

Deep Generative Models in Particle Physics — Physics in the AI era, University of Pisa —

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

September 27, 2024

AW /

AUSTRIAN CADEMY OF SCIENCES

We will have a lot more data in the near future.

- We will have $20 \times$ more data.
- \Rightarrow We want to understand every aspect of it based on 1st principles! (and find New Physics)

A (simplified) View on Particle Physics Analyses

Figure by R. Winterhalder

Claudius Krause (HEPHY Vienna)

September 27, 2024 3 / 31

Deep Generative (DGMs) Models are Random Number Generators

DGMs are ML models that "generate" new samples of a (complicated) p(x).

They can be understood as fancy random number generators, with the numbers being: • translated to words

• pixels of an image

"Albert Einstein smiling while having fun coding" via midjournev.com

 \Rightarrow image generators like MidJourney, DALL·E

DGMs can help to speed-up bottlenecks in simulation

- particle matter interactions are stochastic: described by p(shower|init. cond.)
- Example: particle showers in the calorimeters DGMs generate samples $\sim 10,000 \times$ faster than a physics simulation with GEANT4.

First study on toy dataset: CaloGAN by Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius Krause (HEPHY Vienna)

DGM in HEP

AUSTRIAN ACADEMY OF SCIENCES

The Landscape of Generative Models.

Variational Autioencoder (VAE)

 \Rightarrow Compressing data through a bottleneck.

Diffusion Models

 \Rightarrow Gradually add noise and revert.

All types of DGMs are used for detector simulation

Table 2: Current top 15 SOTA models based on the granularity of the signatures they can generate. This list does not provide a fair comparison for the surrogate models simulating jet signatures as they inherently carry rather low granularities.

	Model	Algorithm	Representation	Conditioning	Experiment	$\mathbf{Granularity} \uparrow$
-	IEA-GAN [69, 141]	GAN	grid/set	sensor posi- tion (radius and angle)	Belle II PXD (2023,2021)	$40 \times 250 \times 768 =$ 7 , 680 , 000 ch
	WGAN [142]	GAN	grid	random	Belle II PXD (2019)	$40 \times 250 \times 768 =$ 7 , 680 , 000 ch
	YonedaVAE [28]	VAE/ARM	multi-set	sensor position and Luminosity	Belle II PXD (2023)	110,000 points
	3DGAN [143, 144]	GAN	grid	incident energy and angle	CLIC ECAL (2021, 2020)	$25 \times 51 \times 51 =$ 65,025 ch
	BIB-AE [133]	VAE/GAN/NF	grid	incident energy and angle	ILD ECAL (2023)	$30 \times 60 \times 30 =$ 54 ,000 ch
	CaloScore v2 $[145]$] Diffusion	grid	incident energy	CaloChallenge	$45 \times 50 \times 18 =$
Hashemi/Krai	use [arXiv:2312.09	597, Rev.Phys.]		and time infor- mation	D3(2023)	40, 500 ch

Claudius Krause (HEPHY Vienna)

September 27, 2024

7/31

All types of DGMs are used for detector simulation

AUSTRIAN ACADEMY OF SCIENCES

Hashemi

Table 2: Current top 15 SOTA models based on the granularity of the signatures they can generate. This list does not provide a fair comparison for the surrogate models simulating jet signatures as they inherently carry rather low granularity

Model How	How can we compare them to each other?					
IEA-GAN [69, GAN 141]		tion (radius and angle)	(2023,2021)	40×250×768 = 7,680,000 ch		
WGAN [142] GAN	grid	random	Belle II PXD (2019)	$40 \times 250 \times 768 =$ 7, 680, 000 ch		
YonedaVAE [28] VAE/ARM	multi-set	sensor position and Luminosity	Belle II PXD (2023)	110,000 points		
3DGAN [143, GAN 144]	grid	incident energy and angle	CLIC ECAL (2021, 2020)	$25 \times 51 \times 51 =$ 65,025 ch		
BIB-AE [133] VAE/GAN/	NF grid	incident energy and angle	ILD ECAL (2023)	$30 \times 60 \times 30 =$ 54 ,000 ch		
CaloScore v2 $[145]$ Diffusion	grid	incident energy	CaloChallenge	$45 \times 50 \times 18 =$		
ni/Krause [arXiv:2312.09597, Rev.Phy	s.]	mation	100 (2020)	40, 500 Cli		
Claudius Krause (HEPHY Vienna)	D	GM in HEP		September 27, 2024		

AUSTRIAN ACADEMY OF SCIENCES

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

Let's go back to 2022 ...

- The immense progress of ML in the past decade led to awesome results for calorimeter simulation surrogates!
- ⇒ We have seen the use of GANs, VAEs, Normalizing Flows, Diffusion models, and their derivates on a variety of datasets.

ATLAS toy dataset CALOGAN, CALOFLOW ILD dataset BIB-AE, L2LFLOWS

. . .

. . .

ATLAS official dataset FastCaloGAN, AtlFast3

 \Rightarrow No systematic comparison of methods available!

Introducing: Fast Calorimeter Simulation Challenge 2022

Why a challenge?

