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MODERN COSMOLOGY AND ASTROPHYSICS

Modern Cosmology+Astrophysics

TMT 2.4 billion USD

ALMA 1.3 billion USD

LSST 2 billion USD

WFIRST 3.2 billion USD

SKA 2.3 billion USD

ATHENA 1 billion USD

JWST 10 billion USD

Euclid 0.7 billion USD

DATA IS GETTING MORE AND MORE COMPLEX!

THIS MEANS: NEW OPPORTUNITIES BUT ALSO NEW CHALLENGES



AI ASSISTED PROGRAMMING



18 Iyer et al.

Figure 7. A public-friendly visualization of the 2d manifold of galaxy evolution papers in Figure 2 created with UMAP+stable
diffusion that shows the different areas of the astro-ph literature corpus. Following similar patterns as the heatmap, mountains
indicate well-studied areas, plains indicate fields of active study, coastal regions are ‘hot topics’, and water denotes regions with
no papers. Similar to a world map, the axes here do not hold a particular meaning. Regions close to each other have semantic
similarity, while distant regions do not.

A public-friendly visualization of the 2d manifold of 
galaxy evolution papers created with UMAP+stable 
diffusion that shows the different areas of the astro-ph 
literature corpus. Following similar patterns as the 
heatmap, mountains indicate well-studied areas, plains 
indicate fields of active study, coastal regions are ‘hot 
topics’, and water denotes regions with no papers. 
Similar to a world map, the axes here do not hold a 
particular meaning. Regions close to each other have 
semantic similarity, while distant regions do not.

LARGE LANGUAGE 
MODELS IN 

ASTROPHYSICS

Iyer+2024, Pathfinder (UniverseTBD)



OUTLINE
1. Unsupervised Learning


A. Clustering

B. Representation Learning


2. Inference  / Bayesian Modelling

C. Modeling Complex Prob. Distributions

D. Simulation-Based Inference

E. Model Comparison & Model Misspecification


3. Forward Models and Emulators

F. Neural ODEs and Operator Learning and PINNs



Unsupervised Clustering



Oliver+2024

unsupervised clustering: Gaussian Mixture Models, k-means, HDBSCAN, … in general any halo finder 

https://astrolink.readthedocs.io

most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids


how to find/exploit structure in the data?

CLUSTERING AND DIMENSIONALITY REDUCTION



most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids


Oliver+ in prep.

how to find/exploit structure in the data?

What about measurement uncertainties or time evolving data?

https://fuzzycat.readthedocs.io

CLUSTERING AND DIMENSIONALITY REDUCTION



CLUSTERING AND DIMENSIONALITY REDUCTION
most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids


Oliver+ in prep.

how to find/exploit structure in the data?

What about measurement uncertainties or time evolving data?

https://fuzzycat.readthedocs.io



REPRESENTATION LEARNING

image credit: https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html

representation learning seeks to automatically discover the representations needed for 
feature detection or classification from raw data.

https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html


REPRESENTATION LEARNING

performing the downstream tasks of morphology classification
and photometric redshift estimation.

3.1. Self-supervised Learning Visualization

To visualize the information contained in the self-supervised
representations, we use Uniform Manifold Approximation and
Projection (UMAP; McInnes et al. 2018) to reduce the 2048-
dimensional representations to a more manageable 2, while
preserving structure information on both local and global
scales. We want to emphasize that although UMAP can
produce meaningful clusters when trained directly on image
data, we are using it here only for visualization purposes of the
representation space. The fact that the morphological classifi-
cation tasks described in the next section can achieve a high
performance through only a linear transformation of the
representations, with no fine-tuning, means that the galaxies
are organized in a semantically meaningful way in the
representation space.

In Figure 2 we investigate this 2D projection. The left panel
was created by binning the space into 128× 128 cells,
randomly selecting a sample that resides within each cell,
and plotting its corresponding rgb mapped galaxy image at that
location.7 Around the edges we show zoom-ins to a variety of
hand-selected areas, in which it is clear that images are grouped
by their visual similarity (e.g., spiral or not, edge-on or not,
etc.).

The following six panels color each point using the redshift
and morphology labels and confirm that clustering is not only
along visual characteristics. Distinct clusters as a function of
morphological type and redshift are immediately apparent, to
the level where decision boundaries for a number of GZ2
questions can be drawn by eye. Morphological labels are
uncertain, so we illustrate them as continuous colors represent-
ing the fraction of votes for one answer over the other.

Interestingly, we see that a large number of unlabeled samples
are separated from any that have either redshift or morphology
labels, but as we show below, using them for self-supervised
learning still proves beneficial for the downstream tasks.
Appendix B further examines this 2D space in the context of

galaxy size and magnitude and shows the advantage over the
equivalent UMAP representations derived instead directly from
the pixel space. We also demonstrate how a sample of galaxies
under simple augmentations move drastically through this
plane when the UMAP is derived from the images but remain
stationary when using the self-supervised representations.
When displayed through an interactive data portal (e.g., Reis

et al. 2021), such visualizations built on self-supervised
representations can be invaluable to the broader astronomical
community.

3.2. Galaxy Morphology Classification

Morphological classification of galaxies into subclasses
based on the presence of visual characteristics such as spiral
arms, central bars, or odd features is key in order to study
galaxy formation and evolution. The GZ project (Lintott et al.
2008) has been fundamental in this endeavor by crowdsourcing
morphological classifications for a significant number of
galaxies. GZ2 (Willett et al. 2013), the successor to GZ, is
focused on more fine-grained features and in total achieved
morphological classifications of 304,122 SDSS galaxies.
Shown most prominently by the winners of the “Galaxy
Challenge” (Dieleman et al. 2015) and numerous subsequent
works since (Domínguez Sánchez et al. 2018, 2019; Khan et al.
2019; Spindler et al. 2020; Vega-Ferrero et al. 2020; Walmsley
et al. 2020), CNNs excel at this task.
Here, by treating each question as a separate binary

classification task, we predict answers to the subset of GZ2
questions that are most commonly undertaken by ML methods.
We train three separate classifiers. The first is a CNN trained
from scratch in a supervised setting with the same architecture
of the encoder, the second is a linear classifier applied directly

Figure 1. Left: schematic of the contrastive self-supervised framework. Right: examples of downstream tasks that can be implemented on the learned representations.

7 rgb images are obtained by “luptonizing” (Lupton et al. 2004) the gri
photometric bands.
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Hayat+2021

unlabeled data set. The aim is to design models and tasks that
yield semantically meaningful representations that are useful
for a variety of downstream tasks and can be directly used or
fine-tuned for these applications. Self-supervised pretraining is
vital to state-of-the-art natural language models (Radford et al.
2018; Devlin et al. 2019; Nayak 2019); now that this method
has undoubtedly crossed over into the computer vision domain,
it has exciting prospects for broad scientific use.

In this paper, we demonstrate that self-supervised learning
indeed has great utility for large astronomical surveys, using ∼1.2
million SDSS ugriz galaxy images with 64× 64 pixels as a proof-
of-concept data set (full details of data acquisition and selection
are given in Appendix A). In Section 2, we review the method of
contrastive self-supervised learning and propose data augmenta-
tions that induce good representations for sky survey images. This
approach allows us to build powerful representations, which we
showcase in Section 3.1. In Sections 3.2 and 3.3 we use the self-
supervised representations to quickly outperform supervised
learning at two very common downstream tasks: morphological
classification and inference of photometric redshifts, respectively.

2. Method

Recent self-supervised works (Bachman et al. 2019; Goyal
et al. 2019; Chen et al. 2020a, 2020b, 2020c; He et al. 2020)
use contrastive losses (Hadsell et al. 2006) to minimize the
distance between different views (augmentations) of the same
image in a learned representation space, while maximizing
the distance between the representations of different images.
The randomized augmentations producing these views should
be semantic-preserving transformations of the input images,
and the goal is to make the final representation invariant to
these transformations (Tian et al. 2020; Xiao et al. 2020). This
key design choice is application dependent and requires prior
knowledge. For example, in a galaxy survey, changing colors
of galaxies could be detrimental for the downstream task of
inferring photometric redshifts, even though color augmenta-
tion may be useful when classifying cats and dogs. For a base
set of image augmentations that would be useful to the vast
majority of downstream applications in sky surveys we propose
the following:

1. Galactic extinction. We want features to be invariant to
the galactic latitude and the object’s position on the
celestial sphere. To model the effects of foreground
galactic dust, we introduce artificial reddening by
sampling an E(B− V ) reddening value from  0, 0.5( )
and applying the corresponding per-channel extinction
according to the photometric calibration from Schlafly &
Finkbeiner (2011).

2. Point-spread function (PSF). Due to a variety of factors
over the time span of a galaxy survey, images do not have a
consistent PSF. To be invariant to this, we experiment with
a PSF augmentation, modeled as wavelength-dependent
Gaussian smoothing with a standard deviation in r band
drawn from  0, 0. 13( ) and scaled appropriately to the
other channels using λ−0.3 (Xin et al. 2018).

3. Rotation. To be invariant to the apparent orientation of
each galaxy, we sample the angle of random rotation of
each image from p 0, 2( ).

4. Random jitter and crop. We also desire invariance to the
image centering. Thus, two integers are sampled from

- 7, 7( ) to move (jitter) the center of the image (of size

1072) along each respective axis, and then the jittered
image is center-cropped to size 642.

5. Gaussian noise. Finally, to be invariant to the instru-
mental noise, we sample a scalar from  1, 3( ) and
multiply it by the aggregate median absolute deviation
(MAD) of each channel (precomputed over all training
examples) to get a fixed per-channel noise scale γc. Then,
we introduce Gaussian noise sampled from g 0, c( ) for
each color channel.

The relative importance of these augmentations for produ-
cing good representations depends on both the data set and the
implementation of each augmentation. We evaluate representa-
tion quality by fine-tuning our representations for the task of
redshift estimation under limited data labels (see Appendix D
for details), finding Gaussian noise to be our strongest data
augmentation and PSF the weakest, likely because pooling
layers in our convolutional neural networks (CNNs) are robust
to small-scale smearing. Best quality is achieved when we
apply all augmentations except PSF. Note that these findings
will not necessarily generalize to other surveys with different
resolutions, signal-to-noise ratios, or target objects. This base
set of image augmentations was chosen to remain as task-
agnostic as possible, and additional augmentations could be
added to target-specific applications. For example, in tasks
where the angular extent of a galaxy is irrelevant, an
augmentation to change the apparent galaxy size (via image
rescaling/interpolation) would be useful.
A schematic of the self-supervised pretraining framework

used is shown in Figure 1 (left panel). Applying our
augmentations to samples x, we get a pair of views that are
denoted “positive” (xq, +xk ) when the two come from different
transformations of the same image and “negative” (xq, -xk )
otherwise. For each of the views, an encoder network extracts a
2048-dimensional representation z= encoder(x) and is trained
to make positive pairs have similar representations while
making negative pairs have dissimilar representations via a
contrastive loss function:

å
= -

+

+ -

+

+ - -

z z

z z z z

L

log
exp sim ,

exp sim , exp sim ,
,

1

q k

q k q k

q k k

k

, , ⎛⎝⎜ ⎞⎠⎟( ( ))
( ( )) ( ( ))

( )

{ }

where t=a b a b a bsim ,( ) · ( )    is the cosine similarity
measure between vectors a and b, normalized by a tunable
“temperature” hyperparameter τ. This loss (InfoNCE; Oord
et al. 2018) is minimized when positive pairs have high
similarity while negative pairs have low similarity. We have
closely followed Chen et al. (2020c) in our self-supervised
learning setup, and more implementation details are given in
Appendix E.

