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CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

@ We will have 20x more data.
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= We want to understand every aspect of it based on 1% principles! :':? i%t/g
(and find New Physics) AR
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A (simplified) View on Particle Physics Analyses

Nature
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Figure by R. Winterhalder
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Deep Generative (DGMs) Models are Random Number Generators

[DGMS are ML models that “generate” new samples of a (complicated) p(x). ]

They can be understood as fancy random number generators, with the numbers being:

e pixels of an image e translated to words

®
How can | help you today?
“Albert Einstein smiling = chatbots like ChatGPT,
while having fun coding” GitHub CoPilot

via midjourney.com

= image generators like MidJourney, DALL-E

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 4/31
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DGMs can help to speed-up bottlenecks in simulation
e particle — matter interactions are stochastic: described by p(shower|init. cond.)
o Example: particle showers in the calorimeters

DGMs generate samples ~ 10,000 x faster than a physics simulation with GEANT4.

Pb Absorber, IAr Gap, 10 GeV &

ndirection [mm]

Local Energy Deposit [MeV]

o

| I
100 150 _ 200
Depth from Calorimeter Center [mm]

First stud on toy dataset: CaloGAN by Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

|
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The Landscape of Generative Models.
Variational Autioencoder (VAE) Generative Adversarial Network (GAN)
= Compressing data through a bottleneck. = Generator and Discriminator play a game
against each other.
latent
Decoder latent data
.. Generator N
Diffusion Models Normalizing Flows
= Gradually add noise and revert. = Bijective map to a known distribution.
data )—>| +noise | —| latent latent Bijector data
space space space
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. A\,

All types of DGMs are used for detector simulation

Table 2: Current top 15 SOTA models based on the granularity of the signatures they can generate. This list
does not provide a fair comparison for the surrogate models simulating jet signatures as they inherently carry
rather low granularities.

Model Algorithm Representation  Conditioning Experiment Granularity
IEA-GAN [69, GAN grid/set Sensor posi-  Belle II PXD  40x250x 768 =
141] tion  (radius (2023,2021) 7.680.000 ch
and angle)
WGAN (142 GAN grid random Belle II PXD  40x250x 768 =
(2019) 7.680.000 ch
YonedaVAE 28] VAE/ARM multi-set sensor position  Belle 11 PXD 110,000
and Luminosity  (2023) points
3DGAN  [143. GAN grid incident energy  CLIC  ECAL 25 x 51 x 51 =
144] and angle (2021, 2020) 65,025 ch
BIB-AE [133) VAE/GAN/NF  grid incident energy  ILD ECAL 30 x 60 x 30 =
and angle (2023) 54,000 ch
CaloScore v2 [145] Diffusion grid incident energy  CaloChallenge 45 x 50 x 18 =

Hashemi/Krause [arXiv:2312.09597, Rev.Phys.]

Claudius Krause (HEPHY

and time infor-
mation

DGM in HEP

D3 (2023)

40,500 ch
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All types of DGMs are used for detector simulation

Table 2: Current top 15 SOTA models bfw.'d on the gmuularlt\' of the signatures they can generate. This list
tino iet signatures as they inherently carry

does not provide a fdlr comparison for the
rather low grapmlo-

Model How can we compare them to each other? ity +
IEA-GAN [69, Gaki : Al d0x250xT68 =
141] tion  (radius (2023,2021) 7.680.000 ch
and angle)
WGAN (142 GAN grid random Belle II PXD  40x250x 768 =
(2019) 7.680.000 ch
YonedaVAE 28] VAE/ARM multi-set sensor position  Belle 11 PXD 110,000
and Luminosity  (2023) points
3DGAN  [143. GAN grid incident energy  CLIC  ECAL 25 x 51 x 51 =
144] and angle (2021, 2020) 65,025 ch
BIB-AE [133) VAE/GAN/NF  grid incident energy  ILD ECAL 30 x 60 x 30 =
and angle (2023) 54,000 ch
CaloScore v2 [145] Diffusion grid incident energy  CaloChallenge 45 x 50 x 18 =
. . and time infor- D3 (2023) 40,500 ch
Hashemi/Krause [arXiv:2312.09597, Rev.Phys.] mation
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Let’s go back to 2022 .

