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MACHINE LEARNING IN ASTROPHYSICS
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ALMA 1.3 billion USD WFIRST 3.2 billion USD ATHENA 1 billion USD Euclid 0.7 bIIion US

DATA IS GETTING MORE AND MORE COMPLEX!
THIS MEANS: NEW OPPORTUNITIES BUT ALSO NEW CHALLENGES
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A map of the lands of

LARGE LANGUAGE m—

i Browse at https://pfdr.app/

MODELS IN
ASTROPHYSICS

A public-friendly visualization of the 2d manifold of
galaxy evolution papers created with UMAP+stable
diffusion that shows the different areas of the astro-ph
literature corpus. Following similar patterns as the
heatmap, mountains indicate well-studied areas, plains
indicate fields of active study, coastal regions are ‘hot
topics’, and water denotes regions with no papers.
Similar to a world map, the axes here do not hold a
particular meaning. Regions close to each other have
semantic similarity, while distant regions do not.

lyer+2024, Pathfinder (UniverseTBD)



OUTLINE

1. Unsupervised Learning
A. Clustering
B. Representation Learning
2. Inference / Bayesian Modelling
C. Modeling Complex Prob. Distributions
D. Simulation-Based Inference
E. Model Comparison & Model Misspecification
3. Forward Models and Emulators
F. Neural ODEs and Operator Learning and PINNs






CLUSTERING AND DIMENSIONALITY REDUCTION

most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids

how to find/exploit structure in the data?

unsupervised clustering: Gaussian Mixture Models, k-means, HDBSCAN, ... in general any halo finder

Oliver+2024

https://astrolink.readthedocs.io



CLUSTERING AND DIMENSIONALITY REDUCTION

most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids

how to find/exploit structure in the data?

Oliver+ in prep.

What about measurement uncertainties or time evolving data?

Clustering Number: 1

https://fuzzycat.readthedocs.io



CLUSTERING AND DIMENSIONALITY REDUCTION

most of the time we think in categories: stars vs. galaxies, elliptical vs. spirals, halos vs. filaments vs. voids

how to find/exploit structure in the data?

What about measurement uncertainties or time evolving data?

2.79e1.2.01801

Oliver+ in prep.




REPRESENTATION LEARNING

representation learning seeks to automatically discover the representations needed for
feature detection or classification from raw data.

Default Representation "Good" Semantic Representation
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Cat by Martin LEBRETON, Dog by Serhii Smirnov from the Noun Project

iImage credit: https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html



https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html

REPRESENTATION LEARNING

1. Self-supervised contrastive representation learning 2. Downstream tasks o
Learn representations in an unsupervised manner Use representations for a variety of applications
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REPRESENTATION LEARNING
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REPRESENTATION LEARNING FOR STELLAR SPECTRA

multi-modal data: Gaia RVS spectra and Gaia XP coefficients plus contrastive loss
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Buck+2024 in prep., see also Parker+2024 for AstroCLIP
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REPRESENTATION LEARNING FOR STELLAR SPECTRA
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REPRESENTATION LEARNING FOR STELLAR SPECTRA

cross-modal generation: AspGap
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REPRESENTATION LEARNING

Literature: Huertas-Company & Sarmiento 2023
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ABSTRACT

Reliable tools to extract patterns from high-dimensionality spaces are becoming more necessary as astronomical datasets increase
both in volume and complexity. Contrastive Learning 1s a self-supervised machine learning algorithm that extracts informative
measurements from multi-dimensional datasets, which has become increasingly popular in the computer vision and Machine
Learning communities in recent years. To do so, it maximizes the agreement between the information extracted from augmented
versions of the same input data, making the final representation invariant to the applied transtormations. Contrastive Learning
1s particularly useful in astronomy for removing known instrumental effects and for performing supervised classifications and
regressions with a limited amount of available labels, showing a promising avenue towards Foundation Models. This short
review paper briefly summarizes the main concepts behind contrastive learning and reviews the first promising applications to
astronomy. We include some practical recommendations on which applications are particularly attractive for contrastive learning.

