Emulating ISM non equilibrium (photo-thermo)-chemistry with Deep Neural Operators

Lorenzo Branca 25/09/2024

Lorenzo Branca & Andrea Pallottini, A&A, 10.1051/0004-6361/202449193

Introduction

 Context: realistic astrophysical simulations needs to compute several processes (gravity, fluid-dynamic, radiation and chemistry).

 Problem: non-equilibrium chemistry is among the most difficult tasks to include in astrophysical simulations:

- high (>40) number of reactions
- short evolutionary timescales
- non-linearity and stiffness of the associate ODEs
- Load balancing for parallel computation
- Aim: Replacing of classical ODEs solvers with fast deep learning based emulators

Decataldo et al;2020

Molecular Cloud (MC) simulation about 10⁸ finite elements

total of ~350 kCPUhr

Decataldo et al;2020

processes

(self)gravity

 $\nabla^2 \Phi = 4\pi G \rho$

approximate CPU cost

~10%

Molecular Cloud (MC) simulation about 10⁸ finite elements

total of ~350 kCPUhr

Decataldo et al;2020

Molecular Cloud (MC) simulation about 10⁸ finite elements

total of ~350 kCPUhr

processes

(self)gravity

Fluid

dynamics

$$\nabla^2 \Phi = 4\pi G \rho$$

 $\partial_t \mathcal{U} + \nabla \cdot \mathcal{F} = \mathcal{S}$

approximate CPU cost

~10%

~20%

Decataldo et al:2020

Molecular Cloud (MC) simulation about 108 finite elements

total of ~350 kCPUhr

processes

(self)gravity $abla^2\Phi=4\pi G
ho$

approximate CPU cost

~10%

Fluid dynamics

$$\partial_t \mathcal{U} + \nabla \cdot \mathcal{F} = \mathcal{S}$$

~20%

Radiative transfer

$$\partial_t I_{\nu} + \hat{n} \nabla \cdot I_{\nu} = j_{\nu} - k_{\nu} I_{\nu}$$

Decataldo et al;2020

Molecular Cloud (MC) simulation about 10⁸ finite elements

total of ~350 kCPUhr

processes

(self)gravity

$$\nabla^2 \Phi = 4\pi G \rho$$

approximate CPU cost

~10%

Fluid dynamics

$$\partial_t \mathcal{U} + \nabla \cdot \mathcal{F} = \mathcal{S}$$

~20%

Radiative transfer

$$\partial_t I_{
u} + \hat{n}
abla \cdot I_{
u} = j_{
u} - k_{
u} I_{
u}$$
 ~20%

chemistry

Decataldo et al:2020

Molecular Cloud (MC) simulation about 108 finite elements

total of ~350 kCPUhr

processes

(self)gravity

 $\nabla^2 \Phi = 4\pi G \rho$

approximate CPU cost

~10%

Fluid dynamics

Radiative

transfer

 $\partial_t \mathcal{U} + \nabla \cdot \mathcal{F} = \mathcal{S}$

~20%

 $\partial_t I_{\nu} + \hat{n} \nabla \cdot I_{\nu} = j_{\nu} - k_{\nu} I_{\nu}$

~20%

chemistry

H+,e,H,H2,He+,He,hv

~50%

non-equilibrium chemistry evolution plays a crucial role in cosmological and astrophysical phenomena, especially in the study of InterStellar Medium (ISM)

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$

$$\dot{T} = \Gamma - \Lambda$$

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$
$$\dot{T} = \Gamma - \Lambda$$

