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We will have a lot more data in the near future.

We will have 20× more data.

⇒ We want to understand every aspect of it based on 1st principles!
(and find New Physics)

now2012

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htmCMS Collaboration [arXiv:1207.7235, Phys.Lett.B]
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A (simplified) View on Particle Physics Analyses

Figure by R. Winterhalder
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Deep Generative (DGMs) Models are Random Number Generators

DGMs are ML models that “generate” new samples of a (complicated) p(x).

They can be understood as fancy random number generators, with the numbers being:
• pixels of an image

⇒ image generators like MidJourney, DALL·E

• translated to words

⇒ chatbots like ChatGPT,
GitHub CoPilot

“Albert Einstein smiling
while having fun coding”
via midjourney.com
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DGMs can help to speed-up bottlenecks in simulation
particle – matter interactions are stochastic: described by p(shower|init. cond.)
Example: particle showers in the calorimeters
DGMs generate samples ∼ 10, 000× faster than a physics simulation with GEANT4.
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First study on toy dataset: CaloGAN by Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 5 / 31



The Landscape of Generative Models.
Variational Autioencoder (VAE)

⇒ Compressing data through a bottleneck.

latent
space DecoderEncoder

data

Generative Adversarial Network (GAN)

⇒ Generator and Discriminator play a game
against each other.

latent
space Generator

data

Discriminator

Diffusion Models

⇒ Gradually add noise and revert.

+noise
denoiser

latent
space

data

Normalizing Flows

⇒ Bijective map to a known distribution.

latent
space

data
space

Bijector
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All types of DGMs are used for detector simulation

Hashemi/Krause [arXiv:2312.09597, Rev.Phys.]
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All types of DGMs are used for detector simulation

Hashemi/Krause [arXiv:2312.09597, Rev.Phys.]

How can we compare them to each other?
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Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results
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Let’s go back to 2022 . . .

The immense progress of ML in the past decade led to awesome results for
calorimeter simulation surrogates!

⇒ We have seen the use of GANs, VAEs, Normalizing Flows, Diffusion models, and
their derivates on a variety of datasets.

⇒ No systematic comparison of methods available!

ATLAS toy dataset
CALOGAN, CALOFLOW

ILD dataset
BIB-AE, L2LFLOWS

ATLAS official dataset
FastCaloGAN, AtlFast3

. . .
. . .
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Introducing: Fast Calorimeter Simulation Challenge 2022
Why a challenge?

Evaluate existing models on common datasets.
⇒ A challenge creates a survey of DGMs with pros and cons.
⇒ Winners are strong candidates for the new generation of FastSim.

Trigger development of new generative models.
⇒ The datasets will also be benchmarks for new models in the future.

Improve our understanding of common struggles, advantages, disadvantages, and
scaling behavior.
Learn about the evaluation of DGMs.

Previous challenges on top tagging and anomaly detection were very successful.
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https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2101.08320


CaloChallenge Showers are voxelized in cylindrical coordinates.
There 4 datsets in increasing complexity / dimensionality.
Particles enter perpendicular to front surface:

r
φ

P segments

z

R slices

N layers
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CaloChallenge Showers are voxelized in cylindrical coordinates.
Showers are usually sparse.
Energy depositions span several orders of magnitude.
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The Fast Calorimeter Simulation Challenge 2022

The main task: Develop a model that samples from p(shower|Eincident)

https://calochallenge.github.io/homepage/

Dataset 1: AtlFast3 trainig data (γ: 368, π: 533 voxels)

Dataset 2: Par04 simulated detector (e−: 6480 voxels)

Dataset 3: Par04 simulated detector (e−: 40500 voxels)

Michele Faucci Giannelli, Gregor Kasieczka, CK, Ben Nachman,
Dalila Salamani, David Shih, and Anna Zaborowska

[2109.02551, Comput.Softw.Big Sci.] Einc ∈ [256 MeV, 4.2 TeV]

Einc ∈ [1 GeV, 1 TeV]

Einc ∈ [1 GeV, 1 TeV]

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 13 / 31

https://calochallenge.github.io/homepage/


Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results
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How to evaluate generative models?
In text / image / video generation: “by eye”.
⇒ Our brains are incredible good at this task, but it doesn’t scale.

In high-energy physics: need to find something better!
⇒ We want to correctly cover p(x) of the entire phase space.

