

Machine Learning of the Cosmic 21-cm Signal

David Prelogović PostDoc @ SISSA, Trieste, IT

1. Cosmic 21-cm Signal

- Hydrogen atoms abundant throughout the Universe's evolution
- Encoding the first billion years

Years after the Big Bang

2. Cosmic 21-cm Signal

• $cosmo. + astro.$

$$
\delta T_b \approx 30 x_{\rm HI} \Delta \left(\frac{H}{dv_r/dr + H}\right) \left(1 - \frac{T_{\gamma}}{T_{\rm S}}\right) \left(\frac{1 + z}{10} \frac{0.15}{\Omega_{\rm M} h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \rm mK
$$

Mesinger+2016

3. Forward modeling pipeline

Prelogović+2022

4.1 Classical Inference Example: CMB

- Full sky map compressed to 1DPS
	- Known, optimal compression

4.2 Compression for a Duck

change phases

- Same 2D PS
- Highly non-Gaussian

- Simpler than a duck
	- Power spectrum

- Simpler than a duck
	- Power spectrum
	- Bispectrum

- Simpler than a duck
	- Power spectrum
	- Bispectrum
	- Morphological spectra

5.1 ML role #1 - Compression

- 21-cm no good a-priori physical motivation for a compression
- We cannot know THE optimal compression/summary

5.1 ML role #1 - Compression

- 21-cm no good a-priori physical motivation for a compression
- We cannot know THE optimal compression/summary

Solution:

Let the machines figure it out for us!

(Neural Network)

- Gillet+2018
- La Plante & Ntampaka 2019
- Makinen+2020
- Mangena+2020
- Hortúa+2020
- Prelogović+2021
- $-$

5.2 ML role #2 – Simulation Based Inference

6. ML role #2 – Simulation Based Inference

What is the likelihood of the 21-cm 1D power spectrum?

1. 1DPS has a non-Gaussian likelihood

Gaussian data = Gaussian likelihood in the PS

Non-Gaussian data =

Non-Gaussian likelihood, even in the PS

2. Classical inference (MCMC)

- Possible by approximating the PS likelihood with a Gaussian
	- Usually wrongly justified through the central limit theorem

$$
P(S|\theta) = \mathcal{N}(\Sigma_{\mathcal{S}}(\theta), \mu_{\mathcal{S}}(\theta))
$$

=
$$
\frac{1}{(2\pi)^{n/2}\sqrt{|\Sigma_{\mathcal{S}}(\theta)|}}e^{-\frac{1}{2}(\mathcal{S}-\mu_{\mathcal{S}}(\theta))^T\Sigma_{\mathcal{S}}^{-1}(\theta)(\mathcal{S}-\mu_{\mathcal{S}}(\theta))}
$$

 -0.5

 $0.53 0.25 -$

 0.31 0.41

> 0.25 0.31 0.41 0.53 0.25 0.31 0.41 0.53 0.25 0.31 0.41 0.53 $k[{\rm Mpc}^{-1}]$

2. Classical inference (MCMC)

- Possible by approximating the PS likelihood with a Gaussian
	- Usually wrongly justified through the central limit theorem

1) ignoring correlations by using diagonal Σ

2. Classical inference (MCMC)

- Possible by approximating the PS likelihood with a Gaussian
	- Usually wrongly justified through the central limit theorem

$$
P(S|\theta) = \mathcal{N}(\Sigma_{\mathcal{S}}(\theta), \mu_{\mathcal{S}}(\theta))
$$

=
$$
\frac{1}{(2\pi)^{n/2}\sqrt{|\Sigma_{\mathcal{S}}(0)|}}e^{-\frac{1}{2}(S-\mu_{\mathcal{S}}(\theta))^T\Sigma_{\mathcal{S}}^{-1}(0)}(\mathcal{S}-\mu_{\mathcal{S}}(\theta))
$$

- Common additional simplifications
	- 1) ignoring correlations by using diagonal Σ
	- 2) Fixing the covariance at fiducial parameters $\Sigma = \Sigma_{\text{effd}}$ Greig&Mesinger 2018

Trott+2020 Mertens+2020 HERA+2023

2. Classical inference (MCMC)

- Possible by approximating the PS likelihood with a Gaussian
	- Usually wrongly justified through the central limit theorem

$$
P(S|\theta) = \mathcal{N}(\Sigma_{\mathcal{S}}(\theta), \mu_{\mathcal{S}}(\theta))
$$

=
$$
\frac{1}{(2\pi)^{n/2}\sqrt{|\Sigma_{\mathcal{S}}(\theta)|}}e^{-\frac{1}{2}(S-\mu_{\mathcal{S}}(\theta))^{T}\Sigma_{\mathcal{S}}^{-1}(\theta)(S-\mu_{\mathcal{S}}(\theta))}
$$

- Common additional simplifications
	- 1) ignoring correlations by using diagonal Σ
	- 2) Fixing the covariance at fiducial parameters $\Sigma = \Sigma_{\text{effid}}$
	- 3) μ estimated from one simulation

Greig&Mesinger 2018 Trott+2020 Mertens+2020 HERA+2023

3. Simulation Based Inference

 \mathcal{R}

3. Simulation Based Inference

- Train a neural density estimator (NDE)
	- Gaussian mixture

 $P(\theta | 5^*)$

 \mathcal{S}

4. Results

Including more realistic likelihood ≠ more constraining posterior

SCUOLA

4. Results

BUT:

This is only qualitative description, and only for the mock observation

- How does it perform for other points in the parameter space?
- Did the training converge?
- Can we quantify the best model?