@ The immense progress of ML in the past decade led to awesome results for
calorimeter simulation surrogates!

= We have seen the use of GANs, VAEs, Normalizing Flows, Diffusion models, and
their derivates on a variety of datasets.

ATLAS toy dataset ILD dataset
CALOGAN, CALOFLOW BIB-AE, L2LFLOWS

ATLAS official dataset
FastCaloGAN, AtlFast3

= No systematic comparison of methods available!

DGM in HEP September 27, 2024 9/31
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Introducing: Fast Calorimeter Simulation Challenge 2022

Why a challenge?

o Evaluate existing models on common datasets.
= A challenge creates a survey of DGMs with pros and cons.
= Winners are strong candidates for the new generation of FastSim.
o Trigger development of new generative models.
= The datasets will also be benchmarks for new models in the future.

@ Improve our understanding of common struggles, advantages, disadvantages, and
scaling behavior.
@ Learn about the evaluation of DGMs.

@ Previous challenges on top tagging and anomaly detection were very successful.

September 27, 2024 10/31
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HIGH ENERGY PHYSICS.

CaloChallenge Showers are voxelized in cylindrical coordinates.

@ There 4 datsets in increasing complexity / dimensionality.
@ Particles enter perpendicular to front surface:

P segments .
o R slices

N layers

[T ]7]

;
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CaloChallenge Showers are voxelized in cylindrical coordinates.

@ Showers are usually sparse.
@ Energy depositions span several orders of magnitude.

Photon shower at E = 1.0 GeV

Layer O Layer 1 Layer 2 Layer 3 Layer 12

0020(

1072 107! 10° 101
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HIGH ENERGY PHYSICS.

CaloChallenge Showers are voxelized in cylindrical coordinates.

@ Showers are usually sparse.
@ Energy depositions span several orders of magnitude.

Photon shower at E = 1048.6 GeV

Layer 12

Claudius Krause (HEPHY Vienna) DGM in HEP
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The Fast Calorimeter Simulation Challenge 2022

Ysics.
——

The main task: | Develop a model that samples from p(shower|Ej,cident)

Michele Faucci Giannelli, Gregor Kasieczka, CK, Ben Nachman,

https: lochall .github.io/h
ps://calochallenge.github.io/homepage/ Dalila Salamani, David Shih, and Anna Zaborowska

@ Dataset 1:  AtlFast3 trainig data (y: 368, 7r: 533 voxels)
[2109.02551, Comput.Softw.Big Sci.] Einc € [256 MeV, 4.2 TeV]

@ Dataset 2: Par04 simulated detector (e7: 6480 voxels) Ej,. € [1 GeV,1 TeV]

o Dataset 3: Par04 simulated detector (e™: 40500 voxels) Einc € [1 GeV,1 TeV]

Claudius Krause (HEPHY Vienna) DGM in HEP
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How to evaluate generative models?

In text / image / video generation: “by eye”.
= Our brains are incredible good at this task, but it doesn’t scale.

imagined with Meta AL

In high-energy physics: need to find something better!
= We want to correctly cover p(x) of the entire phase space.

© Can look at histograms of derived features / observables.
= To quantify, we use the separation power of high-level feature histograms:

Npins (h1,i—h2,i)?
S ) = ik Gt

But: this is just a 1-dim projection!

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 15/31
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A Classifier provides the “ultimate metric”

According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish two samples.

o A powerful classifier trained to distinguish the samples should therefore learn

__ _Pdata
(something monotonically related to) W = p A
Pmodel ©

o If this classifier is confused, we conclude = Pgata(¥) = Pmodel (¥)

= This captures the full phase space incl. correlations. CK/D. Shih [2106.05285, PRD]
TPR
@ Now, the AUC provides a single number ROC AUC

to compare different models.

But: are AUCs of different models really comparable? -

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 16 /31
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A Classifier tells us much more about the model.
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Failure modes of the model can now be seen in the w = J’d—a:‘l histogram:
mode!

Data manifold over-

populated by model: ~" ™

= missmodeled fea-

ture

107!