3. Results

We first visualize how the model has organized the image
representation space and explore how morphological character-
istics from the Galaxy Zoo 2 project (GZ2; Willett et al. 2013) and
spectroscopic redshifts from SDSS map onto this representation
space. Then, using the labels from these two sources, we evaluate
the utility of our self-supervised representations in actually
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REPRESENTATION LEARNING

Parker+2024



REPRESENTATION LEARNING FOR STELLAR SPECTRA

Buck+2024 in prep., see also Parker+2024 for AstroCLIP

multi-modal data: Gaia RVS spectra and Gaia XP coefficients plus contrastive loss

2. Background 15

Pre-Training describes first training the model to a task, that is not ultimately the goal,
but rather let’s the model learn something informative on a fundamental level. This is
mostly achieved by training on unsupervised or self-supervised on massive datasets. Later,
models are only fine-tuned for downstream tasks. In the following, several Pre-Training
tasks are presented.

First there is contrastive loss, which based on InfoNCE (“Info” Noise-Contrastive Esti-
mation) [OLV19] was adopted to multimodal problems in CLIP [RKH21] and ALIGN
[JYX21] recently. InfoNCE itself is based on a general multi-class N-pair loss [Soh16].
Most commonly, contrastive loss is used for image and text pairings. Simply put, the
objective enforced by the contrastive loss function is: Given an anchor sample, it should
be close to similar samples (positive) and far from dissimilar samples (negative) in some
learnt representation space. For that, instances of di�erent modalities for the same un-
derlying entity are considered to be positive pairings, while negative pairings are all other
combinations. This objective is visualized in figure 2.8a, as the training procedure pushes
negatives apart and attracts positives.

zi

zj

zkzk

zk

Attr
ac

t

RepelRepel

Repel

(a) Enforcing similarity between positive pairs

(green), while reducing similarity between neg-

ative pairs (red)

(b) Categorization of negative sam-

ples based on an positive anchor

point (zj).

Figure 2.8.: Visual explanation of the contrastive loss objective, for any given embedding
zi with positive pair zj and negative samples zk. [SG23]

While there are many di�erent losses possible, many state-of-the-art works have imple-
mented a loss based on InfoNCE [OLV19], respectively NT-Xent (Normalized Temperature-
scaled Cross Entropy) [CKN20]. In ALIGN this takes the form:
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REPRESENTATION LEARNING FOR STELLAR SPECTRA

Buck+2024 in prep.

regression cross-modal generation

cross-modal look-up



REPRESENTATION LEARNING FOR STELLAR SPECTRA

Li,Wong,Hogg+2024

cross-modal generation: AspGap

2. Background 19

are swapped. Lastly, the outputs of cross-attention can be further concatenated and run
through another Transformer, arriving at the cross-attention to concatenation scheme
[XZC23].

2.5. Recent Multimodal Applications in Astronomy

The methods of deep multi-modal learning have already been adopted in multiple as-
trophysical papers [ZGL23; HZL23; GCW23; LJZ23; WJZ23; LWH23; AAP23; LPG23;
RTJ23; LB24; MST24]. In the following, [LWH23; LPG23; LB24] are summarized as
examples of this trend.

2.5.1. AspGap

The goal of AspGap [LWH23] is to restrict a stellar parameter prediction which utilizes an
MLP, by simultaneously training the network to predict APOGEE spectra. The AspGap
architecture takes Gaia XP coe�cients as input and maps them to APOGEE spectra as
well as four stellar atmospheric parameters (Te� , log g, [M/H], [–/M ]) with an error
prediction. This process is visualized in figure 2.11. The predicted APOGEE spectra are

Figure 2.11.: Architecture of AspGap [LWH23]

used as input for a second stellar parameter prediction by a pre-trained model. Since
both prediction routes share half of the architecture, the direct prediction is influenced by
the indirect one. The loss function comprises the mean squared error of both predictions
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A brief review of contrastive learning applied to astrophysics
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ABSTRACT
Reliable tools to extract patterns from high-dimensionality spaces are becoming more necessary as astronomical datasets increase
both in volume and complexity. Contrastive Learning is a self-supervised machine learning algorithm that extracts informative
measurements from multi-dimensional datasets, which has become increasingly popular in the computer vision and Machine
Learning communities in recent years. To do so, it maximizes the agreement between the information extracted from augmented
versions of the same input data, making the final representation invariant to the applied transformations. Contrastive Learning
is particularly useful in astronomy for removing known instrumental effects and for performing supervised classifications and
regressions with a limited amount of available labels, showing a promising avenue towards Foundation Models. This short
review paper briefly summarizes the main concepts behind contrastive learning and reviews the first promising applications to
astronomy. We include some practical recommendations on which applications are particularly attractive for contrastive learning.

Key words: methods: data analysis – methods: statistical – methods: miscellaneous – techniques: miscellaneous

1 INTRODUCTION

As astronomical data become larger in volume and higher in di-
mension, new tools are needed to visualize and extract the relevant
information contained in these datasets. Although dating back to the
1950s and 1960s (see, e.g., Biehl 2022 for a comprehensive and his-
torical overview), the field of machine learning (ML) has, over the
past decade in particular, proven versatile as a statistical tool for data
analysis and the deduction and prediction of trends from massive data
sets (see, e.g., Huertas-Company & Lanusse 2023; Smith & Geach
2022 for recent reviews on deep learning applied to astronomy and
astrophysics). Whereas supervised ML is widely used in astronomy
for classification and other tasks, it is in many situations limited by
the availability of labeled samples. Since most data is generally un-
labeled, self- and unsupervised ML are potentially powerful tools for
uncovering correlations hidden in complex data sets. Applications in
astronomy are still relatively limited, however, mainly because it is
generally difficult to interpret the results which can also be biased
by non-physical properties of the data. In this paper, we review the
use and promise of contrastive learning (CL) in astrophysics. CL
is a self-supervised representation learning technique that aims to
combine the power of unsupervised ML while avoiding some of its
most obvious dangers. This review work assumes that the reader is
familiar with basic concepts of ML and, in particular, with modern
deep learning techniques.

¢ E-mail: mhuertas@iac.es

1.1 A brief history of representation learning

Representation learning (e.g., Bengio et al. 2013) refers to the gen-
eral idea of automatically learning a mapping between raw high-
dimensional data and a feature space—typically but not always of
smaller dimension —that efficiently captures the relevant and most
informative correlations in the data. The concept of representation
learning is tightly connected to those of dimensionality reduction
and feature extraction, although some subtle differences exist. Fea-
ture extraction, which is the process of extracting meaningful infor-
mation from data, can be manual or automatic while representation
learning generally refers to techniques with no direct human supervi-
sion. Dimensionality reduction methods (e.g., Van Der Maaten et al.
2009) also find a lower-dimension representation of the data but do
not necessarily offer a mapping that can be used to evaluate new
data points, as opposed to representation learning. The textbooks by
Bishop (2006) and Murphy (2022) provide excellent introductions to
these basic concepts.

The origins of representation learning go back to principal compo-
nent analysis (PCA, Pearson 1901), where a high-dimensional space
can be represented by a reduced number of orthogonal eigenvec-
tors. With the goal of mapping high-dimensional data onto a lower-
dimensional space, algorithms that preserve distances like multidi-
mensional scaling (MDS, Young 1987) were developed. Like PCA,
MDS is a robust linear approach to extract features but is based on
pairwise distances. While PCA finds linearly uncorrelated parame-
ters that minimize the variance in the input data, MDS finds a linear
decomposition that best reproduces the pairwise distances of the in-
put space. However, these methods have poor performance when the
data have a nonlinear distribution as they provide a linear decompo-

© 2022 The Authors
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Inference and Bayesian Modelling



MODELING COMPLEX PROBABILITY 
DISTRIBUTIONS

p(θ |x0) =
p(x0 |θ)p(θ)

p(x0)
∝ p(x0 |θ)p(θ)

p(x0 |θ) = ∫ p(x0 |θ, z)p(z)dz

Bayesian inference aims at determining p(θ |xo)

In astrophysics,  typically results from a large number of mechanisms/effects that transform the data 
and involve a large number of latent variables , hence the marginal likelihood  is intractable.

xo
z p(xo |θ)



MODELING COMPLEX PROBABILITY 
DISTRIBUTIONS

How can we approximate high-dimensional, complex probability distributions ?


Goal:

• effectively: learn a model from the data!

• model  explicitly or implicitly 

• sample and evaluate 


Options:

• normalizing flows                                            implicit model: architectural constraints

• VAEs

• GANs                                                              explicit model: prone to mode collapse

• score matching / flow matching 

• and possibly more


p(θ |xo)

p(θ |xo)
p(θ |xo)



GENERATIVE AI FLAVOURS
"Creating noise from data is easy; creating data from noise is generative modeling.“ 


(Song+2020)


• GANs: Sample noise  from a known  and use a generator  to get data.

• VAEs: Sample noise  from a prior  and use a decoder  to sample data.

• Normalizing Flows: Sample noise  from a base distribution  and use an invertible transformation 

 to get data, 

• score matching: Sample noise  from a Gaussian distribution  and use Langevin dynamics to 

denoise

• …


• don’t forget good old Gaussian Processes

z p(z) G(z)
z p(z) p(x |z)

z p(z)
f x = f −1(z)

z p(z)



Score Matching



SCORE MATCHING AND DIFFUSION MODELS
What is the score  of a pdf ?




Idea: Learn  solely from data samples, then sample new instances.


But how does this work?  Langevin dynamics (Welling&Teh 2011)


s(x) p(x)
s(x) = ∇xlog p(x)

p(x)

→
xt+1 = xt + α∇xt

log preal(x) + ηϵ

Denoising Diffusion
How do we know how many noise levels we should include? 
This sounds like the best thing to do would be to include infinitely many 
to ensure good transitions 

But from what we’ve done before, we know exactly how to represent the 
process of noising up our samples with (almost certainly) continuous kicks: 

With the Langevin equation!!
dx(t) = σ(t) dW(t)

Target 
distribution

Simple 
(Gaussian) 
distribution

Add noise according to the forward 
Langevin equation

Use this to train a score model for every noise level, basically a UNet conditioned on  σ

Denoising Diffusion
dx(t) = σ(t) dW(t)

Target 
distribution

Simple 
(Gaussian) 
distribution

Add noise according to the forward 
Langevin equation

∂P(x, t)
∂t

= 1
2 ∇2(σ(t)2P(x, t))

Target 
distribution

Simple 
distribution

De-noise according to the backward 
Langevin equation

dx(t) = − σ(t)2 ∇xlog (πdata(x)) dt + σ(t) dW̄(t)adapted from: slides by Laurence Perrault Levasseur and blog post by  https://jmtomczak.github.io/blog/16/16_score_matching.html

https://jmtomczak.github.io/blog/16/16_score_matching.html


SCORE MATCHING AND DIFFUSION MODELS

http://www.mjjsmith.com/thisisnotagalaxy/

Connor 
Stone

Learn generative model purely from data! 
Smith+2021



SCORE MATCHING AND DIFFUSION MODELS

Posterior  with observation  is given by Bayes’ theorem:





with  being the likelihood 

and  the prior.


hence the score is given by:


p(x |y) y

log p(x |y) = log p(y |x) + log p(x) − log p(y)

p(y |x)
p(x)

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog p(x) − ∇xlog p(y)

 To a good approximation, we can 
calculate the likelihood score 

analytically if we assume it’s Gaussian.