Key words: methods: data analysis — methods: statistical — methods: miscellaneous — techniques: miscellaneous






MODELING COMPLEX PROBABILITY
DISTRIBUTIONS

Bayesian inference aims at determining p(@| x,,)

)p(O
pO|[xq) = P(% 16)P(©) x p(Xq| 0)p(0)
p(Xp)

In astrophysics, X, typically results from a large number of mechanisms/effects that transform the data
and involve a large number of latent variables z, hence the marginal likelihood p(X,, | @) is intractable.

p(Xy|0) = IP(XO |0, 2)p(2)dz



MODELING COMPLEX PROBABILITY
DISTRIBUTIONS

How can we approximate high-dimensional, complex probability distributions p(€|x,)?

Goal:
» effectively: learn a model from the data!

- model p(0|X,) explicitly or implicitly
- sample and evaluate p(0|x,)

Options:
* normalizing flows implicit model: architectural constraints
* VAEs
 GANs explicit model: prone to mode collapse

» score matching / flow matching
* and possibly more



GENERATIVE Al FLAVOURS

"Creating noise from data is easy; creating data from noise is generative modeling.”
(Song+2020)

GANs: Sample noise z from a known p(z) and use a generator G(z) to get data.
VAEs: Sample noise z from a prior p(z) and use a decoder p(x | z) to sample data.
Normalizing Flows: Sample noise z from a base distribution p(z) and use an invertible transformation
fto get data, x = f~1(2)

score matching: Sample noise z from a Gaussian distribution p(z) and use Langevin dynamics to
denoise

don’t forget good old Gaussian Processes






SCORE MATCHING AND DIFFUSION MODELS

What is the score s(X) of a pdf p(x)?

s(x) = V,log p(x)
ldea: Learn p(X) solely from data samples, then sample new instances.

But how does this work” — Langevin dynamics (Welling&Teh 2011)
Xyl = X T avxtlogpreal(x) T 1€

| | Simple
| Ta-rgei-: Add n0|sLe accordmg totjche forward (Gaussian)
distribution angevin equation distribution
oA
;
Target De-noise according to the backward Simple
distribution Langevin equation distribution

adapted from: slides by Laurence Perrault Levasseur and blog post by https://jmtomczak.github.io/blog/16/16_score_matching.html



https://jmtomczak.github.io/blog/16/16_score_matching.html

SCORE MATCHING AND DIFFUSION MODELS

Learn generative model purely from data!
Smith+2021

http://www.mjjsmith.com/thisisnotagalaxy/



SCORE MATCHING AND DIFFUSION MODELS

Posterior samples with score-based priors

Posterior p(x | y) with observation y is given by Bayes’ theorem:

logp(x|y) =logp(y|x) +log p(x) — log p(y)

with p(y | x) being the likelihood
and p(x) the prior.

hence the score is given by:

V. logp(x|y) = V,logp(y|x) + V,log p(x) — V_ log p(y)

To a good approximation, we can This is the score we learnt =0 because it does not
calculate the likelihood score with depend on Xx.
analytically if we assume it's Gaussian. Score Matching from data!



SCORE MATCHING AND DIFFUSION MODELS

Posterior samples of source galaxies in strong gravitational
lenses with score-based priors

Ground

Adam+2022




SCORE MATCHING AND DIFFUSION MODELS

Posterior samples for out-of-distribution galaxies

Adam+2022







NORMALIZING FLOWS

How can we approximate high-dimensional, complex probability distributions p(€|x,)?

Goal:
- model p(0]Xx,) explicitly
- sample and evaluate p(0 | x,)

|dea:

Transform a simple base distribution through a series of invertible transformations.



NORMALISING FLOW: APPLICATION |

Observations Normalizing Flow

{z, v} for (2, U)
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T Green et al. 2022



NORMALISING FLOW: APPLICATION I
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NORMALISING FLOW: APPLICATION Il

* Normalizing flows for random fields in cosmology (Rouhiainen+2021)

» Bayesian Stokes inversion with normalizing flows (Baso+2022)

* A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship (Lovell+2023)

* HIFlow: Generating Diverse Hi Maps and Inferring Cosmology while Marginalizing over
Astrophysics Using Normalizing Flows (Hassan+2022)

* Normalizing Flows as an Avenue to Studying Overlapping Gravitational \Wave Signals
(Langendorff+2023)

» Charting Galactic Accelerations: When and How to Extract a Unique Potential from the
Distribution Function (An+2021)

» Charting galactic accelerations |l: how to ‘learn’ accelerations in the solar neighbourhood
(Naik+2021)

* many many more...