–> Simulation Based Calibration

1. Pull from prior
$$
\tilde{\theta} \sim P(\theta)
$$

- $\tilde{\boldsymbol{\theta}} \sim P(\boldsymbol{\theta})$ 1. Pull from prior
- $\tilde{\bm{y}} \sim P(\bm{y}|\tilde{\bm{\theta}}) \quad \Leftrightarrow \quad \tilde{\bm{y}} = \text{simulator}(\tilde{\bm{\theta}})$ 2. Pull the data from the likelihood

- $\tilde{\boldsymbol{\theta}} \sim P(\boldsymbol{\theta})$ 1. Pull from prior
- $\tilde{\bm{y}} \sim P(\bm{y}|\tilde{\bm{\theta}}) \quad \Leftrightarrow \quad \tilde{\bm{y}} = \text{simulator}(\tilde{\bm{\theta}})$ 2. Pull the data from the likelihood
- $P(\boldsymbol{\theta}|\tilde{\boldsymbol{y}})$ 3. Calculate the posterior the sample

- 1. Pull from prior
- 2. Pull the data from the likelihood
- 3. Calculate the posterior the sample
- 4. Repeat and average posteriors

$$
\tilde{\boldsymbol{\theta}} \sim P(\boldsymbol{\theta})
$$
\n
$$
\tilde{\boldsymbol{y}} \sim P(\boldsymbol{y}|\tilde{\boldsymbol{\theta}}) \quad \Leftrightarrow \quad \tilde{\boldsymbol{y}} = \text{simulator}(\tilde{\boldsymbol{\theta}})
$$
\n
$$
P(\boldsymbol{\theta}|\tilde{\boldsymbol{y}})
$$
\n
$$
P(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} P_i(\boldsymbol{\theta}|\tilde{\boldsymbol{y}}_i)
$$

• "prior" = "data averaged posterior" $P(\theta) = \int P(\theta | \tilde{y}) P(\tilde{y} | \tilde{\theta}) P(\tilde{\theta}) d\tilde{y} d\tilde{\theta}$

Computed

 $f(\theta)$

• SBC – casting integral into 1D rank statistics distribution

6. SBC for 21-cm PS

• 10 000 posteriors

• Would be useful for classic inference, but is too expensive to compute

• NDE Gauss mixture – the best

Prelogović & Mesinger 2023

Conclusions

- SBI current and future frontier in the 21-cm inference
	- Cheaper and more precise, by recovering a data-driven likelihood
	- Convergence / performance tests crucial!

How informative are summaries of the 21-cm signal?

1. Fisher information matrix

• If we label data space as \boldsymbol{d} and its likelihood as $P(\boldsymbol{d}|\boldsymbol{\theta})$

$$
\boldsymbol{F}(\boldsymbol{\theta}^*)_{mn} = \mathrm{E}_{P(\boldsymbol{d}|\boldsymbol{\theta}^*)} \left[\frac{\partial}{\partial \boldsymbol{\theta}_m} \ln P(\boldsymbol{d}|\boldsymbol{\theta}^*) \cdot \frac{\partial}{\partial \boldsymbol{\theta}_n} \ln P(\boldsymbol{d}|\boldsymbol{\theta}^*) \right]
$$

• The usefulness comes from 1D: Var $(\hat{\theta}_m) \geq (F^{-1})_{mm}$ ND: det Cov $(\hat{\theta}) \geq \det F^{-1}$

How well we can estimate a parameter is fundamentally limited by its Fisher information.

(i.e. one cannot go below it) Fisher 1935

1. Fisher information matrix - example

- We cannot perform better than the shown ellipse
- Different summary, different Fisher matrix
- det F^{-1} = volume of the ellipse
	- det F⁻¹ smaller the better
	- det **F** bigger the better

3. Distribution of the Fisher information

- det $F(\theta^*)$ is information measure just around one point
- Calculating around many different points is better

3. Distribution of the Fisher information

- det $F(\theta^*)$ is information measure just around one point
- Calculating around many different points is better
- Sample ~150 points from the prior
- Around each point construct simulations. needed to compute the Fisher matrix

3. Distribution of the Fisher information

- det $F(\theta^*)$ is information measure just around one point
- Calculating around many different points is better
- Sample ~150 points from the prior
- Around each point construct simulations. needed to compute the Fisher matrix

4. Considered summaries

Prelogović&Mesinger 2024

4.1 Information Maximizing NN

- Unsupervised algorithm
- Simulate the data at a fiducial parameter set: $d(\theta_{\text{fid}})$
- Simulate around the fiducial parameters: $d(\theta_{\text{fid}}^+), d(\theta_{\text{fid}}^-)$
- Calculate compressed summary: $\bm{s}=NN(\bm{d})$
- Maximize Fisher information:

 $\mathcal{L} = -\ln(\det \bm{F})$

5. Results

- 1DPS and 2DPS clear winners
- Combining 2DPS + IMNN
	- IMNN extracts complementary information to the PS $\sigma^2/\sigma_{\rm 10^2}^2$ $\sigma_{\rm 10^2}^2$

Prelogović&Mesinger 2024

Conclusions

- SBI current and future frontier in the 21-cm inference
	- Cheaper and more precise, by recovering a data-driven likelihood
	- Convergence / performance tests crucial!

- Fisher distribution information-based metric for a summary quality
	- Hard to beat the PS
	- Combination of classical + neural summaries as a powerful way forward

Thank you!