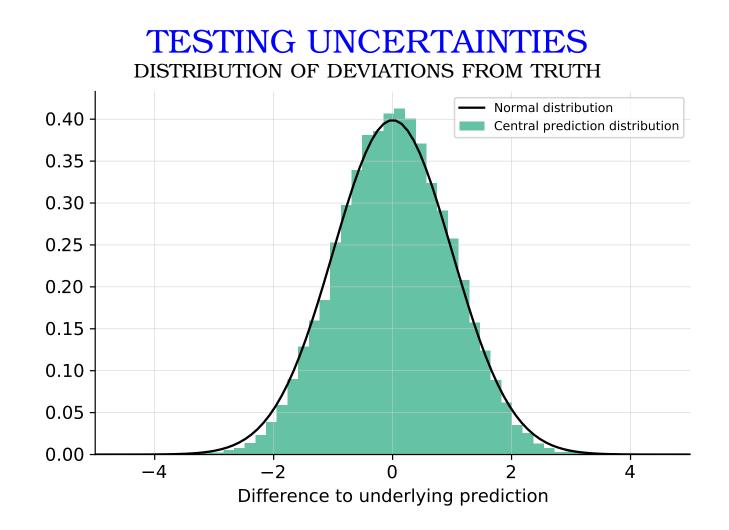
K-FOLDING LOSS?? BEST RESULT \Rightarrow BEST GENERALIZATION

	Fold 1	
CHORUS σ_{CC}^{ν}	HERA I+II inc NC e^+p 920 GeV	BCDMS p
LHCb Z 940 pb	ATLAS W, Z 7 TeV 2010	CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})
DY E605 σ_{DY}^{p}	CMS Drell-Yan 2D 7 TeV 2011	CMS 3D dijets 8 TeV
ATLAS single- $\bar{t} y$ (normalised)	ATLAS single top R_t 7 TeV	CMS $t\bar{t}$ rapidity $y_{t\bar{t}}$
CMS single top R_t 8 TeV		
	Fold 2	
HERA I+II inc CC e^-p	HERA I+II inc NC e^+p 460 GeV	HERA comb. $\sigma_{b\bar{b}}^{red}$
NMC p	NuTeV σ_c^{ρ}	LHCb $Z \rightarrow ee \ 2 \text{ fb}$
CMS W asymmetry 840 pb	ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	D0 $W \rightarrow \mu\nu$ asymmetry
DY E886 σ_{DY}^{p}	ATLAS direct photon 13 TeV	ATLAS dijets 7 TeV, R=0.6
ATLAS single antitop y (normalised)	CMS σ_{tt}^{tot}	CMS single top $\sigma_t + \sigma_{\overline{t}}$ 7 TeV
	Fold 3	
HERA I+II inc CC e^+p	HERA I+II inc NC e^+p 575 GeV	NMC d/p
NuTeV σ_c^{ν}	LHC b $W,Z \to \mu$ 7 TeV	LHCb $Z \rightarrow ee$
$\begin{array}{c} {\rm ATLAS}\ W, Z\ 7\ {\rm TeV}\ 2011\ {\rm Central}\\ {\rm selection} \end{array}$	ATLAS W^+ +jet 8 TeV	ATLAS HM DY 7 TeV
CMS W asymmetry 4.7 fb	DYE 866 $\sigma_{DY}^d / \sigma_{DY}^p$	CDF Z rapidity (new)
ATLAS σ_{tt}^{tot}	ATLAS single top y_t (normalised)	CMS σ_{tt}^{tot} 5 TeV
CMS $t\bar{t}$ double diff. $(m_{t\bar{t}},y_t)$		
	Fold 4	
CHORUS σ_{CC}^p	HERA I+II inc NC e^+p 820 GeV	LHC b $W,Z \to \mu$ 8 TeV
LHCb $Z \rightarrow \mu\mu$	ATLAS W, Z 7 TeV 2011 Fwd	ATLAS W^- +jet 8 TeV
ATLAS low-mass DY 2011	ATLAS Z p_T 8 TeV (p_T^{ll}, y_{ll})	CMS W rapidity 8 TeV
D0 Z rapidity	CMS dijets 7 TeV	ATLAS single top y_t (normalised)
ATLAS single top R_t 13 TeV	CMS single top R_t 13 TeV	