10

-

nnoq

J
I

f

Z+2j

Truth

102

0
w()

10%

R. Das, CK, et al. [2305.16774, SciPost]

Data manifold not
populated by model:
= missed feature

Cluster plots show where events lie in phase space:

small weights:

107

o GEANT 03 o Coorion

o

%5 50 75 10 T
Eun (GeV)

5

large weights:

figures by B. Schmidthaler / M. Rosendorf

GEANT 1 o Catriow

0

% 50 75 100 T
i (GeV)
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How to decide which model is closest to the reference:
the Multiclass Classifier

A multi-class classifier:
Train on submission 1 vs. submission 2 vs. ... vs. submission n
and evaluate the log posterior:

L= <log (P(xedass ilxtaken from ]))) ] S {SmeiSSion k, GEANT4}
@ As metric: evaluate with GEANT4 Lim et al. [2211.11765, MNRAS]

As cross-check: validate with all submissions j
consistency check, dataset 1 - photons

CaloDiffusion { 27 2510 3432) 4266) -54B(5) -3032) -3.62) 3 7.54018) 7.18020) -5.34013) 323() 3263)
CaloINN { 24500 20200 3220 -395(4) S08(5) 2511 2620) @ 7.3708) 7.0419) -5.1004) 3613) 3.706)

Calo-vQ

-8.06(20) 5.48(15) -4.92(5) -4.37(4)

Claudius 3 2) 4 2 DGM in HEP
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Other important metrics to look at.

= The generation time.
@ on CPU/GPU architectures
@ for batch sizes 1 / 100 / 10000

= The number of trainable parameters.
@ as proxy for model size

@ in training / generation

Claudius Krause (HEPHY Vienna) DGM in HEP
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Other important metrics to look at.

= The generation time.
e on CPU/GPU archi
o for batch sizes 1 / 100 / 10

= The number of trainable parameters.
@ as proxy for model size

@ in training / generation

Claudius Krause (HEPHY Vienna) DGM in HEP
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A little disclaimer: the final preliminary results of the CaloChallenge

In the following, I will share preliminary results of the CaloChallenge.

The final write-up will be ready in a few weeks, with a lot more content.

Number of contributions: 59 @ We received 59 submissions for all
m—VAE datasets.

B GAN

© - @ They were generated by 23 different
1 models.

. o All types of DGM architectures were
2 used.

ds1 photons ~ ds1 pions

Claudius Krause (HEPHY Vienna) DGM in HEP
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Comparing different quality metrics: high-level features

=
o

© o o
N 0 ©
-

high-level binary AUC

o
o

. v better

o
U

10° 10t
sum of all separation powers

Claudius Krause (HEPHY Vienna)

—— CaloDiffusion
=== conv. L2LFlows
CaloINN
—— MDMA
—— Calo-vQ

CaloScore
- CaloScore distilled
----- CaloScore single-shot ~ ——

Correlation of high-level binary AUC to sum of separation powers, dataset 2

iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDREAM

[Scores correlate strongly.

DGM in HEP
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Comparing different quality metrics: classifier input

Correlation of low-level binary AUC to high-level binary AUC, dataset 1 - pions

e ® ——— CaloDiffusion BoloGAN
S 0.9 .o CaloINN DNN CaloSim
< —— Calo-VQ - CaloShowerGAN
5 0.1 - —— CaloFlow teacher ~ —— CaloVAE+INN
-_g ' - —=- CaloFlow student = —— CaloForest
T —— CaloMan —— CaloGraph
S 0.7
T :
<
=206 Scores correlate strongly, but 2 lines form.
o5l ¢ better Interestingly: along the type of architecture!

05 06 07 08 09 1.0
low-level binary AUC

Claudius Krause (HEPHY Vienna) DGM in HEP
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Comparing different quality metrics: classifier architecture

8 L.
< 0.9

Pl

g
._50.8< }
)
=

$0.7 s
14
§O.G<
@]
v better
0.51 . . . . .
05 06 07 08 09 1.0

low-level binary AUC

Claudius Krause (HEPHY Vienna)

Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 2
OA

—— CaloDiffusion

=== conv. L2LFlows —_—

CaloINN —_—
—— MDMA —_
—— Calo-vVQ —_
—— CaloScore

- CaloScore distilled
----- CaloScore single-shot ~ ——
—— iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

CNN ResNet is much better classifier, but

correlation is still strong.