This is the score we learnt 
with


Score Matching from data!

=0 because it does not 
depend on x.

Posterior samples with score-based priors



SCORE MATCHING AND DIFFUSION MODELS

Adam+2022

Posterior samples of source galaxies in strong gravitational 
lenses with score-based priors

Posterior sampling
But what if we wanted to sample from the posterior instead…

∇xlog P(x |y) = ∇xlog P(y |x) + ∇xlog P(x) − ∇xlog P(y)

=0 because it does not 
 depend on x, as before

To a good approximation, we can 
c a l c u l a t e t h e l i k e l i h o o d s c o r e 
analytically if we assume it’s Gaussian 
and we know A.

This is the score we  
learnt with 
Score Matching!

Alexandre Adam

arXiv:2211.03812 [astro-ph.IM] 



Out of Distribution Tests
Alexandre Adam∇xlog P(x |y) = ∇xlog P(y |x) + ∇xlog P(x)

arXiv:2211.03812 [astro-ph.IM] 

SCORE MATCHING AND DIFFUSION MODELS

Adam+2022

Posterior samples for out-of-distribution galaxies



Normalizing Flows



NORMALIZING FLOWS

How can we approximate high-dimensional, complex probability distributions ?


Goal:

• model  explicitly 

• sample and evaluate 


Idea: 


Transform a simple base distribution through a series of invertible transformations.


p(θ |xo)

p(θ |xo)
p(θ |xo)



NORMALISING FLOW: APPLICATION IDeep Potential - Method 3
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Figure 1. Overview of our method. Using observed phase-space information, we train a normalizing flow to represent the
distribution function, f (~x, ~v). We then calculate the gradients of f at a large number of points in phase space. We represent
the gravitational potential, � (~x), by a feed-forward neural network. We update the neural network until the gradients of
the potential and the distribution function satisfy the Collisionless Boltzmann Equation (CBE) for a stationary system at the
sampled points in phase space. We heavily penalize solutions for which r2� < 0, which would correspond to negative matter
densities.

Our second assumption, that the distribution function is stationary, implies that the density in any given region of
phase space is constant in time: @f

@t = 0. This assumption links gradients of the distribution function to gradients of
the gravitational potential:

@f

@t
=

X

i

✓
@�

@xi

@f

@vi
� vi

@f

@xi

◆
= 0 . (2)

Once we can describe the distribution function of a stationary system, in all physically plausible cases, the gravitational

potential can be uniquely determined (up to an additive constant) by solving the Collisionless Boltzmann Equation (see
Appendix A, as well as An et al. 2021). Realistic physical systems will not be completely stationary, and as such, there
may not exist any potential which would render the system stationary. In general, therefore, Deep Potential recovers
the potential which minimizes the amount of non-stationarity in the system (using a measure that will be discussed
below). Fig. 1 gives a graphical overview of Deep Potential.

Note that we do not assume that the gravitational potential is sourced by the observed stellar population alone.
Accordingly, we do not impose the condition

r2� = 4⇡G

Z
f (~x,~v) d3~v . (3)

Additional mass components beyond the observed stellar population, such as unobserved stars or dark matter, may
also contribute to the gravitational field. It is even possible, within our formalism, for the mass density corresponding
to the recovered gravitational potential to be less than the mass density of the observed tracer population. We treat
the observed stars merely as test masses, whose kinematics we can use to map the background potential.

2.1. Modeling the distribution function

In practice, when we observe stellar populations, we obtain a discrete sample of points in phase space, which we
will refer to as {x̂, v̂}. We do not directly observe the smooth distribution function from which the points are drawn,
f (~x,~v). Typical methods of surmounting this di�culty include fitting a simple parametric model of the distribution

Green et al. 2022



Figure 9: Comparing data and model: Corner plot like figure 5 with excerpt of
model and data
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NORMALISING FLOW: APPLICATION II

As optimizer we used the RAdam algorithm [12] with �1 = 0.9 and �2 = 0.999.

We trained with randomized batches of 1024 data points each.

3.3 Results(and evaluation)

The training of the model was done on a consumer grade GPU (RTX 2080 Ti).

It was trained until the loss seemed to be converged, taking about 80 minutes

or 60 epochs. Now we want to compare the model to the data. Therefore, we

draw a sample of the same size as the data (i.e. the same number of stars) as

modeled galaxy and compare the modeled with the true galaxy. Drawing this

sample is exceedingly fast, as it only takes about 0.7s. Figures 6 to 9 compare

the flow sample with the original data points. The residuals in figure 7 are

Figure 6: Comparing data and model: 2D mass map of galactic stars with
logarithmic coloring. The respective plots of data and flow share the same
histogram grid.

defined as

Resi =
µxi � µxi,flow

µxi

(23)

with the same notation as (20). Up on a first view the results of the flow fit

the data very well. When taking a look at the visual appearance in figure 6

one can hardly tell data and flow apart. The distribution of metals, shows

some di↵erences in the residuals, especially far from the centre. However, it is

important to recognize that the bin size is very small and more importantly,

that the further from centre the less stars are in each bin and thus the greater

is the impact of statistical fluctuations. In figure 9, one can see not only that

the whole 10 dimensional distribution is very well reproduced, but also that

secondary features like a small merger, visible e.g. in the age-metals relation, is

learnt.

21Figure 9: Comparing data and model: Corner plot like figure 5 with excerpt of
model and data
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NORMALISING FLOW: APPLICATION III
• Normalizing flows for random fields in cosmology (Rouhiainen+2021)

• Bayesian Stokes inversion with normalizing flows (Baso+2022)

• A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship (Lovell+2023)

• HIFlow: Generating Diverse Hi Maps and Inferring Cosmology while Marginalizing over 

Astrophysics Using Normalizing Flows (Hassan+2022)

• Normalizing Flows as an Avenue to Studying Overlapping Gravitational Wave Signals 

(Langendorff+2023)

• Charting Galactic Accelerations: When and How to Extract a Unique Potential from the 

Distribution Function (An+2021)

• Charting galactic accelerations II: how to ‘learn’ accelerations in the solar neighbourhood 

(Naik+2021) 


•  many many more…




Simulation-based Inference



SIMULATION-BASED INFERENCE - SBI

p(θ |x) =
p(x |θ)p(θ)

p(x)
∝ p(x |θ)p(θ)

• Insight: running a stochastic simulator with input  gives an output  that is drawn from an implicit 
likelihood 


• „simulation-based inference“ or „likelihood-free inference“ or „implicit likelihood inference“ or … 
(review: Cranmer+2020)


• recent progress thanks to deep learning algorithms, e.g. conditional normalizing flows 
(Papamarkios+2019, Greenberg+2019, Hermans+2020, …)

θ x
p(x |θ)



SBI: NEURAL X ESTIMATION

p(θ |x) =
p(x |θ)

p(x)
p(θ) =

p(x |θ)
p(x)

p(θ)

• Neural Posterior Estimation (NPE)


• Neural Likelihood Estimation (NLE)


• Neural Ratio Estimation (NRE)

• Use neural networks to approximate some quantities in Bayes’ formula



SBI: (CONDITIONAL) DENSITY ESTIMATION

• NLE and NPE both estimate normalised probability densities, hence:


• restricted network architectures, e.g. normalizing flows or mixture density models. potentially 
difficult to train (Papamarkios+2021)


• for high-dimensional data, compression/embedding network needed.


• but: restriction can be a good inductive bias, especially if posterior or likelihood is “perturbation 
around Gaussian distribution”


• automatic marginalization possible

c.f. pydelfi Alsing+2018,2019; moment networks Jeffrey+Wandelt 2020, SBI Jakob Macke, ltU-ili Ho+2024, Bayesflow Radev+2020,2023, 
swyft Miller+2021,2022


https://simulation-based-inference.org/ 

https://github.com/smsharma/awesome-neural-sbi for references to software and applications



SBI: APPLICATION IN COSMOLOGY

Cole+2022

Example- CMB PS cosmology

33

We can reproduce MCMC results with 3 orders of magnitude fewer simulator runs

Alternative to: 
Long MCMC waiting times [AC et al. ’21 (JCAP)]

Example- CMB PS cosmology

33

We can reproduce MCMC results with 3 orders of magnitude fewer simulator runs

Alternative to: 
Long MCMC waiting times [AC et al. ’21 (JCAP)]

Truncated Marginal Neural Ratio Estimate
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FIG. 1. A schematic illustration of the data analysis pipeline developed in this work. We use the TMNRE algorithm (see
Sec. III) to carry out parameter inference on Milky Way stellar streams (see Sec. IV), using our new modelling code sstrax

(see Sec. II). We also publicly release the albatross analysis code.

these latter lines are the so-called “spur” and “gaps”
in the GD1 stream [5, 6, 28, 44]. On the other hand,
the sub-structure of the stream is better suited to asking
questions about e.g. the physics of tidal stripping mech-
anisms in the Milky Way, see e.g. [49–53], the internal
dynamics and nature of the progenitor, and population
level information about smaller (or more distant) per-
turbers [20, 26, 28, 29, 43]. From the perspective of the
dark matter community, both the large and small per-
turbing objects are of huge significance in the context
of the distribution of dark matter subhalos in the Milky
Way (and other galaxies). Indeed, one of the key goals
of stellar stream analyses is to constrain possible subhalo
populations [9–12, 14, 16, 54], or provide a detection of
some larger mass (say, 107 M�) subhalo [8, 44]. The
main motivation behind our work is to provide a path
towards a robust analysis pipeline to consistently (and
simultaneously) analyse all of the above scenarios.

Statistical Challenge. Making statistically robust
statements about quantities of interest – the gravitational
potential of the host, the disruption history, internal dy-
namics of the progenitor etc. – can be extremely chal-
lenging [14, 25, 55]. To do so requires us to have good
control over the dynamical history and initial conditions
of the stream [42, 56–63], its stochastic interactions with
dark matter or baryonic substructures [22, 54, 64], as
well as a reasonable model for foreground and selection
e↵ects in the observations, see e.g. [55]. As a result of
the large number of free parameters this can introduce,
together with relatively costly simulations, classical sta-
tistical methods scale quite poorly. Currently, this means
that one must instead rely on constructing bespoke sum-
mary statistics such as the power spectrum of density

perturbations along the stream, significantly reducing the
dimensionality of the data via e.g. only considering the
stream track, or ignoring a subset of e↵ects in the mod-
elling to lower the simulation overhead. This approach
has been used to obtain relevant results regarding e.g.
the properties of the Milky Way potential [1, 17–19, 23–
25, 65], or the evolution history of progenitors [26–30]. In
this paper, we propose using the modern tools and tech-
niques of simulation based inference [66, 67] to analyse
stellar streams and overcome some of these challenges.
Simulation Based Inference. Given the context de-

scribed above, we briefly argued that the analysis of
stellar streams was a problem that is well-suited for the
application of simulation-based inference (SBI) [66, 67].
Currently, there are a wide range of available approaches
and implementations that have been shown to be suc-
cessful in a number of settings such as CMB data anal-
ysis [68], point source searches [69], gravitational wave
inference [70], and others, see e.g. [14, 71–74]. In gen-
eral, the advantages of simulation-based inference tech-
niques fall into three categories: (i) a consistent inference
methodology for any forward simulator, irrespective of
the complexity, stochasticity, or data dimensionality of
the model, (ii) the possibility of extremely simulation ef-
ficient inference compared to traditional methods2, and
(iii) the methods do not require an explicit likelihood to
be written down, allowing for arbitrarily detailed physics
simulations, and observational/detection models. The
last point has interesting outlook for stellar streams as

2 This is not necessarily generic across the various methods, but
has been observed empirically in a number of settings [68].

