

Dusting off the Cosmic Microwave Background with Diffusion Models

Bruno Régaldo-Saint Blancard

Research Fellow @ Flatiron Institute, New York

Physics in the AI era (a) University of Pisa September 25, 2024

With: D. Heurtel-Depeiges, R. Ohana, B. Burkhart, C. Margossian

Credit: ESO/P. Horálek

Also happy to chat about...

Simulation-Based Inference x Galaxy Clustering

Foundation Models for Science

History of the Universe: an Inference Problem

 \rightarrow Are there *B*-modes in the CMB?

Surprisingly well described by the simple $\Lambda {\rm CDM}$ model

But the values of the parameters of this model can change a lot the story...

 $\boldsymbol{\phi} = (\Omega_m, \Omega_b, h, n_s, \sigma_8, \dots)_{\text{Mass fluctuation}}$ Spectral index **Baryon density** Matter density of adiabatic perturbations fraction fraction Reduced Hubble constant

Dust = Foreground to the Cosmic Microwave Background

- 1) Need for a **refined model of the dust emission**.
- 2) Need for a reliable **component separation method**.
- 3) Need to combine the above for **cosmological inference**.

Formalization of the Problem

• We observe $y = x + \varepsilon$ • The CMB is Gaussian (!) $\varepsilon \sim \mathcal{N}(0, \sigma^2 \Sigma_{\phi})$

(to a very good approximation)

cosmological parameters (typically 6 params.)

- We assume that we have a "prior model" of dust taking the form of a set of examples: $\mathcal{T} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ e.g. simulations \rightarrow
- Two goals:
 1) Component Separation → S
 2) Cosmological Inference → S

Reminder...

ϕ is fixed here!

1. Component Separation with Diffusion Models

D. Heurtel-Depeiges, B. Burkhart, R. Ohana, BRSB, MLPS NeurIPS Workshop (2023) (Oral)

astro-ph.CO arXiv:2310.16285

Sampling of
$$p(\mathbf{x} | \mathbf{y}, \boldsymbol{\phi}) \propto p(\mathbf{y} | \mathbf{x}, \boldsymbol{\phi}) p(\mathbf{x})$$

$$\int dust \operatorname{prio} dust \operatorname{prio}$$

 \rightarrow needs to be modeled

Diffusion Models for Generative Modeling

Sohl-Dickstein et al. (2015), Ho et al. (2020), Song et al. (2021) $\mathrm{d}\mathbf{z}_t = -\frac{1}{2}\beta(t)\mathbf{z}_t\,\mathrm{d}t + \sqrt{\beta(t)}\,\mathrm{d}\mathbf{w}_t$ Forward SDE: Easv t = 1t = 0 $\mathbf{z}_1 \sim \mathcal{N}(0, I_d)$ $\mathbf{z}_0 \sim p_{\text{target}}$ Hard **Backward SDE:** $d\mathbf{z}_t = \left[-\frac{1}{2} \beta(t) \mathbf{z}_t - \beta(t) \nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) \right] dt + \sqrt{\beta(t)} d\overline{\mathbf{w}}_t$

Idea 1: Diffusion Models as a Mapping $p_{dust} \leftrightarrow p_{CMB}$ $\mathrm{d}\mathbf{z}_t = -\frac{1}{2}\beta(t)\mathbf{z}_t\,\mathrm{d}t + \sqrt{\beta(t)}\boldsymbol{\Sigma}_{\phi}^{\frac{1}{2}}\,\mathrm{d}\mathbf{w}_t$ Forward SDE: t = 0t = 1 $\mathbf{z}_1 \sim p_{\text{CMB}}$ $\mathbf{z}_0 \sim p_{\text{dust}}$ $\mathcal{T} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ Hard **Backward SDE:** $d\mathbf{z}_t = \left[-\frac{1}{2} \beta(t) \mathbf{z}_t - \beta(t) \boldsymbol{\Sigma}_{\phi} \nabla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) \right] dt + \sqrt{\beta(t)} \boldsymbol{\Sigma}_{\phi}^{\frac{1}{2}} d\overline{\mathbf{w}}_t$

Component Separation \rightarrow Sampling $p(\mathbf{x} | \mathbf{y}, \boldsymbol{\phi})$

Sampling $p(\mathbf{x} | \mathbf{y}, \boldsymbol{\phi}) \leftrightarrow$ Solving the Backward SDE starting from \mathbf{y}

Anderson (1982)

Statistics of the Reconstruction

Reminder...