SIMULATION-BASED INFERENCE - SBI

Np (6
p(@]x) = PXIOPO X 10p©)
p(X)

» Insight: running a stochastic simulator with input @ gives an output X that is drawn from an implicit
likelihood p(x | 6)

» ,Simulation-based inference” or ,likelihood-free inference” or ,implicit likelihood inference” or .
(reV|ew Cranmer+2020)

* recent progress thanks to deep learning algorithms, e.g. conditional normalizing flows
(Papamarkios+2019, Greenberg+2019, Hermans+2020, ...)



SBl: NEURAL X ESTIMATION

» Use neural networks to approximate some quantities in Bayes’ formula

px|0)
p(X)

p@|x) = p(0) = p(0)

* Neural Posterior Estimation (NPE)

* Neural Likelihood Estimation (NLE)



SBI: (CONDITIONAL) DENSITY ESTIMATION

 NLE and NPE both estimate normalised probability densities, hence:

» restricted network architectures, e.g. normalizing flows or mixture density models. potentially
difficult to train (Papamarkios+2021)

» for high-dimensional data, compression/embedding network needed.

 pbut: restriction can be a good inductive bias, especially if posterior or likelihood is “perturbation
around Gaussian distribution”

» automatic marginalization possible

c.f. pydelfi Alsing+2018,2019; moment networks Jeffrey+Wandelt 2020, SBI Jakob Macke, ItU-ili Ho+2024, Bayesflow Radev+2020,2023,
swyft Miller+2021,2022

https://simulation-based-inference.org/
https://github.com/smsharma/awesome-neural-sbi for references to software and applications



SBIl: APPLICATION IN COSMOLOGY
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SBl: APPLICATION FOR STELLAR STREAMS
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SBI: APPLICATION FOR GALACTIC CHEMICAL ENRICHMENT

Simulator
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SBIl: APPLICATION IN

1.2
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SBI: APPLICATION IN STRONG LENSING

Searching light DM halos Probing population effects of light dark
| : sz Halo mass matter halos rather than mdmdual detections
b e
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Alternative to: Related work: He+ 2010.13221 (similar in spirit, using ABC)
HMC, parameter reduction, ABC,

Wagner-Carena+ 2203.00690 (constraining subhalo mass function
slide from Cole normalization)



SBI: APPLICATION IN STRONG LENSING
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MODEL COMPARISON & MODEL MISSPECIFICATION

Bayesian model selection assigns posterior probabilities p(Mj |d) to models M €&
{Mi,..., My} (instead of to values of their parameters 6;), conditional on observed data d.
The conventional approach is to compute the marginal likelihood (or evidence) p(d | My ), which is
the average likelihood p(d | 8% ) of parameters distributed according to the prior p(6x ):

p(d| M) = / b(d|61) p(6y) A6, ()

(where the presence of M ’s parameters 0, implies conditioning on M, in the right-hand side).
The prior belief in the model, p(M ), is then updated to its posterior probability in accordance with
Bayes’ theorem: p(Mj |d) o< p(d | My) p(M}), normalised over all models considered.



MODEL COMPARISON & MODEL MISSPECIFICATION

Methods

» Jeffrey+Wandelt 2023: loss functions for two-way model comparison with an emphasis on recover-
iIng accurate extreme Bayes factors

» Radev+2021: estimate a Dirichlet distribution over an arbitrary number of models using a NN and
variational optimisation

» Elsemuller+2023 and Karchev+2024: use a cross-entropy loss for multi-class posterior probabilities
* Maccio+2022: Model selection for star formation prescriptions in cosmo sims
» Zhou+2024:. Model misspecification plus model comparison for low simulation budget applications

» Jin+2024: Model comparison of cosmo sims via GANomaly scores



MODEL COMPARISON & MODEL MISSPECIFICATION

|dea:

* Train embedding network on ~600.000 SDSS images, then encode simulated SDSS images
* Train simulation classifiers on embeddings, apply to real SDSS images

UMAP projection of k-sparse encoding of sims and Jobs
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True label

