

Deep Generative Models in Particle Physics — Physics in the AI era, University of Pisa —

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

September 27, 2024

ALICTORAN CADEMY OI COIFMORE

We will have a lot more data in the near future.

- \bullet We will have 20 \times more data.
- \Rightarrow We want to understand every aspect of it based on 1st principles! (and find New Physics)

A (simplified) View on Particle Physics Analyses

Figure by R. Winterhalder

Deep Generative (DGMs) Models are Random Number Generators

DGMs are ML models that "generate" new samples of a (complicated) $p(x)$.

They can be understood as fancy random number generators, with the numbers being:

• pixels of an image

"Albert Einstein smiling while having fun coding" via <midjourney.com>

⇒ image generators like MidJourney, DALL·E

• translated to words

DGMs can help to speed-up bottlenecks in simulation

- particle matter interactions are stochastic: described by *p*(shower|init. cond.)
- Example: particle showers in the calorimeters DGMs generate samples $\sim 10,000 \times$ faster than a physics simulation with GEANT4.

First study on toy dataset: CaloGAN by Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
Claudius Krause (HEPHY Vienna) DGM in HEP

Claudius Krause (HEPHY Vienna) and the Claudius Cla

ALICTORAN CADEMY OF COIFMORE

The Landscape of Generative Models.

 \Rightarrow Compressing data through a bottleneck.

Diffusion Models

Gradually add noise and revert.

All types of DGMs are used for detector simulation

Table 2: Current top 15 SOTA models based on the granularity of the signatures they can generate. This list does not provide a fair comparison for the surrogate models simulating jet signatures as they inherently carry rather low granularities.

Claudius Krause (HEPHY Vienna) and the Claudius Cla

All types of DGMs are used for detector simulation

Table 2: Current top 15 SOTA models based on the granularity of the signatures they can generate. This list does not provide a fair comparison for the surrocete models simulating jet signatures as they inherently carry rather low granularity

Hashemi.

ALICTOLAN ACADEMY OF COUNCER

AUSTRIAN ACADEMY OF

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

Let's go back to $2022...$

- The immense progress of ML in the past decade led to awesome results for calorimeter simulation surrogates!
- \Rightarrow We have seen the use of GANs, VAEs, Normalizing Flows, Diffusion models, and their derivates on a variety of datasets.

ATLAS toy dataset CALOGAN, CALOFLOW

ILD dataset BIB-AE, L2LFLOWS

>

ATLAS official dataset FastCaloGAN, AtlFast3

 \Rightarrow No systematic comparison of methods available!

Introducing: Fast Calorimeter Simulation Challenge 2022

Why a challenge?

- Evaluate existing models on common datasets.
- A challenge creates a survey of DGMs with pros and cons.
- \Rightarrow Winners are strong candidates for the new generation of FastSim.
- Trigger development of new generative models.
- The datasets will also be benchmarks for new models in the future.
- Improve our understanding of common struggles, advantages, disadvantages, and scaling behavior.
- **C** Learn about the evaluation of DGMs.
- Previous challenges on [top tagging](https://arxiv.org/abs/1902.09914) and [anomaly detection](https://arxiv.org/abs/2101.08320) were very successful.

CaloChallenge Showers are voxelized in cylindrical coordinates.

- There 4 datsets in increasing complexity / dimensionality.
- Particles enter perpendicular to front surface:

CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

Photon shower at $F = 1.0$ GeV

CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

Photon shower at $F = 1048.6$ GeV

The Fast Calorimeter Simulation Challenge 2022

AUSTRIAN

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

How to evaluate generative models?

In text / image / video generation: "by eye". \Rightarrow Our brains are incredible good at this task, but it doesn't scale.

imagined with Meta AI.

In high-energy physics: need to find something better! \Rightarrow We want to correctly cover $p(x)$ of the entire phase space.

Can look at histograms of derived features / observables.

⇒ To quantify, we use the *separation power* of high-level feature histograms:

$$
S(h_1, h_2) = \frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}
$$

But: this is just a 1-dim projection!

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) $w = \frac{p_{\text{data}}}{p_{\text{model}}}$ *p*model .
- **If this classifier is confused, we conclude** \Rightarrow $p_{data}(x) = p_{model}(x)$
- \Rightarrow This captures the full phase space incl. correlations.

CK/D. Shih [2106.05285, PRD]

But: are AUCs of different models really comparable?

ALICTOLAN

A Classifier tells us much more about the model.