Dust CMB

$$\mathbf{y} = \mathbf{x} + \boldsymbol{\varepsilon}$$
 with $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{\Sigma}_{\phi})$

2. Cosmological Inference

D. Heurtel-Depeiges, C. Margossian, R. Ohana, BRSB, ICML (2024)

stat.ML arXiv:2402.19455

rubenohana/Gibbs-Diffusion

Sampling of $p(\phi | \mathbf{y})$

Cosmological Inference: Recipe

<u>Goal</u>: Sampling of $p(\phi | \mathbf{y})$

Ingredients:1) Dust prior $p_{dust}(\mathbf{x})$ (learned through examples)2) Prior on the cosmological parameters $p(\phi)$ 3) A diffusion model enabling the sampling of $p(\mathbf{x} | \mathbf{y}, \phi)$

<u>Recipe</u>: **Gibbs sampling** of $p(\phi, \mathbf{x} | \mathbf{y})$

<u>Recipe</u>: Gibbs sampling of $p(\phi, \mathbf{x} | \mathbf{y}) \rightarrow$ "Gibbs Diffusion" (GDiff)

Create a Markov Chain $(\mathbf{x}_k, \phi_k)_{0 \le k \le N}$ as follows:

Inference Example

 $\phi = (H_0, \omega_b, \sigma)$

Validation of the Bayesian Computation

Validation of the Bayesian Computation

Ranks for H_0 and ω_b are ~ compatible with uniform distribution Ranks for σ indicates some bias introduced by the diffusion model

$$\mathbf{y} = \mathbf{x} + \boldsymbol{\varepsilon}$$
 with $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{\Sigma}_{\phi})$

3. "Gibbs Diffusion": a Generic Method for Blind Denoising

D. Heurtel-Depeiges, C. Margossian, R. Ohana, BRSB, ICML (2024)

stat.ML arXiv:2402.19455

rubenohana/Gibbs-Diffusion

Blind Denoising = Sampling of $p(\mathbf{x}, \phi \mid \mathbf{y})$

Blind Denoising on Natural Images

- $\mathbf{y} = \mathbf{x} + \varepsilon$ with ε a colored noise with unknown exponent (power spectrum is $S_{\varphi}(\mathbf{k}) \propto k^{\varphi}$)
- Diffusion model conditioned on ϕ trained on ImageNet

Denoising Benchmark

✦ Peak signal-to-noise ratio

Dataset	Noise Level σ	$\varphi = -1 \rightarrow \text{Pink noise}$				$\varphi = 0 \rightarrow$ White noise				$\varphi = 1 \rightarrow $ Blue noise			
		BM3D	DnCNN	$\begin{array}{c} \mathbf{GDiff} \\ \hat{x} \end{array}$	$egin{array}{c} \mathbf{GDiff} \ \mathbb{E}\left[oldsymbol{x} \mid oldsymbol{y} ight] \end{array}$	BM3D	DnCNN	$\begin{array}{c} \mathbf{GDiff} \\ \hat{x} \end{array}$	$egin{array}{c} \mathbf{GDiff} \ \mathbb{E}\left[oldsymbol{x} \mid oldsymbol{y} ight] \end{array}$	BM3D	DnCNN	$\begin{array}{c} \mathbf{GDiff} \\ \hat{x} \end{array}$	$egin{array}{c} \mathbf{GDiff} \ \mathbb{E}\left[oldsymbol{x} \mid oldsymbol{y} ight] \end{array}$
	0.06	$31.0_{\pm 0.2}$	$30.2_{\pm 0.2}$	$29.3_{\pm 0.3}$	$32.2_{\pm 0.3}$	$33.7_{\pm 0.3}$	$33.4_{\pm 0.3}$	$31.5_{\pm 0.3}$	34.4 ±0.3	$34.7_{\pm 0.4}$	$33.8_{\pm 0.4}$	$32.3_{\pm 0.4}$	35.3 ±0.4
ImageNet	0.1	$27.8_{\pm 0.2}$	$26.8_{\pm 0.1}$	$26.7_{\pm 0.2}$	29.4 ±0.2	31.8 ± 0.3	$31.8_{\pm 0.4}$	$29.7_{\pm 0.4}$	32.7 ±0.4	$32.1_{\pm 0.4}$	$31.5_{\pm 0.3}$	$29.9_{\pm 0.4}$	32.9 ±0.3
	0.2	$23.5_{\pm 0.2}$	$21.7_{\pm 0.1}$	$23.0_{\pm 0.3}$	25.7 ±0.3	$28.1_{\pm 0.4}$	$28.4_{\pm0.4}$	$26.5_{\pm 0.4}$	29.3 ±0.4	$29.5_{\pm 0.4}$	$28.6_{\pm 0.4}$	$27.6_{\pm 0.4}$	$30.5_{\pm 0.4}$
	0.06	$31.2_{\pm 0.2}$	$30.6_{\pm 0.1}$	$29.2_{\pm 0.2}$	$32.2_{\pm 0.2}$	33.8 ± 0.3	$34.2_{\pm 0.3}$	$31.2_{\pm 0.3}$	34.4 ±0.3	35.0 _{±0.3}	$34.8_{\pm 0.3}$	$32.2_{\pm 0.3}$	35.5 ±0.3
CBSD68	0.1	$27.9_{\pm 0.2}$	$26.9_{\pm 0.1}$	$26.2_{\pm 0.3}$	29.1 ±0.3	31.3 ± 0.3	$31.7_{\pm 0.3}$	$28.6_{\pm 0.3}$	31.8 ±0.3	$33.0_{\pm 0.3}$	$32.7_{\pm 0.3}$	$30.6_{\pm 0.4}$	$33.8_{\pm 0.4}$
	0.2	$23.5_{\pm 0.2}$	$21.7_{\pm 0.1}$	$23.0_{\pm 0.3}$	25.6 ±0.2	$27.8_{\pm 0.3}$	$28.2_{\pm 0.3}$	$25.4_{\pm 0.3}$	28.5 ±0.3	$29.6_{\pm 0.3}$	$28.9_{\pm 0.2}$	$27.4_{\pm 0.3}$	30.6 ±0.3