K-FOLDING VS NO K-FOLDING

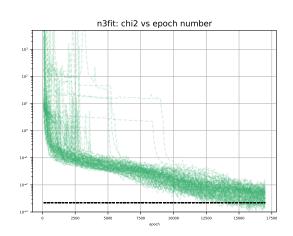
- EACH FOLD REPRODUCES FEATURES OF FULL DATASET
- LOSS: AVERAGE FIT QUALITY OF NON-FITTED FOLDS
- OVERFITTING REMOVED \Rightarrow CORRECT GENERALIZATION

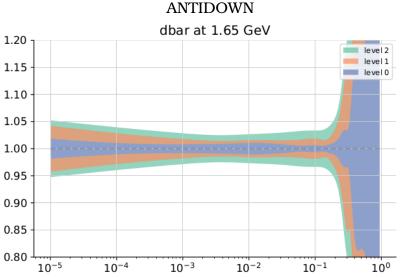
WHAT DOES ML BUY US? PRECISION + ACCURACY


- AGREEMENT (χ^2) WITH DATA PUBLISHED AFTER PUBLICATION OF NNPDF4.0 PDF SET
- EXP, EXP+TH AND TOTAL (EXP+TH+PDF) UNCERTAINTIES

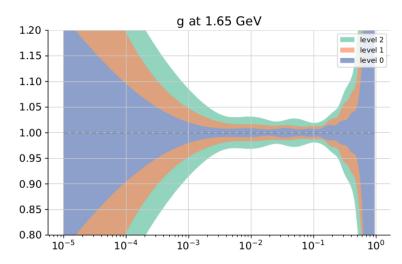
- EXP χ^2 Lower \Rightarrow NNPDF4.0 Agrees better with data \Rightarrow More precise
- EXP AND TOTAL χ^2 CLOSER \Rightarrow NNPDF4.0 PDF UNCERTAINTIES SMALLER
- AGREEMENT WITH DATA OF ALL PDF SETS COMPARABLE \Rightarrow ALL UNCERTAINTIES FAITHFUL \Rightarrow EQUALLY ACCURATE

SYSTEMATIC UNCERTAINTY VALIDATION: CLOSURE TESTS

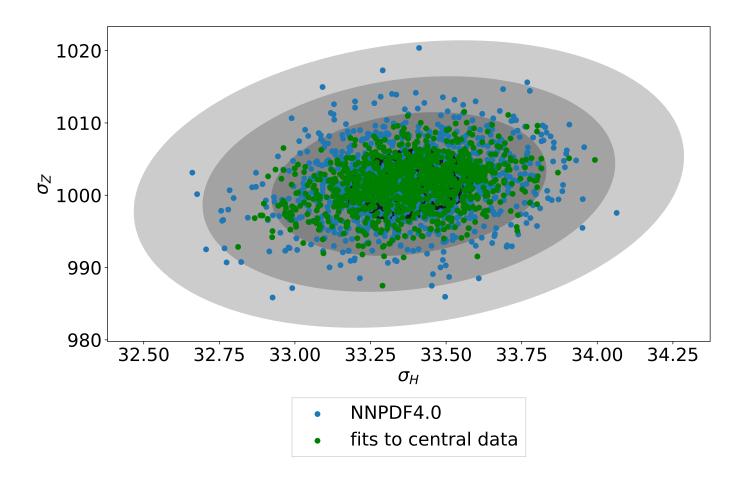

- ASSUME "TRUE" UNDERLYING PDF \Rightarrow E.G. SOME RANDOM PDF REPLICA
- GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX
- RUN WHOLE METHDOLOGY ON THESE DATA
- DO STATISTICS ON "RUNS OF THE UNIVERSE": IS TRUTH WITHIN ONE SIGMA 68% OF TIMES?