SBI: APPLICATION FOR STELLAR STREAMS

Alvey+2024



SBI: APPLICATION FOR GALACTIC CHEMICAL ENRICHMENT

Günes+Buck subm.
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Figure 9. Distribution of ↵-element abundances as a function of metallicity, coloured by stellar mass. For the simulation we show only
stellar particles within a radial range of 6.5 < R < 9.5 kpc and absolute vertical height of |z| < 2 kpc from the disk mid-plane. For
comparison, contours show result for the solar neighbourhood from GALAH DR3 (Buder et al. 2020). Gray error bars in the lower
right of each panel indicate the median observational uncertainty of the GALAH data. Gray lines at [Fe/H]=0 and [↵/Fe] indicate solar
abundance values. See text for more explanation.

our models. The upper left panel shows the fiducial yield set
and to the right of it we compare the three models varying
physical parameters of the SSP while the bottom row shows
the four alternative yield sets tested. In order to guide the
eye we indicate solar values with gray lines and overlay ob-
servational results from the GALAH survey. Note, for this
work we apply only a simple spatial selection to the simu-
lated data and refrain from modelling in detail the GALAH
selection function (e.g. accounting for that fact that GALAH
mainly observes cool dwarfs). Additionally, we accompany
this plot by figures 10 and 11 which compare single ele-
ment (columns) abundance tracks among all models (rows).
For this first exploratory work we have decided to focus on
a di↵erential comparison between yield sets. Therefore we
refrain from exactly modelling the GALAH selection func-
tion and decided to simply select stars within an annulus of
6.5 < R < 9.5 kpc from the simulations.

In all panels, two sequences can be seen: an extended
primary sequence with the highest stellar mass densities
reaching supersolar [Fe/H] and showing a bimodality at the
highest metallicities, and a secondary sequence at low [Fe/H]
as well as low [↵/Fe] (Fig 9). The primary sequence are
in-situ stars of the main galaxy, whereas the secondary se-
quence originates from accreted satellite galaxies in these
simulations (see Buck et al. 2020, for more details). Re-
cent literature (Hayes et al. 2018; Das et al. 2020; Buder
et al. 2020) have found similarly pronounced di↵erences be-
tween accreted and in-situ stars also for the MW. Their
lower abundances in ↵-elements as well as Na and Al agree
qualitatively with our study. However, our predictions for
[C/Fe] are above the primary sequence, whereas they have
found to be below the primary sequence in observations (e.g.
Hayes et al. 2020) found [C/Fe] to be below the primary se-
quence at the same [Fe/H] for the MW.

Subsequently, we first focus on the primary sequence,
before addressing the secondary sequence.

Figure 9 confirms our previous notion of distinctive dif-
ferences among di↵erent yield sets. We find a range of shapes
for the ↵-bimodality ranging from a single sequence evolving
from high to low [↵/Fe] (alt) over a less separated bimodal-
ity (fiducial model) up to well separated sequences (all other

models). Especially the amount of ↵-enhancement di↵ers be-
tween di↵erent yield sets as would be expected from their
di↵erent predictions for the element release (e.g. Fig. 4). No-
tably the steepIMF model which uses the same yield set as
the fiducial model heavily underproduces the ↵-abundance
at all metallicities. This is simply caused by a reduction of
the number of high mass stars which contribute most to the
↵-element synthesis. Contrary, the alt3 model overproduces
↵-elements and never reaches solar values despite a clear bi-
modality. The strongest separation of the two sequences can
be seen in the longDelay model which shifts the onset of
SNIa to ⇠ 160 Myrs which is a factor of 4 longer delay time
compared to the fiducial model. The highNorm run fits the
overall [↵/Fe] values of the MW better than the fiducial run
but the larger number of SN Ia leads to slightly too large
iron abundance for the low-↵ stars.

Finally, the double knee seen in model alt2 is due to
a slightly modified SFH in this model which leads to lower
values of the peak SFR between redshift z = 2� 1 (⇠ 3� 5
Gyr after the big bang) as can be seen from Fig. A1 in the
appendix.

Let us turn to compare the intrinsic scatter seen in the
simulation data to the observed broad sequences. In each
panel the gray cross in the lower right corner highlights
the median observational uncertainty of the GALAH abun-
dances. While accurately forward modelling the simulation
data to account for the exact survey selection function and
the observational uncertainties is outside the scope of this
work we still recognise that the simulated sequences exhibit
a narrower intrinsic scatter. Comparing those narrow tracks
with the median observational uncertainty (the gray cross)
it seems that even when we would account for the broad ob-
servational uncertainty in future work the simulated tracks
are still too narrow. This poses a challenge for our theo-
retical models to explain chemical enrichment in MW mass
galaxies.

Figure 10 and 11 add a more diverse view to this as
di↵erent elements X obey di↵erent slopes in the [X/Fe] vs.
[Fe/H] plane both in the models and in the GALAH data.
Especially the very steep slope observed for O is not repro-

MNRAS 000, 1–21 (2021)
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Figure 9. Distribution of ↵-element abundances as a function of metallicity, coloured by stellar mass. For the simulation we show only
stellar particles within a radial range of 6.5 < R < 9.5 kpc and absolute vertical height of |z| < 2 kpc from the disk mid-plane. For
comparison, contours show result for the solar neighbourhood from GALAH DR3 (Buder et al. 2020). Gray error bars in the lower
right of each panel indicate the median observational uncertainty of the GALAH data. Gray lines at [Fe/H]=0 and [↵/Fe] indicate solar
abundance values. See text for more explanation.

our models. The upper left panel shows the fiducial yield set
and to the right of it we compare the three models varying
physical parameters of the SSP while the bottom row shows
the four alternative yield sets tested. In order to guide the
eye we indicate solar values with gray lines and overlay ob-
servational results from the GALAH survey. Note, for this
work we apply only a simple spatial selection to the simu-
lated data and refrain from modelling in detail the GALAH
selection function (e.g. accounting for that fact that GALAH
mainly observes cool dwarfs). Additionally, we accompany
this plot by figures 10 and 11 which compare single ele-
ment (columns) abundance tracks among all models (rows).
For this first exploratory work we have decided to focus on
a di↵erential comparison between yield sets. Therefore we
refrain from exactly modelling the GALAH selection func-
tion and decided to simply select stars within an annulus of
6.5 < R < 9.5 kpc from the simulations.

In all panels, two sequences can be seen: an extended
primary sequence with the highest stellar mass densities
reaching supersolar [Fe/H] and showing a bimodality at the
highest metallicities, and a secondary sequence at low [Fe/H]
as well as low [↵/Fe] (Fig 9). The primary sequence are
in-situ stars of the main galaxy, whereas the secondary se-
quence originates from accreted satellite galaxies in these
simulations (see Buck et al. 2020, for more details). Re-
cent literature (Hayes et al. 2018; Das et al. 2020; Buder
et al. 2020) have found similarly pronounced di↵erences be-
tween accreted and in-situ stars also for the MW. Their
lower abundances in ↵-elements as well as Na and Al agree
qualitatively with our study. However, our predictions for
[C/Fe] are above the primary sequence, whereas they have
found to be below the primary sequence in observations (e.g.
Hayes et al. 2020) found [C/Fe] to be below the primary se-
quence at the same [Fe/H] for the MW.

Subsequently, we first focus on the primary sequence,
before addressing the secondary sequence.

Figure 9 confirms our previous notion of distinctive dif-
ferences among di↵erent yield sets. We find a range of shapes
for the ↵-bimodality ranging from a single sequence evolving
from high to low [↵/Fe] (alt) over a less separated bimodal-
ity (fiducial model) up to well separated sequences (all other

models). Especially the amount of ↵-enhancement di↵ers be-
tween di↵erent yield sets as would be expected from their
di↵erent predictions for the element release (e.g. Fig. 4). No-
tably the steepIMF model which uses the same yield set as
the fiducial model heavily underproduces the ↵-abundance
at all metallicities. This is simply caused by a reduction of
the number of high mass stars which contribute most to the
↵-element synthesis. Contrary, the alt3 model overproduces
↵-elements and never reaches solar values despite a clear bi-
modality. The strongest separation of the two sequences can
be seen in the longDelay model which shifts the onset of
SNIa to ⇠ 160 Myrs which is a factor of 4 longer delay time
compared to the fiducial model. The highNorm run fits the
overall [↵/Fe] values of the MW better than the fiducial run
but the larger number of SN Ia leads to slightly too large
iron abundance for the low-↵ stars.

Finally, the double knee seen in model alt2 is due to
a slightly modified SFH in this model which leads to lower
values of the peak SFR between redshift z = 2� 1 (⇠ 3� 5
Gyr after the big bang) as can be seen from Fig. A1 in the
appendix.

Let us turn to compare the intrinsic scatter seen in the
simulation data to the observed broad sequences. In each
panel the gray cross in the lower right corner highlights
the median observational uncertainty of the GALAH abun-
dances. While accurately forward modelling the simulation
data to account for the exact survey selection function and
the observational uncertainties is outside the scope of this
work we still recognise that the simulated sequences exhibit
a narrower intrinsic scatter. Comparing those narrow tracks
with the median observational uncertainty (the gray cross)
it seems that even when we would account for the broad ob-
servational uncertainty in future work the simulated tracks
are still too narrow. This poses a challenge for our theo-
retical models to explain chemical enrichment in MW mass
galaxies.

Figure 10 and 11 add a more diverse view to this as
di↵erent elements X obey di↵erent slopes in the [X/Fe] vs.
[Fe/H] plane both in the models and in the GALAH data.
Especially the very steep slope observed for O is not repro-
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SBI: APPLICATION IN COSMOLOGY

Example - LSS and 21cm 
cosmology

34

Porqueres+ 2108.04825

Based on HMC

Based 
on 

CNN

Zhao+ 2105.03344

Makinen+ 2107.07405 

Breaking degeneracy 
between DM density 
and power-spectrum 

amplitude

Breaking degeneracy between 

ionisation parameters  and Tvir ζ
Alternative to: 
Hand-crafted summaries
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Example - Strong lensing
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Searching light DM halos

Related work: He+ 2010.13221 (similar in spirit, using ABC)

Probing population effects of light dark 
matter halos rather than individual detections

Anau Montel+ 2205.09126

Wagner-Carena+ 2203.00690 (constraining subhalo mass function 
normalization)

Halo mass 
function 

cutoff

Alternative to: 
HMC, parameter reduction, ABC, …

Image credit: Wagner-Carena+ 2203.00690

SBI: APPLICATION IN STRONG LENSING
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SBI: APPLICATION IN STRONG LENSINGMore examples

Brehmer+ 1909.02005, Coogan+ 
2010.07032, Legin+ 2112.05278, 
Wagner-Carena+ 2203.00690, 

Anau Montel+ 2205.09126, 
Coogan+ 2207.xxxxx 

Strong lensing

Effective field theory
Morrison+ 2203.13403

GW parameters

Delaunoy+ 2010.12931, Dax+ 2106.12594, …

Mishra-Sharma+ 2110.01620
Fermi GeV excess

Mishra-Sharma+ 2110.06931
Astrometry

Stellar streams
Hermans+ 2011.14923

37

Example — foreground removal

• exploit “moment network” — directly target marginal mean/
variance [Jeffrey, Wandelt]
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Figure 1. Real-time GW inference for BNS is enabled by several innovations. (a) Dingo-BNS estimates all BNS
parameters in just one second (orange), reproducing LVK results [5] (black) three orders of magnitude faster than existing
methods [23, 31]. Dingo-BNS can also analyze partial data before the merger occurs (teal). Fast analysis results are crucial for
directing electromagnetic searches for prompt or even precursor signals. Note that GW170817 overlapped with a loud glitch,
which could explain why the true sky position lies in the tail of the pre-merger distribution. (b) For a given event, the chirp mass
posterior (black) is tightly constrained compared to the prior (blue), so a restricted chirp mass prior (orange) is su�cient, and
moreover simplifies analysis. With our prior-conditioning technique, we train a single neural network that can be instantly tuned
to an event-specific prior lying anywhere within the full volume. (c) We compress data by a factor of ≥ 100 by first factoring
out (“heterodyning”) the predominant phase evolution of the signal (blue), based on a chirp mass estimate ÊM associated to
the event-specific prior. The resulting simplified signal (orange) is down-sampled in resolution, reducing data dimensionality
(coarser resolution at high frequencies; bands indicated by dotted red lines). (d) To enable pre-merger inference, we mask out
the strain frequency series according to the cut-o� time. (e) All of these components are integrated into a single neural network
that can be trained end-to-end and produce 105 weighted samples per second, with typical sampling e�ciencies of 50%.