Structural similarity

Dataset	Noise Level σ	$\varphi = -1 \rightarrow \underline{Pink}$ noise				arphi=0 ightarrow White noise				$\varphi = 1 \rightarrow $ Blue noise			
		BM3D	DnCNN	GDiff \hat{x}	$\begin{array}{c} \textbf{GDiff} \\ \mathbb{E} \left[\boldsymbol{x} \mid \boldsymbol{y} \right] \end{array}$	BM3D	DnCNN	GDiff \hat{x}	$\begin{array}{c} \textbf{GDiff} \\ \mathbb{E} \left[\boldsymbol{x} \mid \boldsymbol{y} \right] \end{array}$	BM3D	DnCNN	GDiff \hat{x}	$\begin{array}{c} \textbf{GDiff} \\ \mathbb{E} \left[\boldsymbol{x} \mid \boldsymbol{y} \right] \end{array}$
	0.06	0.90 _{±0.01}	0.88 ± 0.00	0.86 ± 0.01	0.92 ±0.00	$0.92_{\pm 0.00}$	0.92 ± 0.00	0.88 ± 0.01	0.93 ±0.00	0.94 ±0.00	$0.92_{\pm 0.00}$	0.90 ± 0.00	0.95 ±0.00
ImageNet	0.1	0.81 ± 0.01	0.76 ± 0.01	$0.77_{\pm 0.01}$	0.86 ±0.01	0.90 _{±0.01}	0.90 _{±0.01}	0.84 ± 0.01	0.91 ±0.00	0.90 _{±0.01}	0.88 ± 0.01	0.85 ± 0.01	0.92 _{±0.00}
	0.2	0.63 ± 0.01	0.53 ± 0.01	0.62 ± 0.02	0.74 ±0.02	0.79 ±0.01	0.80 ± 0.01	0.74 ± 0.01	0.83 ±0.01	0.83 ± 0.01	0.79 ± 0.01	0.78 ± 0.01	0.87 ±0.01
	0.06	0.90 _{±0.01}	0.88 ± 0.00	$0.84_{\pm 0.01}$	0.92 ±0.00	0.93 ± 0.00	0.94 ±0.00	0.88 ± 0.00	0.94 ±0.00	0.94 ±0.00	$0.94_{\pm 0.00}$	0.90 ± 0.00	0.95 ±0.00
CBSD68	0.1	0.82 ± 0.01	0.78 ± 0.01	0.75 ± 0.01	0.85 _{±0.01}	0.89 _{±0.00}	0.90 ±0.00	0.81 ± 0.01	0.90 ±0.00	0.91 ± 0.00	0.90 ± 0.00	0.86 ± 0.00	0.93 _{±0.00}
	0.2	0.65 ± 0.01	$0.55_{\pm 0.01}$	0.61 ± 0.01	0.74 ±0.01	0.79 ±0.01	$0.80_{\pm 0.01}$	0.69 ± 0.01	0.81 ±0.01	0.83 ± 0.01	$0.79_{\pm 0.01}$	0.76 ± 0.01	0.86 ± 0.01

→ **GDiff** posterior mean estimates **outperform baselines**

- Diffusion models to enable posterior sampling for CMB component separation
- Cosmological inference using a Gibbs sampler (GDiff)
 - → allows to analyze CMB data with arbitrary diffusion-based foreground priors
- GDiff: Generic method for blind denoising

Thank you for your attention!