- COMPARISON OF PREDICTIONS TO TRUTH
- **STATISTICS** OVER RUNS OF THE UNIVERSE
- CORRECTLY NORMALIZED GAUSSIAN DISTRIBUTION OF OUTCOMES


CLOSURE TEST UNDERSTANDING UNCERTAINTIES LEVEL 0 LOSS VS TRAINING

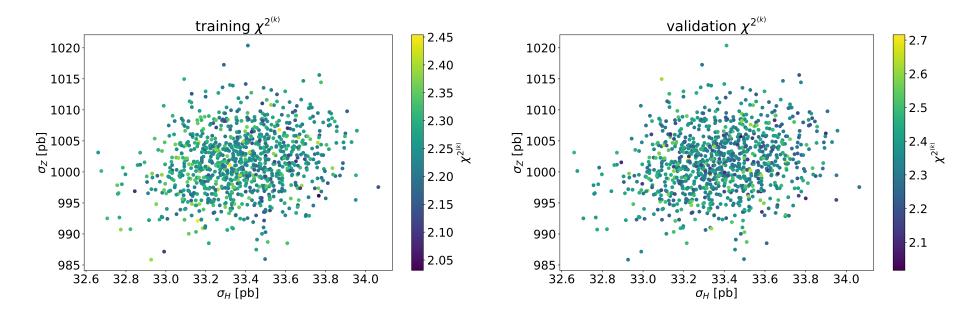
- LEVEL 0 (TRUTH DATA) \Rightarrow PERFECT AGREEMENT ($\chi^2 \approx 0$) YET UNCERTAINTY NONZERO \Rightarrow NEURAL NETS \Leftrightarrow MANY FUNCTIONAL FORMS
- LEVEL 1 (RUNS OF UNIVERSE) \Rightarrow REPLICAS ALL FITTED TO SAME DATA, YET UNCERTAINTY NONZERO \Rightarrow DITTO
- Level 0, 1 and 2 uncertainties comparable in size


LEVEL 0/1/2 UNCERTAINTIES

GLUON

UNDERSTANDING UNCERTAINTIES THE REPLICA DISTRIBUTION

- PLOT RESULTS IN (σ_H, σ_Z) PREDICTION SPACE \Rightarrow GAUSSIAN!
- **REPLICA FLUCTUATION** \Rightarrow DATA UNCERTAINTIES
- NO REPLICA FLUCTUATION \Rightarrow MODEL UNCERTAINTY



DISTRIBUTION OF REPLICAS DRIVEN BY

- DATA UNCERTAINTIES \Rightarrow DATA REPLICA FLUCTUATION
- INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES ⇒ BEST FIT DEGENERACY

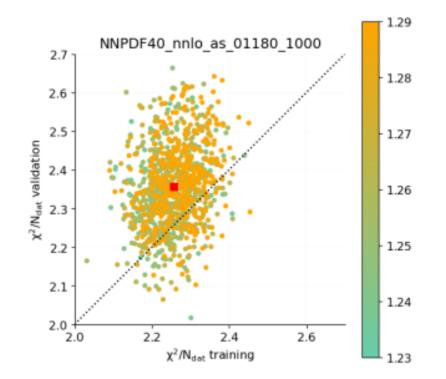
UNDERSTANDING UNCERTAINTIES THE REPLICA DISTRIBUTION

ARE ALL FITS EQUALLY GOOD?

- COMPARE TRAINING AND VALIDATION LOSS FOR EACH REPLICA
- NO CORRELATION BETWEEN FIT QUALITY AND POSITION IN THE (σ_H, σ_Z) PLANE
- UNIFORM FIT QUALITY