- Evaluate existing models on common datasets.
- \Rightarrow A challenge creates a survey of DGMs with pros and cons.
- \Rightarrow Winners are strong candidates for the new generation of FastSim.
- Trigger development of new generative models.
- \Rightarrow The datasets will also be benchmarks for new models in the future.
- Improve our understanding of common struggles, advantages, disadvantages, and scaling behavior.
- Learn about the evaluation of DGMs.
- Previous challenges on top tagging and anomaly detection were very successful.

CaloChallenge Showers are voxelized in cylindrical coordinates.

- There 4 datsets in increasing complexity / dimensionality.
- Particles enter perpendicular to front surface:

CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

Photon shower at E = 1.0 GeV

CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

Photon shower at E = 1048.6 GeV

USTRIAN

The Fast Calorimeter Simulation Challenge 2022

AUSTRIAN ACADEMY OF SCIENCES

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

W AG

How to evaluate generative models?

In text / image / video generation: "by eye". \Rightarrow Our brains are incredible good at this task, but it doesn't scale.

imagined with Meta AI.

In high-energy physics: need to find something better! \Rightarrow We want to correctly cover p(x) of the entire phase space.

- Can look at histograms of derived features / observables.
- \Rightarrow To quantify, we use the *separation power* of high-level feature histograms:

$$S(h_1, h_2) = \frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$$

But: this is just a 1-dim projection!

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) $w = \frac{p_{\text{data}}}{p_{\text{model}}}$.
- If this classifier is confused, we conclude $\Rightarrow p_{data}(x) = p_{model}(x)$
- \Rightarrow This captures the full phase space incl. correlations.

CK/D. Shih [2106.05285, PRD]

Now, the AUC provides a single number to compare different models.

But: are AUCs of different models really comparable?

AW 🚽

USTRIAN

A Classifier tells us much more about the model.

How to decide which model is closest to the reference: the Multiclass Classifier

A multi-class classifier: Train on submission 1 vs. submission 2 vs. ... vs. submission *n* and evaluate the *log posterior*:

 $L = \langle \log \left(p(x_{\in \text{class } i} | x_{\text{taken from } j}) \right) \rangle$

S As metric: evaluate with GEANT4

 $j \in \{$ submission $k, GEANT4 \}$

Lim et al. [2211.11765, MNRAS]

Claudius Krause (HEPHY Vienna)

ALICTRIAN

ADEMY O

Other important metrics to look at.

- \Rightarrow The generation time.
- on CPU/GPU architectures
- for batch sizes 1 / 100 / 10000

- \Rightarrow The number of trainable parameters.
- as proxy for model size
- in training / generation

W 4

ICTRIAN

Other important metrics to look at.

- \Rightarrow The generation time.
 - on CPU/GPU architectures
 - for batch sizes 1 / 100 / 10000

- \Rightarrow The number of trainable parameters.
 - as proxy for model size
 - in training / generation

- start singularity container
- load model weights + biases
- generate samples
- save them to .hdf5

AUSTRIAN ACADEMY OF SCIENCES

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

A little disclaimer: the final preliminary results of the CaloChallenge

In the following, I will share preliminary results of the CaloChallenge.

The final write-up will be ready in a few weeks, with a lot more content.

- We received 59 submissions for all datasets.
- They were generated by 23 different models.
- All types of DGM architectures were used.

AUSTRIAN

Comparing different quality metrics: high-level features

AUSTRIAN

Comparing different quality metrics: classifier input

ALICTRIAN CADEMY O

CIENCES

Comparing different quality metrics: classifier architecture

Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 2 1.0 CaloDiffusion iCaloFlow student CNN ResNet binary AUC 9.0 8.0 6.0 8.0 conv. 121 Flows SuperCalo CaloINN DeepTree MDMA CaloPointFlow Calo-VO CaloVAE+INN CaloScore CaloLatent CaloScore distilled CaloDiT CaloScore single-shot CaloDREAM iCaloFlow teacher better 0.5 CNN ResNet is much better classifier, but 0.9 1.0 0.5 0.6 07 0.8 low-level binary AUC correlation is still strong.

AUSTRIAN

Comparing different quality metrics: binary vs. multiclass

AUSTRIAN

Comparing different timing metrics: CPU vs. GPU

AUSTRIAN

AUSTRIAN

AUSTRIAN

AUSTRIAN

WAQ

AUSTRIAN

AW ·

AUSTRIAN

AW ·

AUSTRIAN

AW ·

AUSTRIAN

USTRIAN

Deep Generative Models in Particle Physics

- DGMs will play an important role HEP simulation in the next years.
- There are lots of different use cases and architectures.
- For deployment, we need to ensure they are faithful on the entire phase space!
- \Rightarrow We require evaluation tools that capture everything.
- I introduced classifiers for this job.

Deep Generative Models in Particle Physics

- DGMs will play an important role HEP simulation in the next years.
- There are lots of different use cases and architectures.
- For deployment, we need to ensure they are faithful on the entire phase space!
- \Rightarrow We require evaluation tools that capture everything.
 - I introduced classifiers for this job.

So, where do we stand now?

- A challenge provides the perfect setting to survey the state-of-the-art.
- I showed correlations between metrics and Pareto Fronts of current DGMs based on the CaloChallenge datasets.