DGM in HEP
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Comparing different quality metrics: binary vs. multiclass

Correlation of low-level binary AUC to multiclass log-posterior, dataset 2

=257 % ma =L —— CaloDiffusion —=- iCaloFlow student
S -5.0] "o —=- conv. L2LFlows —— SuperCalo
% _75] " CaloINN —— DeepTree
8__10_04 . —— MDMA —— CaloPointFlow
8’_12_54 } —— Calo-VQ —— CaloVAE+INN
o —— CaloScore CaloLatent
& ~15.0 —=- CaloScore distilled CaloDiT
s-175¢ | . CaloScore single-shot ~ —— CaloDREAM
5—20.0< —— iCaloFlow teacher

_225] N better

05 06 07 08 09 10 Very clear correlation, both seem to capture

low-level binary AUC similar things!

Claudius Krause (HEPHY Vienna) DGM in HEP
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Comparing different timing metrics: CPU vs. GPU

Correlation of CPU to GPU generation times at batch size 100, dataset 3

i

E

¥ 103

£ 10 -
=

C

° =

‘@ 1024

[}

S -

S 101

910, .

2 -

U] . v better

101 102 10° 10* 10°
CPU geneneration time [ms]

Claudius Krause (HEPHY Vienna)

CaloDiffusion —— iCaloFlow teacher
L2LFlows MAF === jCaloFlow student
conv. L2LFlows GEANT4 transformer
MDMA —— CaloPointFlow
CaloClouds —— CaloVAE+INN
Calo-vQ === Calo-VQ(norm)

- CaloScore distilled —— CaloDREAM

CaloScore single-shot

[GPU much faster, but times correlate. )

DGM in HEP
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Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons

-5/ .
—101
—151
—201

—25+1

multiclass log-posterior

—30/ |

N better

10°

10!

102

GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vi

CaloDiffusion
CaloINN
Calo-vQ
CaloScore

- CaloScore distilled

CaloScore single-shot
CaloFlow teacher

DGM in HEP

CaloFlow student
CaloMan
BoloGAN

- CaloShower2GAN

CaloShower3GAN
CaloVAE+INN
CaloGraph
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HIGH ENERGY PHYSICS.

Pareto Fronts: Quality vs. Generation Time

Pareto front: showergerreration time on a GPU vs. multiclass log-posterior, dataset 1 - photons

-5/ .
—101
—151
—201

—25+1

multiclass log-posterior

—30/ |

N better

10°

Claudius Krause (HEPHY Vienna)

10!
GPU generation time, batch size 100, in ms

102

CaloDiffusion
CaloINN
Calo-vQ
CaloScore

- CaloScore distilled

CaloScore single-shot
CaloFlow teacher

- CaloFlow student

CaloMan
BoloGAN

- CaloShower2GAN

CaloShower3GAN
CaloVAE+INN
CaloGraph

Diffusion models are good, but slow.

DGM in HEP
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HIGH ENERGY PHYSICS.

Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons

5 -5
210
o)
o
o—1
L +
7 -2
o
)
B -2
g

_304

I N better
100 10! 102

GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna)

CaloDiffusion
CaloINN
Calo-vQ
CaloScore

- CaloScore distilled

CaloScore single-shot
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN

- CaloShower2GAN

CaloShower3GAN
CaloVAE+INN
CaloGraph

VAEs and GANSs are fast, but not as good

DGM in HEP
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HIGH ENERGY PHYSICS.

Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons

-5/ .
—101
—151
—201

—25+1

multiclass log-posterior

—30/ |

N better

10°

10!

102

GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna)

CaloDiffusion
CaloINN
Calo-vQ
CaloScore

- CaloScore distilled

CaloScore single-shot
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN

- CaloShower2GAN

CaloShower3GAN
CaloVAE+INN
CaloGraph

Normalizing Flows sit in the sweet spot!