Claudius Krause (HEPHY Vienna) and the Claudius Cla

How to decide which model is closest to the reference: the Multiclass Classifier

A multi-class classifier:

Train on submission 1 vs. submission 2 vs. . . . vs. submission *n* and evaluate the *log posterior*:

L = ⟨log (*p*(*x*∈class *ⁱ* |*x*taken from *^j*

3 As metric: evaluate with GEANT4 Lim et al. [2211.11765, MNRAS]

 $j \in \{$ submission *k*, GEANT4 $\}$

Claudius Krause (HEPHY Vienna) and the core of the Claudius Claudius Claudius September 27, 2024 18 / 31 / 31

-4.31(3) -4.31(3) -4.31(3) -4.31(3) -3.73(2004) -3.73(2004) -3.73(21) -4.75(21) -5.74(16) -5.75(2004) -5.73(21) -5.73(21) -5.75(21) -5.74(16) -5.71(171)-12.2024

ALICTOLAN

 n EMYO

Other important metrics to look at.

- ⇒ The *generation time*.
	- on CPU/GPU architectures
	- \bullet for batch sizes 1 / 100 / 10000

- ⇒ The *number of trainable parameters*.
	- as proxy for model size
	- in training / generation

Other important metrics to look at.

- ⇒ The *generation time*.
	- o on CPU/GPU architectures
	- for batch sizes $1 / 100 / 1000$

- ⇒ The *number of trainable parameters*.
	- as proxy for model size
	- in training / generation
- start singularity container
- load model weights + biases
- generate samples
- **a** save them to .hdf5

AUSTRIAN

Deep Generative Models in Particle Physics

I: Common Datasets

II: Evaluation Metrics

III: Results

A little disclaimer: the final preliminary results of the CaloChallenge

In the following, I will share preliminary results of the CaloChallenge.

The final write-up will be ready in a few weeks, with a lot more content.

- We received 59 submissions for all datasets.
- They were generated by 23 different models.
- All types of DGM architectures were used.

ALICTORAN AUJINIAN COIFMORE

Comparing different quality metrics: high-level features

Correlation of high-level binary AUC to sum of separation powers, dataset 2 1.0 CaloDiffusion iCaloFlow teacher conv. L2LFlows iCaloFlow student high-level binary AUC 0.9 CaloINN **SuperCalo** MDMA DeepTree 0.8 Calo-VQ CaloPointFlow CaloScore CaloVAE+INN 0.7 CaloScore distilled CaloLatent CaloScore single-shot CaloDREAM 0.6 better \checkmark Scores correlate strongly. 0.5 $10⁰$ 0 10¹ sum of all separation powers

ALICTOLAN ADEMY O

Comparing different quality metrics: classifier input

ALICTOLAN

LOCHY OF

Comparing different quality metrics: classifier architecture

Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 2 1.0 CaloDiffusion iCaloFlow student and the co-CNN ResNet binary AUC conv. L2LFlows SuperCalo $0.9 +$ CaloINN DeepTree MDMA CaloPointFlow $0.8₁$ Calo-VQ CaloVAE+INN CaloScore CaloLatent $0.7 +$ CaloScore distilled CaloDiT CaloScore single-shot CaloDREAM $0.6₁$ iCaloFlow teacher better $0.5¹$ CNN ResNet is much better classifier, but 0.5 0.6 0.7 0.8 0.9 1.0 low-level binary AUC correlation is still strong.

ALICTOLAN LOCHY OF

Comparing different quality metrics: binary vs. multiclass

ALICTOLAN LOCHY OF COIFMORE

Comparing different timing metrics: CPU vs. GPU

ALICTOLAN CADEWY OF COIFMORE

ALICTOLAN

ALICTOLAN CADEMY OF COIFMORE

Pareto Fronts: Quality vs. Generation Time

- CaloFlow teacher CaloShowerGAN CaloVAE+INN
	- CaloGraph

 -25

 -20

 -15

10

 $10⁰$

 10^{1}

GPU generation time, batch size 100, in ms

 1^{1} 10²

better

ALICTOLAN ADEMY OF

ALICTOLAN LOCHY OF COIFMOR

ALICTOLAN CADEWY OF COIFMORE

ALICTOLAN LOCHY OF COIFMOR

ALICTOLAN LOCHY OF CIENCE

Deep Generative Models in Particle Physics

- DGMs will play an important role HEP simulation in the next years.
- There are lots of different use cases and architectures.
- For deployment, we need to ensure they are faithful on the entire phase space!
- \Rightarrow We require evaluation tools that capture everything.
	- I introduced classifiers for this job.

Deep Generative Models in Particle Physics

- DGMs will play an important role HEP simulation in the next years.
- There are lots of different use cases and architectures.
- For deployment, we need to ensure they are faithful on the entire phase space!
- \Rightarrow We require evaluation tools that capture everything.
	- I introduced classifiers for this job.

So, where do we stand now?

- A challenge provides the perfect setting to survey the state-of-the-art.
- I showed correlations between metrics and Pareto Fronts of current DGMs based on the CaloChallenge datasets.