We solve this problem using a new algorithm called “prior-
conditioning,” which enables us to construct networks that
can be adapted at inference time to subsets of the prior
volume. Our new framework, called Dingo-BNS, makes
no (practically relevant) approximation, and takes just
one second for accurate inference of all 17 BNS parameters
(Fig 1). Dingo-BNS can also infer all of these parameters
minutes before the merger based on partial inspiral-only
information, estimates which can be continuously updated

as more data become available (Fig. 2a). Near-real-time
or pre-merger alerts can then be provided to astronomers,
facilitating potential discoveries of precursor and prompt
electromagnetic counterparts [32–34].

Our results are faster and more complete than any
existing low latency algorithm, with the accuracy of o�ine
parameter estimation codes. Compared to Bayestar, we
achieve median reductions in the size of the 90% credible
sky region of 30% (Fig. 2b). Finally, Dingo-BNS exhibits
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Dax+2021,2023,2024
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MODEL COMPARISON & MODEL MISSPECIFICATION

the possible existence of a “magnitude step” [9, 10] in type Ia supernovæ (SNæ Ia)—standardisable
candles that enabled the discovery of the accelerated expansion of the Universe [11–13]—an intrinsic
difference in magnitude correlated with the mass of their host galaxies, and its interplay with the host
dust properties: see the references in [14] and [15, hereafter TM22], on which we base our modelling.
So far, the problem has been plagued by an inability to treat all considered effects self-consistently
due to the limitations of likelihood-based analyses, which are lifted by SBI.

2 Simulation-based model selection

Bayesian model selection assigns posterior probabilities p(Mk |d) to models Mk 2
{M1, . . . ,MN} (instead of to values of their parameters ✓k), conditional on observed data d.
The conventional approach is to compute the marginal likelihood (or evidence) p(d | Mk), which is
the average likelihood p(d |✓k) of parameters distributed according to the prior p(✓k):

p(d | Mk) =

Z
p(d |✓k) p(✓k) d✓k (1)

(where the presence of Mk’s parameters ✓k implies conditioning on Mk in the right-hand side).
The prior belief in the model, p(Mk), is then updated to its posterior probability in accordance with
Bayes’ theorem: p(Mk |d) / p(d | Mk) p(Mk), normalised over all models considered.

As pointed out by Jeffrey & Wandelt [16], this has two disadvantages: first, it might be unclear what
exactly the complete set of model parameters is, in what space they are defined (there are models
with varying numbers of parameters: see e.g. trans-dimensional Monte Carlo [17]), and what their
likelihood is. For example, in cosmology, so-called selection effects arise when the probability of
detecting an object and including it in the analysed sample depends on the very parameters of interest.
Even when the integral in eq. (1) is well defined, it is usually computationally prohibitive to evaluate
for high-dimensional parameter spaces: variants of nested sampling, the de facto standard technique
for the task, typically only scale up to a few hundreds of parameters [see e.g. 18, 19, for reviews], far
from the millions required for contemporary cosmological data sets.2

Marginal simulation-based inference circumvents both issues since the simulator abstracts latent
parameters from the inference procedure altogether: latent stochastic variables sampled during a
forward run are implicitly marginalised. For the purpose of Bayesian parameter estimation, the
NN can be trained to approximate either the likelihood, the posterior, or the likelihood-to-evidence
ratio. The latter approach, called neural ratio estimation (NRE), recasts the inference task into
a classification problem between pairs ✓,d ⇠ p(✓,d) versus ✓,d ⇠ p(✓) p(d) and uses the
classification probability to derive the posterior over model parameters ✓. NRE is founded on the
well-known principle that, in order to minimise the Bayesian risk of misclassification, a classifier
must base its decision on the ratio of the densities of the examples it has been trained on [see e.g.
21], implying that if the classes represent data simulated according to the different models being
compared (in proportion to the model priors p(Mk)), the NN learns their posterior probabilities.

The ratio estimator used in NRE is usually trained to minimise the binary cross-entropy (BCE) loss
[see e.g. 4] used for binary classification. In machine learning applications, the case is ubiquitously
extended to multiple classes via the multi-class cross-entropy loss, whereby the neural network
outputs one real number for each model considered: {x1, . . . , xN}; these are then normalised via the
softmax function: yk = exp(xk)/

P
j exp(xj). Training a sufficiently expressive neural network to

maximise the entry corresponding to the true model leads to it outputting (after the normalisation) the
posterior probabilities of the models.

Related work. In the field of SN Ia analysis, SBI has focused on marginal parameter inference: of
cosmological parameters by using summary statistics derived in likelihood-based fits to light curves
[7, 22–26], and of the properties of an individual object from its raw light curve [27].

A number of studies have addressed simulation-based Bayesian model selection in general. Jeffrey &
Wandelt [16] focused on loss functions for two-way model comparison with an emphasis on recover-
ing accurate extreme Bayes factors. Radev et al. [28] proposed estimating a Dirichlet distribution
over an arbitrary number of models using a NN and variational optimisation, while Elsemüller et al.
[29] advocated in favour of a cross-entropy loss, which we use in this work.

2With the exception perhaps of proximal nested sampling, which scales to millions-dimensional models [20].
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Methods


• Jeffrey+Wandelt 2023: loss functions for two-way model comparison with an emphasis on recover- 
ing accurate extreme Bayes factors 


• Radev+2021: estimate a Dirichlet distribution over an arbitrary number of models using a NN and 
variational optimisation 


• Elsemüller+2023 and Karchev+2024: use a cross-entropy loss for multi-class posterior probabilities


• Macciò+2022: Model selection for star formation prescriptions in cosmo sims


• Zhou+2024: Model misspecification plus model comparison for low simulation budget applications


• Jin+2024: Model comparison of cosmo sims via GANomaly scores 




Idea:

• Train embedding network on ~600.000 SDSS images, then encode simulated SDSS images

• Train simulation classifiers on embeddings, apply to real SDSS images 
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Lingyi Zhou et al.: Evaluating Cosmological Simulations using Machine Learning Tools

Fig. 5. UMAP projection of simulated latent embeddings (orange) compared to the SDSS test set (blue).

4.4. Classifier calibration and amortized BMC

First, we describe the details of ensembles. In random forest
classifier, we set the number of trees to 100 and class weight to
balanced subsample, which means the weight assigned to each
class is determined by its inverse proportionality to the frequency
of the class within the bootstrap sample used for growing each
tree. We use XGBoost classifier from the XGBoost library (Chen
& Guestrin 2016), in which we use the multiclass softmax objec-
tive and hist tree method, which is the fastest approximated train-
ing algorithm. For stacking-MLP-RF-XGB classifier, the param-
eters of random forest and XGBoost are the same as described
above. For the MLP, we set two hidden layers: the first one with
128 neurons and the second one with 64 neurons. And we set the
activation function to ReLU, use the Adam optimizer (Kingma
& Ba 2014) with an L2 regularization alpha set to 0.01, and max-
imum iteration of 300.

We perform the classifier calibration by doing twice re-
peated stratified 5-fold cross-validation on the simulation train-
ing set. In practice, we use the calibration curve function from
the bayesflow library (Radev et al. 2023). It integrates the com-
putation of expected calibration error (ECE) of a model compar-
ison network proposed by Naeini et al. (2015). From calibration
curves in Figure 7 we can see that the stacking MLP-RF-XGB
classifier is the best one with lowest ECE score and calibration
curves close to the diagonal line. And XGBoost performs bet-
ter than random forest. Note that calibration curves of all clas-
sifiers for UHD and n80 are not so good. We attribute this to
the lack of data. The resulting figures of confusion matrices are
shown in Figure 8. Each of the 3 classifiers produces a satisfying
confusion matrix. All classifiers achieve a very high accuracy of
classifying AGN, NOAGN and TNG100, while the accuracy of
classifying TNG50, UHD and n80 is lower. Again, for UHD and
n80, this may due to the lack of data. Notice that the accuracy
of classifying TNG50 is relatively low where classifiers tend to
falsely predict some data of TNG50 as TNG100. This is rea-
sonable since the only di↵erence between TNG50 and TNG100
is that TNG50 has higher resolution, making it less distinguish-
able. Considering both confusion matrix and calibration curve,
we should trust stacking-MLP-RF XGB most in the final classi-
fication results.

Applying our Bayesian model comparison pipeline to the in-
distribution dataset of the SDSS embeddings, we derive our fi-
nal result shown in Figure 9. The random forest is trained on
CPU (2 x 32-Core AMD Epyc 7452) while the XGBoost clas-
sifier is trained on a GPU (A100). Among the base estimators
of stacking-MLP-RF-XGB, XGBoost is trained on GPU while
others are trained on CPU. The training of random forest takes
12.6 seconds, XGBoost takes 14.6 seconds and stacking-MLP-
RF-XGB takes 293.8 seconds.

There is a clear preference for the NOAGN model by all 3
classifiers. This relative preference does not necessarily mean
that NOAGN fits the SDSS test set better than the other models.
It simply points to the fact that, among all misspecified models,
NOAGN generates the most realistic images. But note that also a
tiny fraction of the TNG100 and UHD galaxies are well in agree-
ment with SDSS. Interestingly, comparing TNG100/TNG50 and
NOAGN/UHD, we find that higher physical resolution does not
necessarily provide better agreement with observations. This
might reveal a mismatch between simulation resolution and the
employed sub-grid physics which might fail to result in realistic
simulations if not adapted for higher resolution.

4.5. SHAP analysis

As mentioned in subsection 3.6, we use TreeSHAP from the
SHAP software to explain predictions from XGBoost classifier.
This should still give us an intuition about the influence of fea-
tures on the classification results also for other classifiers ex-
plored in this work. Background data in the SHAP software is
used to compute the expected value of the model prediction,
which is a reference point for the SHAP value interpretation.
Thus, the background data should be chosen to represent the data
distribution, which is typically selected from the training dataset.
Therefore, we used stratified sampling to select 50% of the sim-
ulation training set as background data due to the imbalanced
dataset. And we apply the trained SHAP tree explainer to 60%
randomly sampled “in-distribution” SDSS test data for balanc-
ing calculation time and result reliability. Two examples of the
resulting SHAP plots are shown in Figure 10.

