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Large scale observations
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Dark Matter

Small scales?
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Gravitational Lensing
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Gravitational Lensing

Background Foreground
Source Mass Distribution Lensed Image
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Gravitational Lensing
Dark matter in the line of sight




Can we use machine learning?
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Can we use machine learning?
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Can we use machine learning?

Traditional method ML method
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Can we use machine learning?

Yes and no

® Not precise enough to detect small substructures

® No notion of uncertainty
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Posterior o< Likelihood x Prior

Thomas Bayes (1763)



Score-Based Models
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Score-Based Models

The score is local
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Score-Based Models

The score is local

V log p(x)

Gibbs Measure p(x) — %e—ﬂE(x)

logp(x) = —BE(x) —log 2

Viogp(x) = -8V E(x)

Local and easier to learn



Score-Based Models
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Score-Based Models

Score Matching
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Score-Based Models

Score Matching
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Diffusion Models



Diffusion Models

MCMC proprosals often
struggle to jump between modes
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Diffusion Models

Temperature
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Diffusion Models

Simple Target

Add noise

distribution < distribution
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Simple Target
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Diffusion Models

Simple Target

Learn Vi log pi(x)
distribution < distribution
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Simple Target
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Solving inverse problems
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Solving inverse problems

likelihood prior
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likelihood prior
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Solving inverse problems

likelihood prior

posterior ,(—/h,-(/\)
px|y) = F

logp(x | y) = logp(y | x) +log p(x) — log p(y)
——

posterior likelihood prior

Vixlogp(x |y) = Vxlogp(y | x) +Vxlogp(x) — Vslegp(y)

posterior likelihood prior




Solving inverse problems

Posterior samples of source galaxies in strong
gravitational lenses with score-based priors
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Solving inverse problems
Misspecified prior
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Mispecified prior

Ground
truth

Likelihood less informative



Mispecified prior

Interferometric imaging

ipled Priors for Inverse Imaging
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Mispecified prior

Interferometric imaging

Bayesian Imaging for Radio Interferometry with
Score-Based Priors
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Mispecified prior

Interferometric imaging
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Bayesian Inference

Posterior o< Likelihood x Prior

Thomas Bayes (1763)



Learning the likelihood
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Learning the likelihood
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Sampling from the posterior

Vilogp(x | y) = Vilogp(y | x) + Vi logp(x)

posterior likelihood prior



"Raw" HST images
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Traditional method

"Raw" HST images
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Observations (y), HST ACS/F814W
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vations (y), HST ACS/F814W
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Using JWST as ground truth
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Echoes in the Noise: Posterior Samples of Faint Galaxy
Surface Brightness Profiles with Score-Based

Likelihoods and Priors
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Conclusion

Say neural net 100 times
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