MODEL COMPARISON & MODEL MISSPECIFICATION

stacking-MLP-RF-XGB Confusion Matrix
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true class
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MODEL COMPARISON/SELECTION

SImSIMS: Simulation-based Supernova Ia Model
Selection with thousands of latent variables

MO

Konstantin Karchev!
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LEARNING THE SOLUTION OF ODES AND PDES —
NEURAL ODES, OPERATOR LEARNING AND PINNS

* ODEs are good for:
* population models
* motion of the planets
» structural integrity of a bridge
* fluid dynamics

ODEs are kind of easy — only derivatives with respect to one variable

PDEs are more complicated — derivatives with respect to many variables and differential equations
are local while solutions exhibit non-local properties

 Traditional solution: discretisation (in time and space) and iterative solution



NEURAL ODES, OPERATOR LEARNING
AND PINNS

df

Neural ODE: P = hy(xp, 1, p) (neural net = right hand side of diff eq.
[
solution: integrate entire neural net.)
Neural Operator: Gy: X =Y uwr Gylu)with X, Y function spaces (infinite dimensional)
(neural net approximates the operator
l.e. the map between function space)
df _dhy df _ dhy o
PINN: fx, 1) = hy(x, t, p) with — = , — = need to fulfil the diff eq.

dt dt dx dx

(solution is given by neural net,
autodiff and diff eq. are used in loss)



NEURAL ODES

 Traditional solution: discretisation (in time and space) and iterative solution

Residual Network ODE Network
5 v
Euler discretization \

*

4
Ny = h+ f(hy, 6) 3\ | 4
h(t+ At) = h(t) + At - f(t, h(2), O) E}z\ ll]{ //

h(t + Ar) — h(r)

1
= fit, h(1), 0) it
At
05" 5 057" 5
Input/Hidden/Output Input/Hidden/Output

Chen+2019



NEURAL ODES IN ASTROPHYSICS

* Neural Astrophysical Wind Models (Nguyen 2023)

* Neural ODEs as a discovery tool to characterize the structure of the hot galactic wind of M82
(Nguyen+2023)

» Speeding up astrochemical reaction networks with autoencoders and neural ODEs (Sulzer+Buck
2023)

Predicted and true evolution Predicted and true evolution of the linear model Relative error in time
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PHYSICS INFORMED NEURAL NETS

Loss function for PINNs

Differential Equation: Flu(x,y)] = f(x,y)

Dataset: (x;, y;,u;); i =1, ..., Nygeq

N¢
1
Lpifrrq = EZ(T [u(, )] = £ (%3,9)))°
j=1

Collocation points: (xj,yj);j =1,..,N.

Initial Condition: (x,, Yo, Ug) I

Litotal = Waata " Laata T+ WpiffEq LDi[qu +Wic " Lic

!

Lic = (u(xq,yo) — uo)z




PINNS IN ASTROPHYSICS

Physics-informed neural networks for modeling
astrophysical shocks (Moschou+2023)

Probing the solar coronal magnetic field with physics-
informed neural networks (Jarolim+2022)

Physics-informed neural networks in the recreation of
hydrodynamic simulations from dark matter (Dai+2023)

Physics informed neural networks for simulating
radiative transfer (Mishra+Molinaro 2021)

Neural networks: solving the chemistry of the
interstellar medium (Branca+Pallottini 2023)

_____________________ NN(@#)  Branca+Pallottini 2023
¢0 . ¢m ¢n .
PDE/ODE

-------------------------? ------------------------
Tconnnue

end trainingi/ L = L:f —+ £g

training <—— L < €




DEEP OPERATORS IN ASTROPHYSICS

 PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet
Systems (Mao+2023)

* Emulating the interstellar medium chemistry with neural operators (Branca+Pallottini 2024)

 CODES Benchmark for neural ODEs and Operator Learning for astrochemistry
(Janssen,Sulzer+Buck 2024)

neurons

128

128 neurons

v Branca+Pallottini 2024

6 layers




SUMMARY & CONCLUSION

Main take away:

scientific motivated inductive bias helps to be more robust, more data efficient
and better interpretable

My personal message.:
Write better code!
Share more data!

Build more open-source software!

This will accelerate research cycles and lets you engage with peers early on!



THIS 1S YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE. WRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.







DIFFERENTIABLE SIMULATORS