Since feature dimensions are ordered by their importance on
the prediction of the XGBoost classifier result the upper and
lower panel have slightly di↵erent rankings and show di↵erent

Article number, page 7 of 16

A&A proofs: manuscript no. output

(a) random forest

(b) XGBoost

(c) stacking-MLP-RF-XGB

Fig. 6. GEN score distribution of all simulation models test set (orange)
and SDSS test set (blue). Top: random forest, Middle: XGBoost, Bot-
tom: stacking-MLP-RF-XGB

feature vectors. However, feature 364 and 189 are similarly im-
portant for NOAGN and TNG100 classification. Additionally
the importance of feature 113 and 205 are also share between
the two models. We find that two features (189 and 364) in the
compressed latent space are equally important for classifying
NOAGN and TNG100. However, their e↵ect on the classifica-
tion output is exactly opposite - for NOAGN (TNG100) these
features have an overall positive (negative) impact on the classifi-

cation if they show a large feature value. Looking at the meaning
of these two features, we find that 189 strongly correlates with
color where a low feature value represents more red galaxies and
a larger value encodes bluer ones. Similarly, feature 364 encode
green to red galaxies where additionally the substructure inside
the galaxy varies with feature value, the larger (smaller) this fea-
ture the more red (green) spots appear in the galaxies. From this
we conclude that NOAGN must be redder and clumpier than
TNG100 which, in turn, must be bluer and smoother. This dif-
ference might point towards di↵erent star formation histories and
present day star formation rates since younger stars are on aver-
age bluer. A similar conclusion can be drawn from the other two
common features 205 and 113.

4.6. Sensitivity analysis of OOD threshold

Our previous results are based on setting OOD threshold to 95%
in reference GEN score distribution generated from simulation
test set. Now we adjust the threshold (99%, 97%, 95%, 93%
90% and 85%) to see how violin plot and the percent of out-
of-distribution SDSS test data change accordingly.

We illustrate the relationship between threshold and ID /
OOD ratio of random forest, XGBoost and stacking-MLP-RF-
XGB in Figure 11. The curves of random forest is the steepest
one, showing that it is sensitive to the threshold change. As the
threshold increases, ID / OOD ratios from 3 ensembles tend to
be more similar.

To present the relationship between threshold and violin plot,
we use the violin plots from classifying the whole SDSS test
set as a reference, see Figure 12. The violin plots correspond
to threshold 99%, 97%, 95%, 93%, 90% and 85% are shown in
Figure 13, Figure 14, Figure 9,Figure 15, Figure 16, Figure 17,
respectively. Compared to the reference violin plots, discarded
out-of-distribution SDSS test data are mainly those classified as
40% to 60% NOAGN or TNG100. This is reasonable since a
probability around 50% implies that the classifier does not know
how to handle these data. This in turn confirms OOD. We take
a look at two extreme cases: for threshold 99%, to little SDSS
data is discarded, while for threshold 85%, too much data are
discarded as the discard range of NOAGN has expanded to 20%
to 80%.

Considering both line chart Figure 11 and violin plots from
di↵erent threshold, we think a threshold between around 93% to
around 97% is reasonable. This justifies our choice of threshold
95% in the main pipeline.

5. Summary & Conclusions

We have explored novel approaches to model misspecification
detection and Bayesian model comparison in the context of
galaxy images and hydrodynamical simulations. Our approach
for detecting model misspecification not only enables us to
gauge the misfit of individual models, but also enables insights
on why or in which respect these models are missspecified. By
casting the Bayesian model comparison task as a classification
task, we are able to select the relatively best matching model
without the need for potentially lossy hand-crafted summary
statistics. Furthermore our approach enables the usage of ex-
plainable AI techniques, such as SHAP values, to get a deeper
insight into the advantages/disadvantages of individual models.

In conclusion, it is clear that all 6 simulation models are mis-
specified, thus there is a big gap between these simulation mod-
els and reality. And NOAGN is the relatively best one compared
to other simulation models.
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(a) random forest

(b) XGBoost

(c) stacking-MLP-RF-XGB

Fig. 8. Confusion matrices of classifiers. Top: random forest, Middle:
XGBoost, Bottom: stacking-MLP-RF-XGB
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Abstract

We present principled Bayesian model comparison through simulation-based neural
classification applied to SN Ia analysis. We validate our approach on realistically
simulated SN Ia light curve data, demonstrating its ability to recover posterior
model probabilities while marginalizing over > 4000 latent variables. The amor-
tized nature of our technique allows us to explore the dependence of Bayes factors
on the true parameters of simulated data, demonstrating Occam’s razor for nested
models. When applied to a sample of 86 low-redshift SNæ Ia from the Carnegie
Supernova Project, our method prefers a model with a single dust law and no mag-
nitude step with host mass, disfavouring different dust laws for low- and high-mass
hosts with odds in excess of 100:1.

1 Introduction

Classification problems are a quintessential machine learning task, just as hypothesis testing is at the
heart of science. Bayesian model selection improves upon traditional frequentist tests by implement-
ing an automatic quantitative version of Occam’s razor (the principle that “simple” models ought to
be preferred [1]). Traditionally, calculating Bayesian model evidences has required performing an
integral over the model’s whole parameter space, which quickly becomes intractable when analysing
large data sets with complicated Bayesian hierarchical models (BHMs).

Neural simulation-based inference (SBI)1 is a relatively recent alternative approach to Bayesian
inference that is rapidly gaining popularity in the physical sciences due to its scalability to large data
sets and ability to include realistic models. The keystone of SBI is the use of a stochastic simulator
able to produce mock data, incorporating arbitrarily complex physical effects difficult to model in
likelihood-based pipelines. A neural network (NN) trained on the simulated examples is then used
for inference in place of explicit likelihood evaluations. NNs are quick to train via gradient descent,
easy to deploy on modern high-performance computing hardware like graphics processing units
(GPUs), and allow SBI practitioners to exploit the rapid development in the field of deep learning.
Furthermore, amortised inference enables both validation of the approximate posteriors [4–6] as well
as the constructions of confidence regions with guaranteed frequentist coverage [7, 8].

Here, we combine the power of SBI with the elegance of Bayesian model selection to perform
principled analysis of a BHM with thousands of latent variables. We address the controversial topic of

1See [2, 3] for overviews and https://simulation-based-inference.org/ and https://github.
com/smsharma/awesome-neural-sbi for references to software and applications.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.
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Figure 2: Evaluation of the trained classifier network on the validation set of simulations. Left:
Each row shows the posterior over models (as labelled above), averaged over a collection of data
simulated with the model indicated on the left. Right: log10 Bayes factors (evidence ratios) for
different simulated datasets as a function of the input parameters. For the µR–�R plot the compared
models are “local” and “global” (�R = 0), marginalising over �M , while for the �M–�0 plot, the
models are “dM” and “M0” (�M = 0), assuming a non-split Rs

V distribution (“local”). The solid
black lines indicate parameters leading on average to equal posterior odds.

Refinedness (in the sense of [38]). We show in fig. 2 (left) the average posterior probabilities for data
simulated with a given model. A refined classifier would assign the most probability to the “correct”
model, leading to a pronounced diagonal; but unlike in usual machine learning applications, Bayesian
model comparison assigns non-zero posterior probability to all models (i.e. non-zero off-diagonal
entries). The prominence of the diagonal, then, depends both on how powerful the data itself is in
distinguishing the models as well as on the parameters’ priors [1].

Owing to amortisation, we are able to explore Bayes factors (ratios of evidences) across a range
of ground-truth parameters of simulated data, which is computationally unfeasible with traditional
methods. Figure 2 (right), which compares nested models (“local” → “global” in µR–�R space and
dM → M0 in �M–�0 space), clearly demonstrates Occam’s razor: data resulting from parameters
sufficiently close to the location of the nested model (�R = 0 or �M = 0) favour the simpler model
(yellow/red regions). We also observe that, naturally, a step in magnitudes is harder to detect when
their scatter (�0) is larger. A scatter in R

s
V (i.e. �R > 0) is also harder to detect when µR is large

because, in that region, the effect on data is smaller due to the non-linear nature of the dust law.

Results from the CSP data set are presented in fig. 3 in terms of posterior model probabilities and
Bayes factors with respect to the most probable model: a global dust law and no magnitude step. Our
results follow Occam’s razor, with no clear preference for a mass step and a mildly disfavoured (by a
factor ⇡2) spread of Rs

V . A split in the dust laws for low- and high-mass hosts is clearly disfavoured,
regardless of the magnitude step, with a Bayes factor of ⇡100, contrary to the conclusions of both
Thorp & Mandel [15] and Brout & Scolnic [14].

In fig. 3, we also present posteriors (derived via NRE trained on the same simulations used for the
model comparison network), which support the conclusions of model comparison. In agreement
with TM22, we find a magnitude step of �M ⇡ �0.05, and approximately 2� away from 0, with
the results only mildly affected by the dust model. We find a larger value �0 ⇡ 0.2 (cf. ⇡0.1 in
TM22) since this quantity in our analysis absorbs all residual variability present in the data, including
peculiar velocity uncertainties, which we do not model explicitly. All of the global dust parameter
posteriors are in good agreement with TM22, and we obtain similar posteriors when treating low-
and high-mass hosts separately as when we assume a single dust distribution (after marginalising
over �M in all cases). This justifies the “split” dust model being strongly disfavoured, due to its
larger prior volume.

4
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LEARNING THE SOLUTION OF ODES AND PDES  —
NEURAL ODES, OPERATOR LEARNING AND PINNS

• ODEs are good for:

• population models

• motion of the planets

• structural integrity of a bridge

• fluid dynamics

• …


ODEs are kind of easy — only derivatives with respect to one variable


PDEs are more complicated — derivatives with respect to many variables and differential equations 
are local while solutions exhibit non-local properties 


• Traditional solution: discretisation (in time and space) and iterative solution



NEURAL ODES, OPERATOR LEARNING 
AND PINNS

Neural ODE:                                                  (neural net = right hand side of diff eq.


                                                                                                   solution: integrate entire neural net.)

df
dt

= hθ(x0, t, p)

Neural Operator:           Gθ : X → Y  with  function spaces (infinite dimensional)


                                     (neural net approximates the operator 

                                      i.e. the map between function space)

u ↦ Gθ(u) X, Y

PINN:                             with   need to fulfil the diff eq.


                               

                                                                                                   (solution is given by neural net, 

                                                                                                     autodiff and diff eq. are used in loss)   

f(x, t) = hθ(x, t, p)
df
dt

=
dhθ

dt
,

df
dx

=
dhθ

dx



NEURAL ODES
• Traditional solution: discretisation (in time and space) and iterative solution

Euler discretization











ht+1 = ht + ft(ht, θt)

h(t + Δt) = h(t) + Δt ⋅ f(t, h(t), θ)

h(t + Δt) − h(t)
Δt

= f(t, h(t), θ)

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute

{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost, adapt their evaluation strategy to each input, and can explicitly trade
numerical precision for speed. We demonstrate these properties in continuous-depth
residual networks and continuous-time latent variable models. We also construct
continuous normalizing flows, a generative model that can train by maximum
likelihood, without partitioning or ordering the data dimensions. For training, we
show how to scalably backpropagate through any ODE solver, without access to its
internal operations. This allows end-to-end training of ODEs within larger models.