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$

$$\tau_{chem}/\tau_{HD} < 10^{-4}$$

$$\dot{T} = \Gamma - \Lambda$$

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$

$$\dot{T} = \Gamma - \Lambda$$

$$\tau_{chem}/\tau_{HD} < 10^{-4}$$

$$N_{rea} \propto N_s^{\alpha}, \alpha > 1$$

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$

$$\dot{T} = \Gamma - \Lambda$$

$$\tau_{chem}/\tau_{HD} < 10^{-4}$$

$$N_{rea} \propto N_s^{\alpha}, \alpha > 1$$

$$\dot{n}_k = A_k^{ij} n_i n_j + B_k^i n_i$$

$$\dot{T} = \Gamma - \Lambda$$

Load balancing

$$\tau_{chem}/\tau_{HD} < 10^{-4}$$

$$N_{rea} \propto N_s^{\alpha}, \alpha > 1$$

Stifness

Universal approximation theorem — Let $C(X, \mathbb{R}^m)$ denote the set of continuous functions from a subset X of a Euclidean \mathbb{R}^n space to a Euclidean space \mathbb{R}^m . Let $\sigma \in C(\mathbb{R}, \mathbb{R})$. Note that $(\sigma \circ x)_i = \sigma(x_i)$, so $\sigma \circ x$ denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every $n \in \mathbb{N}$, $m \in \mathbb{N}$, compact $K \subseteq \mathbb{R}^n$, $f \in C(K, \mathbb{R}^m)$, $\varepsilon > 0$ there exist $k \in \mathbb{N}$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $C \in \mathbb{R}^{m \times k}$ such that

$$\sup_{x \in K} \|f(x) - g(x)\| < \varepsilon$$

where
$$g(x) = C \cdot (\sigma \circ (A \cdot x + b))$$

Operators approximation

Operators approximation

Theorem 1 (Universal Approximation Theorem for Operator).

Suppose that σ is a continuous non-polynomial function, X is a Banach space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a nonlinear continuous operator, which maps V into $C(K_2)$. Then for any $\epsilon > 0$, there are positive integers n, p and m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p and j = 1, ..., m, such that

$$G(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_{i}^{k} \sigma \left(\sum_{j=1}^{m} \xi_{ij}^{k} u(x_{j}) + \theta_{i}^{k} \right) \underbrace{\sigma(w_{k} \cdot y + \zeta_{k})}_{\text{trunk}} < \epsilon$$
branch
$$(1)$$

holds for all $u \in V$ and $y \in K_2$. Here, C(K) is the Banach space of all continuous functions defined on K with norm $||f||_{C(K)} = \max_{x \in K} |f(x)|$.

Operators approximation

Theorem 1 (Universal Approximation Theorem for Operator).

Suppose that σ is a continuous non-polynomial function, X is a Banach space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a nonlinear continuous operator, which maps V into $C(K_2)$. Then for any $\epsilon > 0$, there are positive integers n, p and m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p and j = 1, ..., m, such that

$$\left| \frac{\int_{G(u)(y)-\sum_{k=1}^{p}\sum_{i=1}^{n}c_{i}^{k}\sigma\left(\sum_{j=1}^{m}\xi_{ij}^{k}u(x_{j})+\theta_{i}^{k}\right)\sigma(w_{k}\cdot y+\zeta_{k})}{\text{branch}} \right| < \epsilon \qquad ||\mathcal{G}(u)(y)-f(u)\otimes g(y)|| < \epsilon$$
(1)

holds for all $u \in V$ and $y \in K_2$. Here, C(K) is the Banach space of all continuous functions defined on K with norm $||f||_{C(K)} = \max_{x \in K} |f(x)|$.

Deep Neural Operator Network

Deep Neural Operator Network

Data

quantity	variable	bins	min	max
gas density	$\log(n/\text{cm}^{-3})$	64	-2	3.5
abundances	$\log(n_i/n)$	512	-6	0
temperature	$\log(T/K)$	64	log(20)	5.5
radiation	$\log(F_i/\text{eV cm}^{-2}\text{s}^{-1}\text{Hz})$	64	-15	-5
time	t/kyr	16	0	1

Data

quantity	variable	bins	min	max
	$\log(n/\text{cm}^{-3})$	64	-2	3.5
abundances	$\log(n_i/n)$	512	-6	0
temperature	$\log(T/K)$	64	log(20)	5.5
radiation	$\log(T/K)$ $\log(F_i/\text{eV cm}^{-2} \text{ s}^{-1} \text{ Hz})$	64	-15	-5
time	t/kyr	16	0	1

Photo-rea	ction		hv _{min} /eV
$H^- + \gamma$	\rightarrow	H + e	0.76
$H_2^+ + \gamma$	\rightarrow	$H^+ + H$	2.65
$H_2^2 + \gamma$	\rightarrow	H + H (Solomon)	11.2
$H + \gamma$	\rightarrow	$H^+ + e$	13.6
$H_2 + \gamma$	\rightarrow	H + H (direct)	14.2
$H_2 + \gamma$	\rightarrow	$H_{2}^{+} + e$	15.4
$He + \gamma$	\rightarrow	$He^+ + e$	24.6
$H_2^+ + \gamma$	\rightarrow	$H^{+} + H^{+} + e$	30.0
$He^+ + \gamma$	\rightarrow	$He^{++} + e$	54.4