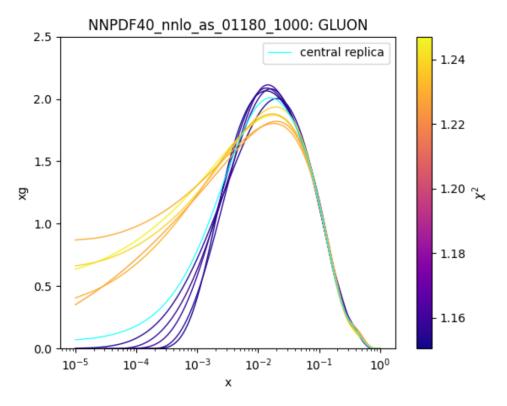
UNDERSTANDING UNCERTAINTIES THE REPLICA DISTRIBUTION COMPARISON TO CENTRAL DATA

- EACH PDF REPLICA FITTED TO A DATA REPLICA
- FIT QUALITY TO CENTRAL DATA STATISTICALLY DISTRIBUTED

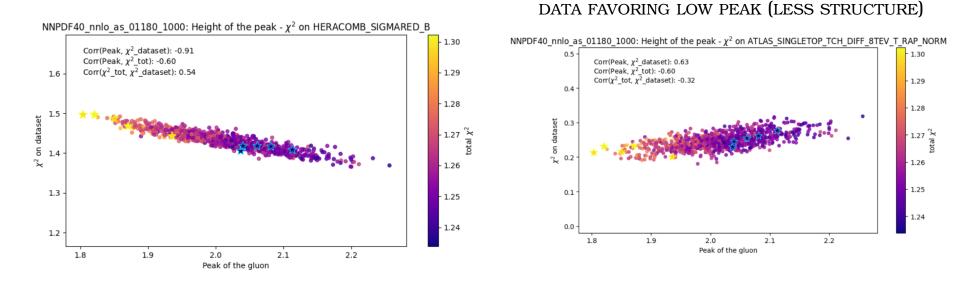

Distribution of $\chi^{2^{(k,c)}}$ 175 $\chi^{2^{(0,c)}}$ NNPDF40, 3000 replicas $\chi^{2^{(0, c)}}$ NNPDF40 150 NNPDF40, 3000 replicas NNPDF40 125 V Leblicas N 75 75 50 25 0 5700 5750 5800 5850 5900 5950 6000 χ^2

1000 REPLICAS VS. 3000 REPLICAS

- Average best fit $PDF \Rightarrow$ better agreement
- NOT NECESSARILY BEST


UNDERSTANDING UNCERTAINTIES COMPARISON TO CENTRAL DATA

• ARE FITS WITH WORSE AGREEMENT WITH CENTRAL DATA POOR (UNDERLEARNT)?


- NO CORRELATION BETWEEN AGREEMENT WITH CENTRAL DATA AND TRAINING, VALIDATION LOSS
- UNIFORM FIT QUALITY
- DISPERSION DUE
 - − DATA REPLICA FLUCTUATION \Rightarrow DATA UNCERTAINTIES
 - BEST FIT DEGENERACY \Rightarrow INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES

- CENTRAL INTERMEDIATE STRUCTURE \Rightarrow OUTLIERS WITH MORE/LESS STRUCTURE
- MORE STRUCTURE \Rightarrow BETTER AGREEMENT WITH (CENTRAL) DATA
- WHY IS MORE STRUCTURE OUTLIER DESPITE BETTER AGREEMENT?

UNDERSTANDING UNCERTAINTIES EXPLAINING THE DISTRIBUTION AGREEMENT WITH DATA SUBSET VS HEIGHT OF THE GLUON PEAK WORST VS BEST AGREEMENT WITH TOTAL DATASET DATA FAVORING HIGH PEAK (MORE STRUCTURE)

- MORE OR LESS STRUCTURE (HIGH/LOW PEAK) FAVORED BY
- MORE OR LESS STRUCTURE (HIGH/LOW PEAK) FAVORED BY DIFFERENT DATA SUBSETS
- HIGH PEAK SUBSET MORE NUMEROUS \Rightarrow HIGH PEAK BETTER GLOBAL AGREEMENT
- HIGH PEAK WOULD NOT GENERALIZE \Rightarrow OUTLIER
- MACHINE LEARNING \Rightarrow OPTIMAL MODEL

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

ACCURACY OF OBSERVATION IS THE EQUIVALENT OF ACCURACY OF THINKING Wallace Stevens