1 Introduction
Residual Network ODE Network

Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

Models such as residual networks, recurrent neural
network decoders, and normalizing flows build com-
plicated transformations by composing a sequence of
transformations to a hidden state:

ht+1 = ht + f(ht, ✓t) (1)

where t 2 {0 . . . T} and ht 2 RD. These iterative
updates can be seen as an Euler discretization of a
continuous transformation (Lu et al., 2017; Haber
and Ruthotto, 2017; Ruthotto and Haber, 2018).

What happens as we add more layers and take smaller
steps? In the limit, we parameterize the continuous
dynamics of hidden units using an ordinary differen-
tial equation (ODE) specified by a neural network:

dh(t)

dt
= f(h(t), t, ✓) (2)

Starting from the input layer h(0), we can define the output layer h(T ) to be the solution to this
ODE initial value problem at some time T . This value can be computed by a black-box differential
equation solver, which evaluates the hidden unit dynamics f wherever necessary to determine the
solution with the desired accuracy. Figure 1 contrasts these two approaches.

Defining and evaluating models using ODE solvers has several benefits:

Memory efficiency In Section 2, we show how to compute gradients of a scalar-valued loss with
respect to all inputs of any ODE solver, without backpropagating through the operations of the solver.
Not storing any intermediate quantities of the forward pass allows us to train our models with constant
memory cost as a function of depth, a major bottleneck of training deep models.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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NEURAL ODES IN ASTROPHYSICS
• Neural Astrophysical Wind Models (Nguyen 2023)


• Neural ODEs as a discovery tool to characterize the structure of the hot galactic wind of M82 
(Nguyen+2023)


• Speeding up astrochemical reaction networks with autoencoders and neural ODEs (Sulzer+Buck 
2023)


Figure 8: The error distribution in time and magnitude for the trajectory plotted
in figure 6. The left panel shows the mean and median error as well as the
ranges in which the errors of 50%, 90% and 99% of all data points lie, plotted
over the time range. The right panel shows the total distribution of error over
all trajectories and all times.

3.1.1 Results of the linear model

The trajectories in figure 6 were calculated with 5 latent dimensions. The time

evolution of those five latent variables is plotted in figure 9. Naturally, the ini-

tial state at t = 0 is the same for both the encoded and the predicted evolution,

since they both represent the initial state of the real space trajectory encoded

into latent space. The integrated trajectories on the right roughly follow the

direction of the encoded trajectories on the left, however, the integrated tra-

jectories are much smoother than the encoded trajectories, looking like perfect

linear functions by the naked eye. The smooth latent space trajectory results

in an easy numerical integration, requiring a limited number of steps for good

accuracy.

As described in section 2.3.2, this allows us to simplify the latent space

dynamics to a simple integral of a linear function or low order polynomial.

At practically no loss in accuracy compared to the neural ODE (actually the

accuracy we achieve with this model is even slightly better), the evaluation can

be sped up by orders of magnitude, since a numerical integration of an ODE is no

longer required and the problem can be solved by a simple function evaluation.

It would now be possible to use symbolic regression to figure out the param-

eterization of the latent functions in the neural ODE model, however, the huge

speed up actually makes it more e�ective to retrain the model with this type

25

Figure 11: The distribution of relative error for the prediction depicted in figure
10.

Figure 12: Heatmap plot of the predicted vs the actual abundances over the
entire test set for the linear latent space model. A perfect reconstruction of the
data would result in all points lying on the diagonal.

29

Relative error in time

neural ODE

linear latent model

Figure 2: The ground truth (grey) and the predicted abundances (color) from the neural ODE model
(left) and the linear latent space model (middle). The right panels show the relative error over time
for the neural ODE model (upper panel) and the linear latent model (lower panel).

training, five loss functions are defined: The reconstruction loss (L0) measures the discrepancy
between the predicted trajectory x0(t) and the ground truth x(t), computed as L0 = |x(t) � x0(t)|2.
The identity loss (L1) ensures that the combination of the encoder ' and decoder  approximates
the identity. It is calculated as L1 = |x(t) �  ('(x(t)))|2. The mass conservation loss (L2),
incorporating the species masses vector m, ensures that the mass of the predicted trajectory aligns
with the mass of the ground truth at each time point. It is computed as L2 = |m · x(t)�m · x0(t)|2.
Gradient losses (L3 and L4) enforce the predicted trajectories to closely follow the ground truth by
comparing first and second-order gradients in real space. L3 measures the discrepancy in first-order
gradients, and L4 examines second-order gradients. They are defined as L3 = |dx(t)dt � dx0(t)

dt |2 and
L4 = |d

2x(t)
dt2 � d2x0(t)

dt2 |2. After a burn-in phase of ten epochs, the losses are normalized to unity and
the L0 loss is weighted by 100. Optimization is performed using the Adam optimizer [13] with a
cosine-annealing learning rate scheduler, varying the learning rate between 10�3 and 10�5.

3 Results

The models are evaluated on a test set of 50 unseen trajectories. Fig.2 shows one sample from the test
set alongside the predictions from both models: the neural ODE (left panels) and the linear latent
model (middle panels). The predicted trajectories closely match the ground truth trajectories. For
certain species such as H, H2O, or H+

3 , there is hardly any discernible deviation while for other
species like C or CH4, some minor discrepancies from the ground truth are noticeable. Notably,
regions with moderate to strong curvature produce larger errors than flatter trajectories. Quantitatively,
the deviations correspond to a Root Mean Square Error (RMSE) of 9 · 10�3 for the neural ODE
model and 3 · 10�3 for the linear latent model. Additionally, the relative error (rightmost panels
in Fig. 2) for the neural ODE trajectory ranges from 5.96 · 10�8 to 0.58, with a median relative
error of 0.015. In contrast, the linear latent model exhibits relative errors ranging between 10�16

and ⇠ 0.1, with a median relative error of 0.004. In comparison, Grassi et al. employed a similar
dimensionality reduction approach utilizing autoencoders but modelling reactions in latent space
by explicitly defining a sparse reaction matrix. Evaluated on the same dataset, Grassi et al. achieve
a logarithmic relative error hlog(�x)i ranging between �2.96 and 0.44. In contrast, our neural
ODE model achieves a log relative error ranging from �4.41 to �1.03, while our linear latent
space model reaches a log relative error ranging from �5.09 to �1.64. Overall, we have achieved
significantly improved reconstruction results, with relative errors several orders of magnitude lower
than those reported by [10]. The linear latent space model, in particular, achieves a relative error

3

Sulzer+Buck 2023



PHYSICS INFORMED NEURAL NETS

Fabian Linsenmeier Physics-infomed neural networks (PINNs) 04.12.2023 12

Loss function for PINNs

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑑𝑎𝑡𝑎 ⋅ 𝐿𝑑𝑎𝑡𝑎 + 𝜔𝐷𝑖𝑓𝑓𝐸𝑞 ⋅ 𝐿𝐷𝑖𝑓𝑓𝐸𝑞+𝜔𝐼𝐶 ⋅ 𝐿𝐼𝐶

𝐿𝐷𝑖𝑓𝑓𝐸𝑞 =
1
𝑁𝑐

෍
𝑗=1

𝑁𝑐

ℱ 𝑢 𝑥𝑗, 𝑦𝑗 − 𝑓(𝑥𝑗, 𝑦𝑗)
2

𝐿𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎
෍
𝑖=1

𝑁𝑑𝑎𝑡𝑎

𝑢(𝑥𝑖, 𝑦𝑖 − 𝑢𝑖)2 𝐿𝐼𝐶 = 𝑢 𝑥0, 𝑦0 − 𝑢0 2

Differential Equation:  ℱ 𝑢 𝑥, 𝑦 = 𝑓 𝑥, 𝑦

Dataset: 𝑥𝑖, 𝑦𝑖, 𝑢𝑖 ; 𝑖 = 1,… , 𝑁𝑑𝑎𝑡𝑎

Initial Condition: 𝑥𝑜, 𝑦0, 𝑢0

Collocation points: 𝑥𝑗, 𝑦𝑗 ; 𝑗 = 1,… , 𝑁𝐶



PINNS IN ASTROPHYSICS
• Physics-informed neural networks for modeling 

astrophysical shocks (Moschou+2023)


• Probing the solar coronal magnetic field with physics-
informed neural networks (Jarolim+2022)


• Physics-informed neural networks in the recreation of 
hydrodynamic simulations from dark matter (Dai+2023)


• Physics informed neural networks for simulating 
radiative transfer (Mishra+Molinaro 2021)


• Neural networks: solving the chemistry of the 
interstellar medium (Branca+Pallottini 2023)


PINN to solve ISM chemistry 3

species (n = =1, . . . , =#B?42
), the temperature ()) and the radiative

flux (ionizing photons, photo-dissociation photons, cosmic rays, ...)
The ODEs system for the chemical species can be written as (e.g.
Grassi et al. 2014)

§=
:
=

’
92reaction:

©≠
´
0 9

÷
A 2reactant 9

=
A ( 9)

™Æ
¨
, (1)

where =
:

is the k-th species, and 0 9 are the rate coe�cients for all
the reactions considered in the chemical network.

Considering only 2-body reactions and photo-reactions2, eq. 1
can be re-written as:

§=
:
= �

8 9

:
=8= 9 + ⌫

8

:
=8 , (2)

where �
8 9

:
= �

8 9

:
() , n) are 2-body reaction coupling coe�cients,

⌫
8

:
= ⌫

8

:
(F) describe the photo-reactions rates, with F quantifying

the photon and cosmic ray flux in various energy bins.
The evolution of the thermal state of the gas is accounted evolv-

ing the gas temperature, that depends on the heating and cooling
process (chemical, radiative, ...):

§) =
(W � 1)
:
1

Õ
8
=8

(� � ⇤) , (3)

where :
1

is the Boltzmann constant, W is the gas adiabatic index,
� = �() , n,F) and ⇤ = ⇤() , n,F) are the heating and cooling
functions, respectively.

In this work we focus on a ISM chemical network originally
presented in Bovino et al. (2016) and that has been used for studies
on molecular cloud scales (Decataldo et al. 2019, 2020) and the
on evolution of high-redshift galaxies (Pallottini et al. 2017, 2019,
2022). The network has #B?42 = 9 species: e�, H�, H, H+, He, He+,
He++, H2, and H+

2 . Following Bovino et al. (2016), the evolution
of the species is regulated by 46 reactions (for a schematic view,
see Fig. 1), involving dust processes, i.e. H2 formation on dust
grains (Jura 1975), photo-chemistry, and cosmic rays ionization. In
particular, the rates are taken from Bovino et al. (2016): reactions
1 to 31, 53, 54, and from 58 to 61 in their tables B.1 and B.2,
photo-reactions P1 to P9 in their table 2.

For the temperature evolution (eq. 3) we account for the fol-
lowing processes: photoelectric heating from dust (Bakes & Tie-
lens 1994), cosmic rays heating (Cen 1992), photo heating, heat-
ing/cooling due to exothermic/endothermic reactions, metal line
cooling (Shen et al. 2013), Compton cooling from the CMB, molec-
ular H2 cooling (Glover & Abel 2008), and atomic cooling (Cen
1992). For simplicity, in this work, we adopt a constant solar value
for the metallicity (/ = /� , Asplund et al. (2009)) and dust to gas
ratio ( 5

3
= 0.3, Hirashita & Ferrara (2002)).