DGM in HEP
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Pareto Fronts: Quality vs. Generation Time
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions

5 -5 B
2 -
o —101
@
()]
° _ 15/
7
o
© =201
)
=]
E 25/ |
N better
100 10! 102

GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna)

CaloDiffusion
CaloINN

Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

DGM in HEP

BoloGAN

DNN CaloSim
—— CaloShowerGAN
—— CaloVAE+INN
—— CaloGraph




OAW s | },‘,‘-\g HEPHY

INSTITUTE OF
HIGH ENERGY PHYSICS.

Pareto Fronts: Quality vs. Generation Time

Pareto front: showergenaration time on a GPU vs. multiclass log-posterior, dataset 1 - pions

—— CaloDiffusion BoloGAN

s -51 CaloINN DNN CaloSim
% - —— Calo-vQ —— CaloShowerGAN
g 10 —— CaloFlow teacher =~ —— CaloVAE+INN
gw === CaloFlow student = =—— CaloGraph
" —159 —— CaloMan
(%]
o
O =201
)
2

_254

I N better Diffusion models are again good, but slow.

10° 10! 102
GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna) DGM in HEP
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Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions

§ _5<O - - " []
2 -
o —101
i
()]
° _ 15/
7
o
O =20
)
=]
E 25/ |
N better
100 10! 102

GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna)

CaloDiffusion BoloGAN
CaloINN DNN CaloSim
Calo-VQ —— CaloShowerGAN

CaloFlow teacher = —— CaloVAE+INN
CaloFlow student =~ =—— CaloGraph
CaloMan

Normalizing Flows are still strong, but a
VAE wins.

DGM in HEP
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Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 2

—2.51 i A L —— CaloDiffusion —=- iCaloFlow student
_E —5.01 ' ' === conv. L2LFlows —— SuperCalo
g _75 H CaloINN —— DeepTree
8__10_04 , —— MDMA —— CaloPointFlow
8—12 5| ¢ —— Calo-VQ —— CaloVAE+INN
n ’ —— CaloScore CaloLatent
& ~15.01 —=- CaloScore distilled CaloDiT
s-175¢ | L. CaloScore single-shot ~—— CaloDREAM
£ -20.01 —— iCaloFlow teacher

—22.5] N better

10° 10! 102 103
GPU generation time, batch size 100, in ms

Claudius Krause (HEPHY Vienna) DGM in HEP
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Pareto Fronts: Quality vs. Generation Time
Pareto front: showergeraration time on a GPU vs. multiclass log-posterior, dataset 2
—2.51 . CaloDiffusion —=- iCaloFlow student

_§ —5.01 ' - conv. L2LFlows —— SuperCalo

% —7.51 H CaloINN ~— DeepTree

8__10_04 MDMA —— CaloPointFlow

=2 _125] * Calo-VQ —— CaloVAE+INN

I ’ CaloScore CaloLatent

© ~15.07 =~ CaloScore distilled CaloDiT

v

=-175y | e CaloScore single-shot ~—— CaloDREAM

£ -20.01 —— iCaloFlow teacher

—22.5] N better

100 10! 102 103

GPU generation time, batch size 100, in ms Again, a similar cluster for Diffusion mod-

els up here.

Claudius Krause (HEPHY Vienna) DGM in HEP
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Pareto Fronts: Quality vs. Generation Time
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 3
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Same story to a large extend.

GPU generation time, batch size 100, in ms
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Paretg front: shower generation time on a GPU vs. multiclass log-posterior, dataset 3
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Now we have a few candidates in the cor-

ner.

DGM in HEP
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HIGH ENERGY PHYSICS.

Deep Generative Models in Particle Physics

@ DGMs will play an important role HEP simulation in the next years.
@ There are lots of different use cases and architectures.
@ For deployment, we need to ensure they are faithful on the entire phase space!

= We require evaluation tools that capture everything.

@ I introduced classifiers for this job.

Claudius Krause (HEPHY Vienna) DGM in HEP
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Deep Generative Models in Particle Physics

o DGMs will play an important role HEP simulation in the next years.

@ There are lots of different use cases and architectures.

o For deployment, we need to ensure they are faithful on the entire phase space!
= We require evaluation tools that capture everything.

@ I introduced classifiers for this job.

So, where do we stand now?
@ A challenge provides the perfect setting to survey the state-of-the-art.

o I showed correlations between metrics and Pareto Fronts of current DGMs based
on the CaloChallenge datasets.
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