Data

quantity	variable	bins	min	max
gas density	$\log(n/\text{cm}^{-3})$	64	-2	3.5
abundances	$\log(n_i/n)$	512	-6	0
temperature	$\log(T/K)$	64	log(20)	5.5
radiation	$\log(F_i/\text{eV cm}^{-2}\text{s}^{-1}\text{Hz})$	64	-15	-5
time	t/kyr	16	0	1

Photo-rea	ction		$h\nu_{\rm min}/{\rm eV}$
$H^- + \gamma$	\rightarrow	H + e	0.76
$H_2^+ + \gamma$	\rightarrow	$H^+ + H$	2.65
$H_2^2 + \gamma$	\rightarrow	H + H (Solomon)	11.2
$H + \gamma$	\rightarrow	$H^+ + e$	13.6
$H_2 + \gamma$	\rightarrow	H + H (direct)	14.2
$H_2 + \gamma$	\rightarrow	$H_{2}^{+} + e$	15.4
$He + \gamma$	\rightarrow	$He^+ + e$	24.6
$H_2^+ + \gamma$	\rightarrow	$H^{+} + H^{+} + e$	30.0
$He^+ + \gamma$	\rightarrow	$He^{++} + e$	54.4
	-		

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e ⁻	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He ⁺	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He ⁺⁺	0.0234	0.0125	0.0220	0.0436

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e ⁻	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He^+	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He^{++}	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e ⁻	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He^+	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He ⁺⁺	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

• Speed-up: 128X

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e ⁻	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He^+	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He ⁺⁺	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

• Speed-up: 128X

• Accuracy: ~ 1%

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e ⁻	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He^+	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He ⁺⁺	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

• Speed-up: 128X

• Accuracy: ~ 1%

• N ouliers: ~ 1/1.000.000

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e^{-}	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He ⁺	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He^{++}	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

• Speed-up: 128X

• Accuracy: ~ 1%

• N ouliers: ~ 1/1.000.000

FIRST TIME WITH RADIATION FIELD COUPLING!!!!!

input	MRE	50%	75%	90%
T	0.0179	0.0114	0.0211	0.0353
e^{-}	0.0074	0.0044	0.0078	0.0151
H^-	0.0176	0.0076	0.0183	0.0398
H	0.0269	0.0190	0.0375	0.0547
He	0.0213	0.0150	0.0258	0.0422
H_2	0.0274	0.0167	0.0292	0.0548
H^+	0.0099	0.0060	0.0101	0.0178
He ⁺	0.0148	0.0082	0.0177	0.0314
H_2^+	0.0255	0.0146	0.0267	0.0552
He^{++}	0.0234	0.0125	0.0220	0.0436

• Training: ~40 GPUhrs

• Speed-up: 128X

• Accuracy: ~ 1%

• N ouliers: ~ 1/1.000.000

FIRST TIME WITH RADIATION FIELD COUPLING!!!!!

Let's look at the solutions

Let's look at the solutions

PDR test

Coupling with simulations:	

Coupling with simulations:

Outliers (rel_err>50%) appear every 10^6 inferences

Coupling with simulations:

Outliers (rel_err>50%) appear every 10^6 inferences

Not clear how to manage the error propagation

Coupling with simulations:

Outliers (rel_err>50%) appear every 10^6 inferences

Not clear how to manage the error propagation

More chemical species:

Coupling with simulations:

Outliers (rel_err>50%) appear every 10^6 inferences

Not clear how to manage the error propagation

More chemical species:

Dataset became huge!

Coupling with simulations:

Outliers (rel_err>50%) appear every 10^6 inferences

Not clear how to manage the error propagation

More chemical species:

Dataset became huge!

Generalization: operator are better than functions. However...

Summary

- ISM (photo-thermo) chemistry represents a current challenge in astrophysical simulations
- We developed a Neural Operator based emulator to replace procedural solvers
- Accuracy around 1%
- For the first time we include radiation field

Thanks!