1 Can look at histograms of derived features / observables.
⇒ To quantify, we use the separation power of high-level feature histograms:

S(h1, h2) =
1
2 ∑nbins

i=1
(h1,i−h2,i)

2

h1,i+h2,i

But: this is just a 1-dim projection!

imagined with Meta AI.
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A Classifier provides the “ultimate metric”.
According to the Neyman-Pearson Lemma we have:

The likelihood ratio is the most powerful test statistic to distinguish two samples.
A powerful classifier trained to distinguish the samples should therefore learn
(something monotonically related to) w = pdata

pmodel
.

If this classifier is confused, we conclude ⇒ pdata(x) = pmodel(x)
⇒ This captures the full phase space incl. correlations.

2 Now, the AUC provides a single number
to compare different models.

But: are AUCs of different models really comparable?

CK/D. Shih [2106.05285, PRD]
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A Classifier tells us much more about the model.
Failure modes of the model can now be seen in the w = pdata

pmodel
histogram:

Data manifold not
populated by model:
⇒ missed feature

Data manifold over-
populated by model:
⇒ missmodeled fea-
ture

R. Das, CK, et al. [2305.16774, SciPost]

Cluster plots show where events lie in phase space: figures by B. Schmidthaler / M. Rosendorf
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How to decide which model is closest to the reference:
the Multiclass Classifier

A multi-class classifier:
Train on submission 1 vs. submission 2 vs. . . . vs. submission n
and evaluate the log posterior:

L = ⟨log (p(x∈class i|xtaken from j))⟩ j ∈ {submission k, GEANT4}
3 As metric: evaluate with GEANT4 Lim et al. [2211.11765, MNRAS]

As cross-check: validate with all submissions j
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Other important metrics to look at.

⇒ The generation time.
on CPU/GPU architectures
for batch sizes 1 / 100 / 10000

⇒ The number of trainable parameters.
as proxy for model size
in training / generation
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Other important metrics to look at.

⇒ The generation time.
on CPU/GPU architectures
for batch sizes 1 / 100 / 10000

⇒ The number of trainable parameters.
as proxy for model size
in training / generation

start singularity container
load model weights + biases
generate samples
save them to .hdf5
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A little disclaimer: the final preliminary results of the CaloChallenge
In the following, I will share preliminary results of the CaloChallenge.

The final write-up will be ready in a few weeks, with a lot more content.

We received 59 submissions for all
datasets.

They were generated by 23 different
models.

All types of DGM architectures were
used.
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Comparing different quality metrics: high-level features
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Scores correlate strongly.
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Comparing different quality metrics: classifier input
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Scores correlate strongly, but 2 lines form.
Interestingly: along the type of architecture!
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Comparing different quality metrics: classifier architecture
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Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 2
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CNN ResNet is much better classifier, but
correlation is still strong.
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Comparing different quality metrics: binary vs. multiclass

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Correlation of low-level binary AUC to multiclass log-posterior, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Very clear correlation, both seem to capture
similar things!
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Comparing different timing metrics: CPU vs. GPU
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GPU much faster, but times correlate.
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Pareto Fronts: Quality vs. Generation Time
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons
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Diffusion models are good, but slow.VAEs and GANs are fast, but not as goodNormalizing Flows sit in the sweet spot!
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Normalizing Flows sit in the sweet spot!
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Pareto Fronts: Quality vs. Generation Time
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Diffusion models are again good, but slow.Normalizing Flows are still strong, but a
VAE wins.

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 28 / 31



Pareto Fronts: Quality vs. Generation Time

100 101 102

GPU generation time, batch size 100, in ms

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloGraph

Diffusion models are again good, but slow.

Normalizing Flows are still strong, but a
VAE wins.

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 28 / 31



Pareto Fronts: Quality vs. Generation Time

100 101 102

GPU generation time, batch size 100, in ms

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloGraph

Diffusion models are again good, but slow.

Normalizing Flows are still strong, but a
VAE wins.

Claudius Krause (HEPHY Vienna) DGM in HEP September 27, 2024 28 / 31



Pareto Fronts: Quality vs. Generation Time

100 101 102 103

GPU generation time, batch size 100, in ms

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 2
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Again, a similar cluster for Diffusion mod-
els up here.And a group of VAEs and GANs hereAnd a Normalizing Flows in the corner
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Same story to a large extend.Now we have a few candidates in the cor-
ner.
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Deep Generative Models in Particle Physics

DGMs will play an important role HEP simulation in the next years.
There are lots of different use cases and architectures.
For deployment, we need to ensure they are faithful on the entire phase space!

⇒ We require evaluation tools that capture everything.
I introduced classifiers for this job.

So, where do we stand now?
A challenge provides the perfect setting to survey the state-of-the-art.
I showed correlations between metrics and Pareto Fronts of current DGMs based
on the CaloChallenge datasets.
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