Recall that, the two body reactions (�8 9
:

, eq. 2) depends only on
density n and the temperature) , however the coe�cients of (⌫8

:
, eq.

2), and the heating and cooling terms (� and ⇤, eq. 3) additionally
depends on the flux F.

For simplicity, in this work we consider a Spectral Energy
Distribution (SED) of UV/Xray background from Haardt & Madau
(2012) at redshift I = 0 and adopt MW like cosmic ray flux with rate
Z2A = 3⇥10�17s�1. This SED is not completely appropriate for the
typical ISM conditions, (e.g. see Draine 1978, for the MW), however
we adopt it so that all photo-ionizations (H+ Wha>13.6eV ! H+

+ e,

2 Neglecting secondary higher order processes, also reaction involving cos-
mic rays can be approximated with the same formalism, see e.g. Bovino
et al. (2016).

Figure 2. General scheme for a feed-forward Neural Network (NN) archi-
tecture. The aim is to resolve the PDE/ODE system (eq. 4) of the set of
variables x. This variables are used as the input for the NN: x passes through
the Physics Informed NN (PINN) layers defined by the activation functions
f (eq. 6) and the set of parameters \ (eq. 7). The NN returns the emulated
solution D, which is tested against the PDE/ODE system (eq. 4) by evaluat-
ing the residuals via the loss function (eq. 8). Parameters \ are updated and
the process is repeated until convergence is reached (eq. 11).

...) in our chemical network are active, i.e. this choice allow us to
robustly test all the reactions in the model.

Various implementations/schemes can be adopted to solve a
chemical network. As a reference for this work, we adopt the flexible
code �����3 (Grassi et al. 2014), which is a framework that –
given an input chemical network – generates the code to solve the
associated ODE system. To solve the system ����� use ������,
which is included in ������� (Hindmarsh 2019). ������ is an
implicit, robust, multistep, iterative high order solver (5 by default)
that can take advantage of the sparsity of the Jacobian matrix of the
ODEs. The default ����� relative and absolute tolerances are fixed
at 10�4 and 10�20 respectively.

In this work, we adopt ����� i) to build the ODEs structure
(eq.s 2 and 3) for our PINN scheme (Sec. 3) and ii) to test our results
during the validation phase (Sec. 4).

2.2 Physics Informed Neural Network

In general, we can write a set of partial di�erential equations
(PDE)/ODE4 in the form

D(D(x)) = 5 (x), 8x 2 ⌦, (4a)

B(D(x)) = 6(x), 8x 2 m⌦ , (4b)

where x is the set of independent variables, D is the di�erential op-
erator of the PDE/ODE, B is a constrain operator – i.e. it represents
the boundary/initial conditions (BC/IC) – and D(x) is the solution
of the PDE/ODE system.

Our aim is to approximate the solution of the system with
a neural network (see Wang & Raj 2017, for a review analyzing
the theoretical and practical aspects). In principle, this is possible
because of the universal approximation theorem (Cybenko 1989),
since multi-layer feed-forward neural networks are capable of ap-
proximating any Borel measurable function (Hornik et al. 1989).
Namely, it is formally possible to replace the PDE/ODE solution

3 https://bitbucket.org/tgrassi/krome/src/master/
4 While in the present we are focusing on ODE systems associated with a
chemical network, the PINN scheme can also be applied to PDE.

MNRAS 000, 1–16 (2022)
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DEEP OPERATORS IN ASTROPHYSICS
• PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet 

Systems (Mao+2023)


• Emulating the interstellar medium chemistry with neural operators (Branca+Pallottini 2024)


• CODES Benchmark for neuralODEs and Operator Learning for astrochemistry 
(Janssen,Sulzer+Buck 2024)


Branca & Pallottini: Emulating ISM chemistry with DeepONet

Fig. 1: Scheme of the emulator implemented in this work. The system Ordinary Di↵erential Equations (ODE) describing the Inter-
Stellar Medium (ISM) chemical network (Sec. 2.1) is emulated via the DeepONet formalism (Sec. 2.2) by splitting the dependence
i) from the initial conditions (T , and densities n of each chemical species, i.e. e�, H�, H, H+, He, He+, He++, H2, and H+2 ) and the
radiation flux (F) with the branch network (g) and ii) from the temporal evolution in the time (t) domain with a trunk network ( f );
f and g are feed-forward neural networks, each consisting of 6 dense layers with 128 neurons: the tensor product (⌦) of the branch
and the trunk is adopted to compute the loss function (eq. 3). We individually train networks for the temperature and each of the
chemical species; the data-set adopted to train DeepONet is described in Sec. 2.3 and its main properties are summarized in Tab. 2.

The network tracks the evolution of e�, H�, H, H+, He, He+,
He++, H2, and H+2 , which evolve according to 46 reactions1, in-
volving dust processes, i.e. H2 formation on dust grains (Jura
1975), photo-chemistry (see Tab. 1), and cosmic rays ionization.
Similarly to Branca & Pallottini (2023), we consider only solar
metallicity, abundances (Z = Z�, Asplund et al. 2009), and dust
to gas ratio ( fd = 0.3, Hirashita & Ferrara 2002).

The chemical network includes 2-body reactions and inter-
action with an input radiation field F that quantifies the photon
and cosmic ray flux in various energy bins, thus the evolution of
the species can be written as

ṅk =
X

i, j

Ai j
k nin j +

X

i

Bi
kni , (1)

where Ai j
k = Ai j

k (T,n) are the temperature (T ) dependent 2-
body reaction coupling coe�cients, Bi

k = Bi
k(F) describe the

photo-reactions rates, and the indexes range on all the 9 included
species. For the radiation field, we select a constant cosmic ray
flux of ⇠ = 3⇥10�17s�1, which is appropriate for the Milky-Way
(Webber 1998), and set the coupling with the gas adopting the
kida database (Wakelam et al. 2012); for the photons, we select
10 radiation bins such that all the 9 photo-reaction included in
the chemical network are fully covered (see Tab. 1); the spectral
shape of the incident radiation is further detailed in Sec. 2.3.

1 The reaction rates are taken from Bovino et al. (2016): reactions 1 to
31, 53, 54, and from 58 to 61 in their tables B.1 and B.2, photo-reactions
P1 to P9 in their Tab. 2.

The system can be considered complete once T is simultane-
ously evolved

Ṫ =
(� � 1)
kb
P

i ni
(� � ⇤) , (2)

where kb is the Boltzmann constant, � is the gas adiabatic index,
� = �(T,n,F) and ⇤ = ⇤(T,n,F) are the heating and cool-
ing functions, respectively. � includes contribution from photo-
electric heating from dust (Bakes & Tielens 1994), cosmic rays
(Cen 1992), and photo-reactions (Tab. 1). ⇤ accounts for cool-
ing from atoms (Cen 1992), molecules (only molecular hydrogen
here, Glover & Abel (2008)), metal lines (Shen et al. 2013), and
the Compton e↵ect. Additionally, exothermic and endothermic
chemical reactions give contributions to the heating and cooling
terms, respectively.

2.2. Deep Operator Network for photo-chemistry

Thanks to the Universal Approximation Theorem (UAT, Cy-
benko 1989), a neural network can approximate any continuous
function. Actually, a more general result has been demonstrated
by Chen & Chen (1995), the so called UAT for Operators. In
principle, such extension allows neural networks to be used not
only as function approximator, but also to learn maps between
functional spaces, in particular, allowing for a family of func-
tions to be approximated.

However, only years after the proof of UAT for operator has
been given, the extended theorem yielded practical applications,
as in Lu et al. (2021), where the authors presented DeepONet, an

Article number, page 3 of 13
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Branca & Pallottini: Emulating ISM chemistry with DeepONet

Fig. 4: Examples of the time (t) evolution of temperature (T ) and the density (n, see the legend) of all the species in the chemical
network. The solid lines represent the solutions computed using KROME, while the dashed lines depict the predictions of our models,
with each line being a single solution from the emulator. In the left (right) panel the gas number density is n = 104cm�3 (initial
temperature is T = 106K), i.e. outside the range of the training dataset (see Tab. 2).

are present in the early stages (up to approximately 1 yr) for He;
this inaccuracy reflects the fact that the error distribution of He
is among the worst (see Fig. 3), i.e. �r peaks at 10�1.7. Further,
recall that the t training set is extracted from the linear spaced 0
to 1 kyr, thus the sampling of the data is expected to be lower at
early times. These two facts combined can lead to larger errors
in the prediction phase.

Indeed, adopting a linear sampling of the training space in
the time domain implies a better sampling at high t, thus ex-
plains why errors seems to decrease with increasing t for most
of the species in both examples. Moreover, it is to note that our
emulator captures the sharp turns of some species very well, for
instance for He++ in the left panel and H+2 in the right panel, both
featuring a numerical gradient of about 10 order of magnitude at
t ⇠ 10yr, hinting at the fact that our method does not su↵er too
much from the sti↵ness of the system.

Errors are small despite the initial density and temperature
exceeding the maximum values in the training set (Tab. 2), in-
dicating that the model not only interpolates the training data
but also seems to gain a good understanding of the influence of
initial conditions (the sensors) on the evolution operator. In gen-
eral, the problem of extrapolating the solutions of Neural Oper-
ators is complex to quantify. Zhu et al. (2023) meticulously an-
alyze the capability of DeepONet to extrapolate solutions, also
proposing experimental methods to enhance the adaptability of
trained models to receive unexpected inputs, i.e. beyond the ini-
tial dataset. As shown in Figure 4, our model seems to general-
ize quite well within a range about half a dex (both for n and T )
outside the initial conditions covered by the training set, which
can act as a safety insurance if – for instance during a numeri-
cal simulation – a model reaches an unexpected input value. This

ability to extrapolate outside the range of initial conditions wors-
ens further away from the limits of the training set. For instance,
the accuracy decreases by a factor of 10 if we take an initial
T ' 107.5K, i.e., with respect to the upper bound of the training
dataset, outside by a factor of 2 in the normalized log space (see
Sec. 2.2) .

However, the above discussion does not apply to time ex-
trapolation. In general, it is more challenging for the operator to
extrapolate in the time domain. This is primarily due to the non-
linear structure of the ODEs system, that can present sharp turns
at late time, not included in the testing set for a particular combi-
nation of initial conditions. In principle, it is possible to enhance
the time extrapolation capability of DeepOnet by increasing the
number of sensors (Lu et al. 2021, in particular see Sec. 12.1 in
the supplementary material). Possibly, a more cost-e↵ective ap-
proach for longer time integration consists in concatenating the
solution of the emulator, using the prediction in the first time
step as initial conditions for the second iteration and so on, ex-
ploiting the fact that no explicit time dependence is present in
the photo-chemical network; however, it is unclear how such a
concatenation would a↵ect the error propagation: we leave this
analysis for a future work.

3.2. Photo-dissociation region benchmark

For a physically relevant benchmark, we simulate a photo-
dissociation region (PDR, see Wolfire et al. 2022 for a review),
similarly to the test presented in the photoionization code com-
parison study from Röllig et al. (2007). Adopting a planar geom-
etry, we take a slab of gas with constant gas density n = 102 cm�3

and a maximum column density of N = 5 ⇥ 1021cm�2; we as-

Article number, page 7 of 13



SUMMARY & CONCLUSION
Main take away:


scientific motivated inductive bias helps to be more robust, more data efficient 
and better interpretable 


My personal message:


Write better code!

Share more data! 

Build more open-source software!


This will accelerate research cycles and lets you engage with peers early on! 
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